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Abstract

Deep hypercomplex-inspired convolutional neural net-
works (CNNs) have recently enhanced feature extrac-
tion for image classification by allowing weight sharing
across input channels. This makes it possible to improve
the representation acquisition abilities of the networks.
Hypercomplex-inspired networks, however, still incur
higher computational costs than standard CNNs. This
paper reduces this cost by decomposing a quaternion
2D convolutional module into two consecutive sepa-
rable vectormap modules. In addition, we use 4 and
5D parameterized hypercomplex multiplication-based
fully connected layers. Incorporating both yields our
proposed hypercomplex CNN, a novel architecture that
can be assembled to construct deep separable hyper-
complex networks (SHNNs) for image classification.
We conduct experiments on CIFAR, SVHN, and Tiny
ImageNet datasets and achieve better performance us-
ing fewer trainable parameters and FLOPS. Our pro-
posed model achieves almost 2% higher performance
for CIFAR and SVHN datasets and more than 3% for
the ImageNet-Tiny dataset and takes 84%, 35%, and
51% fewer parameters than the ResNets, quaternion,
and vectormap networks, respectively. Also, we achieve
state-of-the-art performance on CIFAR benchmarks in
hypercomplex space.

Introduction
Convolutional neural networks (CNNs) and hypercomplex
CNNs (HCNNs) for image classification form a hierarchical
design where different layers extract different levels of fea-
ture representation. CNNs have shown significant success in
recent decades (Buyssens, Elmoataz, and Lézoray, 2012; Ja-
vanmardi et al., 2021). In vision tasks, these CNN-based fea-
ture extraction designs can be improved in regard to working
with multi-dimensional data. To enhance the CNNs ability,
HCNNs have been used which treat the multi-dimensional
data as a cohesive entity by applying cross-channel weight
sharing to discover cross-channel relationships (Parcollet et
al., 2018; Parcollet, Morchid, and Linarès, 2019; Gaudet and
Maida, 2018, 2021). Also, implementations in hypercom-
plex space provide more advantages (Arjovsky, Shah, and
Bengio, 2016; Danihelka et al., 2016; Hirose and Yoshida,
2012; Nitta, 2002). It has also been shown that the HCNNs
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could create better output representations (Nitta, 2002; Sha-
hadat and Maida, 2021, 2023).

Recently, HCNNs with various dimensions like 2D HC-
NNs (Xin, Zhang, and Shao, 2020), 4D HCNNs (quaternion
HCNNs) (Gaudet and Maida, 2018; Parcollet et al., 2018;
Parcollet, Morchid, and Linarès, 2019), 8D HCNNs (Wu
et al., 2020), or HCNNs with arbitrary dimensions (Gaudet
and Maida, 2021), have been studied. The reason behind
the success of HCNNs is that they capture cross-channel re-
lationships (Parcollet et al., 2018; Parcollet, Morchid, and
Linarès, 2019; Gaudet and Maida, 2018, 2021; Shahadat and
Maida, 2021). Among them, quaternion networks have a set
of algebraic operations and have outperformed other HC-
NNs. Stacked quaternion convolutional layers produce bet-
ter representational feature maps and show promising results
in vision tasks (Parcollet et al., 2018; Gaudet and Maida,
2018; Shahadat and Maida, 2021). These networks are cost-
effective compared to real-valued CNNs and fully connected
networks. But still, are very expensive for large inputs like
vision tasks.

This work uses a separable hypercomplex network that:
1) handles multidimensional inputs; 2) applies weight shar-
ing across input channels; 3) captures cross-channel cor-
relations; 4) reduces computational costs; and 5) increases
validation accuracy performance for image classification
datasets. The main idea of this work is to decompose the
quaternion convolutional operation into two consecutive
separable vectormap convolutional operations, splitting 2D
spatial filters into two separable filters with sizes of 3 × 1
and 1 × 3. These separable filters are applied to the height
and width axis of inputs. It enables the model to reduce
costs significantly. Additionally, we apply a quaternion-
based stem layer, and parameterized hypercomplex multi-
plication (PHM) based fully connected layer to get better
representation and better generalization performance.

This paper presents the results of extensive experiments
that show the effectiveness of separable operations in hyper-
complex networks on four image classification datasets. Our
contributions are:

• Replacing the spatial 3×3 QCNN in the bottleneck block
of quaternion ResNets with two separable VCNNs and
showing the improvement of the modified networks.

• Replacing the real-valued CNN with a quaternion-valued



Figure 1: Proposed separable-hypercomplex network with PHM-based fully-connected layer in the backend. “SHNN” stands
for separable hypercomplex neural network bottleneck block described in Figure 2. Here, Qin = Qr +Qw +Qx +Qy +Qz ,
H = Hr +Hw +Hx +Hy +Hz , and Qout = Qro +Qwo +Qxo +Qyo +Qzo are the input, hypercomplex parameterized
weight, and output, respectively. For the calculation of H see the “PHM Layer” section.

CNN in the stem layer (the first layer of the network), re-
sulting in a quaternion-stem model showing performance
improvements. Previous quaternion CNNs did not use a
quaternion stem.

• Like QPHM (Shahadat and Maida, 2023), applying PHM-
based dense layer in the backend of the network.

This proposed separable hypercomplex ResNets outper-
formed the baseline networks for classification datasets
shown in Tables 1 and 2. Our experiments show that the pro-
posed model achieves state-of-the-art results with far fewer
trainable parameters, and FLOPS for CIFAR benchmarