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Abstract 
Generating representative behaviors for opposing and adja-
cent forces is critical for training military units in a simulated 
environment. Humans are often required in-the-loop because 
automated systems struggle to provide intelligent and adap-
tive behaviors that represent appropriate military doctrine 
and can be explained in the After Action Review. Automated 
solutions often fail to maintain enough diversity to be re-
played in successive iterations of the simulated mission with-
out becoming easily predictable. This paper describes the de-
cision-making approach for automated hierarchical planning 
agents designed to overcome these challenges. Our Mission 
Command Agents (MCAs) combine constraint optimization 
for multi-agent goal reasoning and state-space planning for 
route planning to generate Courses of Action (COAs) for 
simulated units. We detail extensions in both steps to produce 
a set of COAs on the Pareto front for multiple practical (e.g., 
distance), doctrinal (e.g., cover and concealment), and behav-
ioral (e.g., risk-tolerance or aggressiveness) objectives. 
 We compare COAs generated using this new approach to 
results of our previous MCA that uses a more traditional ap-
proach of aggregating objectives or preferences into a single 
weighted utility function and optimizing with respect to that 
joint utility to find multiple optimal and near-optimal solu-
tions. In contrast to previously emitted behaviors, which of-
ten reflected many small differences in utility or positioning, 
analyzing the trade-offs among multiple objectives produces 
more meaningfully diverse solutions. In an experiential train-
ing context, this diversity supports replaying scenarios with 
automated units that have distinct preferences and priorities. 
We summarize our results with evaluation metrics showing a 
set of COAs can appropriately represent doctrinal constraints 
with diverse, reasonable, and explainable trade-offs between 
objectives. 

Intelligent Course of Action Planning 
for Military Units1 

Modern combat operations are reshaping the experiences of 
small tactical units. Long range surveillance by drones and 
electronic surveillance, coupled with long range precision 
fires, forces them to operate distributed – isolated from their 
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larger organizations. To achieve effects, they must be able 
to coordinate across large distances and rapidly consolidate 
at decisive locations, quickly dispersing again before the en-
emy’s fires take effect (Scales, 2019). The Institute of Land 
Warfare takes a further step, calling for our small units to 
achieve overmatch through realistic training designed to im-
prove leader and team agility and performance (Roper, 
2018). Some of this has been codified in the Army’s cap-
stone doctrine, calling for the ability to make contact with 
the smallest unit possible and converge to achieve effects 
(HQDA, 2022). 
 Simulation-based training offers an opportunity to accel-
erate the development of effective small units and leaders; 
but, the challenges of modern operations strain the current 
capabilities. In particular, the simulation must present real-
ism with behaviors representative of those expected on the 
battlefield. This requires Artificial Intelligence- (AI-) driven 
forces to behave doctrinally during the simulated mission, 
and to react in real-time to stimulate rapid decision making 
and execution by these small units (Owens et. al, 2020). 
However, AI systems are not yet ready to meet this chal-
lenge. Current simulations employ scripted behaviors or fi-
nite state machines that can be cumbersome and difficult to 
develop (McGroarty and Gallant, 2022). Machine learning 
offers promise in this domain (Narayanan et. al. 2021), but 
the simulation’s inability to provide a realistic training envi-
ronment for the learning systems limits the realism offered 
by these approaches. In addition, machine learning systems 
have not been developed to adhere to a specific force’s doc-
trine or to explain their behaviors in the After Action Re-
view. 
 This paper stems from an effort to develop AI capabilities 
that overcome these limitations. Mission Command Agents 
(see Figure 1) are designed based on the Army’s Mission 
Command doctrine for command and control of Army 
forces (HQDA 2019). They receive a mission order from the 
training system and begin building situational understanding 



of the current mission. They then visualize how the mission 
might play out by anticipating threat COAs to consider dur-
ing the development of friendly COAs. An assessment pro-
cess provides data to support a decision about which COA 
to send to the training system for execution (Argenta et. al., 
2022). This paper focuses on improving the overall diversity 
and quality of COAs available to the decision maker (human 
or automated). The development of Pareto sets during intel-
ligent planning replicates different decision makers with the 
ability to trade-off between doctrinal objectives. In addition, 
diversity is encouraged so trainees cannot easily predict the 
automated forces’ actions based on previous simulations. 

Generating Representative and 
Diverse Courses of Action 

Given the same set of doctrinal rules, humans may interpret, 
prioritize, and apply the rules, uncertainties, and personal 
tolerances to produce different behaviors for the same situ-
ation. Decision-making behaviors can be both representa-
tive of the rules and diverse in their application. In auto-
mated systems, we optimize behaviors with multiple objec-
tives, which may involve trade-offs that allow solutions that 
results in similarly diverse but representative behaviors. 
 To intentionally generate behaviors that reflect the ranges 
a human might select, it helps to understand which trade-
offs exist and how diverse interpretations, prioritizations, 
and applications of rules might be considered beneficial. 

 In our problem space, an MCA makes two choices. First, 
where to position a unit such that the combination of units 
produces the desired and representative effect against an un-
certain picture of what they anticipate the opposing force 
will do. Second, what route the unit will take to get to the 
desired position from its current position, which must also 
represent how that action might be expected to be done by 
the specific type of unit being automated. 

Comparing a Priori to a Posteriori Strategies 
The initial implementation of the MCA developed a set of 
unit position plans for a military offensive operation using a 
Tabu Search and a custom Best-First State-Space Search for 
router planning. Both these algorithms transform a multi-
objective problem into a single-objective problem by apply-
ing a priori knowledge of preferences as a set of weights. 
Our MCA optimized nine different objectives based on rel-
ative weights manually selected for that situation. Addition-
ally, these approaches were customized to find multiple op-
timal and near optimal solutions based on these objectives. 
 Here, we compare that initial MCA with a new design that 
uses a second class of techniques that involve finding the 
Pareto Front and exploring tradeoffs. These a posteriori 
techniques have several advantages. They do not require 
preferences in advance, they can use population-based tech-
niques to evaluate many solutions in a single iteration, and 
they offer a meaningfully distinct set of choices and trade-
offs to the decision maker. 

 
Figure 1. Mission Command Agents for intelligent COA planning for simulated units. 



Optimizing Tactical Position Planning 
A simplified positioning problem is shown in Figure 2. 
Higher elevations allow better observation of the enemy, but 
our unit must adapt to an already established friendly posi-
tion (red dot). It is also important for positions to be dis-
persed. However, once the positions are at least two units 
apart, further dispersion provides no value. The objectives 
for the position planner are to maximize elevation and max-
imize distance from the red dot. Also, note the large flat area 
for which all elevation values are equal. 
 The positions in the Weighted Aggregation plot (A) in 
Figure 2 represent multiple runs using different a priori pref-
erences expressed as weights. This technique allows some 
exploration of the Pareto frontier and solution space but re-
quires guessing appropriate weights without knowledge of 
how the objectives interact. 
 A common algorithm for finding the Pareto Front is the 
Nondominated Sorting Genetic Algorithm – II (NGSA-II) 
(Deb et. al., 2002). This algorithm favors nondominated so-
lutions along with solutions that are not near other solutions 
on the Pareto front. The NGSA-II plot (B) in Figure 2 results 
from running a population of 100 solutions for 2500 gener-
ations. Note that the Pareto Front along the x = 0, 0 < y < 1 
line is well defined while the entire flat space where the sep-
aration distance d > 2 has equal Pareto optimality, but only 
one point represents this space. It has diversity in the Pareto 

(objectives) space, but not in the domain (XY) space. In tac-
tical planning for military units, diversity of positioning on 
the battlefield is at least as important as diversity of prefer-
ences. 
 In order to remedy this situation, we adapted the NSGS-
II algorithm to incorporate k-nearest-neighbor crowding dis-
tances in both the objective space and XY space. This favors 
nondominated solutions that are not near other solutions on 
the Pareto front and not near other solutions in XY space. 
The results are shown in the adapted genetic algorithm plot 
(C) of Figure 2 and compared in (D). Note the dispersion 
along the Pareto front and in XY space, which would appear 
meaningfully different to military planners. 
 The performance metrics in Table 1 confirm what we can 
see visually. The normalized hypervolume metric captures 
how closely the resulting Pareto front pushes to the “ideal” 
reference front where maximum values are achieved for 
each objective (Nebro et. al., 2009). Pareto fronts for each 
metric are plotted in Figure 2. The normalized hypervolume 
value is the percentage of the area under each front, divided 
by the area under the reference front. For this metric, the 
weighted aggregation method performs best because its 
scores lie directly on the Pareto front, covering most of its 
volume. Note that the diversity seeking elements of the other 
algorithms yield solutions that are not necessarily exactly on 
that front. 

 
(A) Weighted Aggregation 

 
(B) NSGA-II Genetic Algorithm 

 
 

(C) Genetic Algorithm Adapted for Spread in XY Space 
 

(D) Pareto Fronts 

 
Figure 2. Simplified positioning problem where positions (small black dots) seek to maximize elevation and distance from red dot. 



 The next metric is a spread metric measured in objective 
distance along the Pareto front. This metric captures the de-
gree to which solutions along the Pareto front are evenly 
spaced from each other and from the extreme values of that 
front. Lower scores are better. For this metric, the NGSA-II 
algorithm performs best, as expected. A similar spread met-
ric captures the degree to which solutions are equally spaced 
in the XY dimension. The diversity we see for the adapted 
genetic algorithm is captured by this metric. 
 

 
Table 1. Pareto optimization performance measures for the 

simplified single unit position problem 
↧ - lower is better 

 A visual inspection of these results yields additional im-
portant insights. We expect our Mission Command Agents 
to behave as real units would in the field. In this case, they 
will find good solutions, but not necessarily the absolute 
best. In turn, we accept being a little bit off the Pareto front 
because it yields diversity of choice and diversity from iter-
ation to iteration. In this sense, the adapted genetic algorithm 
plot looks more realistic than the others. 
 To demonstrate these strategies on more complex military 
planning problems, we placed four units in this same space 
while trying to simultaneously maximize the mean elevation 
of all units and the distance between the two closest units. 
Table 2 shows the performance measures for this problem. 
The relative performance of the Adapted GA is similar to its 
performance for the simple problem. It does the best in di-
versity in the XY space, sacrificing a bit in normalized hy-
pervolume and Pareto spread. For the military planning do-
main, this is an acceptable tradeoff that allows diversity of 
choice and solutions that look different to a military trainee. 
 

Extending the Position Decision Problem 
In our military tactical example, we positioned 4 units with 
different weapons capabilities (SBF - Support By Fire  and 
ASSLT - Assault) within a given scenario terrain (Figure 4). 
A position for an opposing force was given such that the 
value of various positions was dependent on their relation-

ship to this opposing force as well as selected friendly posi-
tions. In this optimization, we used six objectives but sim-
plified to three for presentation purposes, which include: 

1. Maximize the cover and concealment – for all 
friendly positions with respect to the opposing force. 

2. Maximize the suppression – the potential firepower 
that the units can bring to bear on the opposing force 
position given their weapon characterizations. 

3. Maximize the separation – this reflects the distance 
between units with diminishing returns. 

 We generated 50 potential position combinations near the 
Pareto Front with respect to these objective dimensions, as 
well as the equivalent of the weighted score. A comparison 
of these solutions is plotted as Figure 3. It is immediately 
obvious that there is not a single positioning solution that 
dominates the others in all objectives. 

 

 
Figure 3. Radar chart showing scores (larger is better) of Top-

50 solutions for planning 4 units with three objectives. Also 
shows the trade-off in separation vs. suppression potential. 

 We quantify the trade-offs between objectives by compu-
ting the correlation of scores between each objective (Table 
3). Solutions with high total weights tended to trade-off 
cover as shown by the negative correlation. 
 

 
Table 3. Correlation matrix for objectives in the four-unit posi-
tioning problem. There is a weak negative correlation between 
separation and suppression. The weighted objective correlates 

positively with suppression and negatively with cover. 

 

 
Table 2. Pareto optimization performance measures for 

 placement of four units. 



Optimizing Tactical Routes 
Route planning is a well-studied problem often employing 
dynamic programming for a state-space search using an ac-
tion model (summarized in Russel 1995). In an efficient ap-
proach, such as A* (Hart, 1968), there is a single objective 
cost function against which potential solutions are searched, 
and an admissible heuristic for estimating the cost remaining 
until a goal is reached. Much like the positioning problem, 
combining multiple objectives is often accomplished with 
an a priori weighting and it can be difficult to predict how 
objectives will compete for any specific problem instance. 
There may also be many, potentially different, solutions that 
score equally optimal with respect to the weighted utility. 
 In addition, it is difficult to fix weights that consistently 
produce behaviors that reasonably represent those of an ex-
pert because the expert’s optimal choice may be adjusted 
based on the results that they might expect given alternative 
priorities. This circularity occurs because the expert consid-
ers trade-offs based on the expected results (e.g., mentally 
simulating each COA with various priorities or risks). To 
make this challenge worse, an expert would likely jointly 
consider positional options along with route planning. 
 In the following subsections, we explore how to discover 
trade-offs in the multi-objective route planning problem by 
comparing collections of optimal and near-optimal solu-
tions. By comparing a diversity of good (with respect to var-
ious strategies) route solutions generated, we discover the 
trade-offs between the objectives that can be quantified by 
analyzing the correlation of their effects on the solutions. 

Route Planning Decision Problem 
We use a simplified route planning problem is shown in Fig-
ure 4 on which the results included here are based. In this 
problem, there is one agent with the ability to move between 
grid squares (four-way connectivity) with the goal to move 
from an initial given position to a goal position provided. 
 
There are three objectives being optimized: 

1. Minimize the distance traveled – each move action 
adds a penalty based on the distance between grid 
centers. 

2. Maximize the cover and concealment – amount of 
time spent in areas identified as crests or draws (doc-
trine). 

3. Maximize the consistency to the mission order – 
time spent in our prescribed avenue of approach. 

 
 The minimum distance route between the initial and goal 
positions is 15 moves but includes movements through areas 
that are not concealed or near the ordered avenue of ap-
proach. There are over 1,000 unique routes that are equally 
optimal with respect to only minimizing distance. 
Routes with Equal Weighting of Objectives 
We have developed a state-space route planner that supports 
multiple search strategies and finds multiple acyclic plans 
(e.g., Top-k or Top-x%). In this experiment, we weighted 
each of the three objectives (min distance, max conceal-
ment, and max order consistency) equally, and extracted the 
Top-30 plans. However, the Top-30 plans contained very 
minimal diversity, and were closely related to the optimal 
minimal distance route. Using equal weighting, the next 
meaningfully different route was discovered at solution 
#987 (17 moves), followed by #994. 
 We can visualize the trade-offs between the various ob-
jectives by comparing the scores of the individual objectives 
along with the combined weighted score. These are plotted 
as Figure 5 after being normalized for comparison and in-
verted (better scoring is shown as larger, although the plan-
ner is actually minimizing costs). It shows three unique op-
tions and a tradeoff. In top cases, prioritizing distance re-
sulted in lower cover and order scores. Prioritizing cover 
and order resulted in lower distance and weighted scores. 
There were also some routes feasible with high distance and 
cover at the cost of order and weighted scores.  

In order to quantify the trade-offs, a correlation matrix 
can be run on the scores for the solutions (Table 4). There is 
a strong positive correlation with the objective to minimize 
distance and the equally weighted score, showing that this 
objective tended to override the others. Since time in any 
other feature depended on total time and because all the 
routes score near the optimal route distance, it is not surpris-
ing that solutions that scored non-optimally for this objec-
tive didn’t appear until after many solutions were generated. 

 
Figure 4. Route planning problem has initial (left white) and 
goal positions (right white), and a potential position of a threat. 
Terrain features of interest include draws and crests (yellow), 
which are doctrinally identified areas for good cover and con-
cealment, and a tactical graphic (black) indicating the avenue of 
approach this unit was assigned in its mission orders. An exam-
ple route (blue) is optimal for minimizing distance traveled. 



 
Figure 5. Equally Weighted Search - Radar chart showing 

scores (larger is better) of Top-30 solutions (1-30) as well as 
solutions 987-1016. These later solutions show the first mean-

ingfully diverse trade-off of objectives and they are sparse. 

 
Table 4. Correlation matrix for objectives in the route planning 

problem when optimized with equal weights. 

Routes on the Pareto Front of Objectives 
To generate more diverse solutions, we developed a search 
strategy focused on discovering solutions on the pareto front 
for all of the objectives. Similar to (Choudhury 2016), we 
developed a strategy for directing state-space search across 
all of the objective dimensions of the space and testing for 
non-dominated solutions. We generated 30 solutions on the 
Pareto Front, but unlike the weighted case, we cannot call 
these “top” solutions. For comparison, we directed the plan-
ner to compute metrics for an equally weighted objective 
without including it in the optimization. As shown in Figure 
6, the resulting solutions show a significantly more diverse 
(in terms of metric space) set of solutions, as intended.  

The correlations for the solutions on the Pareto front are 
consistent with, but slightly stronger than, the previous 
method (Table 5). One significant benefit was that the vari-
ation in solutions was increased, and all 30 solutions pro-
duced were useful compared to the first nearly 1,000 solu-
tions showing little variation. Moreover, many solutions had 
middling scores on the equally weighted objectives but rep-
resented routes that had a reasonable trade-off across objec-
tives for the given situation.  

 
Figure 6. Pareto Search - Radar chart showing scores (larger is 
better) of 30 solutions on the Pareto Front. This shows that no 
solution dominates all the others and exposes a wider range of 
meaningfully diverse solutions with trade-offs of objectives. 

 
Table 5. Correlation matrix for solutions on Pareto Front. 

Conclusions and Future Work 
In this paper, we compared a priori and a posteriori strate-
gies for directing the search for both position and route ele-
ments of military course of action planning. We used meth-
ods that are both practical and doctrinally explainable in Af-
ter Action Review. For each step, we developed and evalu-
ated a diverse set of feasible solutions representative of the 
potential trade-offs between multiple, oft competing, objec-
tives, and quantified them as correlations in the metric 
space. In directing optimization towards discovering solu-
tions on and near the Pareto Front, we identify situationally 
relevant trade-offs a decision-maker might consider. 
 The next steps for this research are to leverage the range 
of trade-offs in both creating automated behaviors (e.g., for 
a simulated force), but also in better recognizing and antici-
pating the range of potential behaviors in others (e.g., a hu-
man trainee). In this latter case, incorrectly assuming a set 
of a priori weights across multiple competing objectives 
could result in misinterpretation of observations (e.g., bias). 
Conversely, learning weights for competing objectives rep-
resentated in trainee behaviors through observations may 
prove valuable in better understanding behaviors of trainees. 
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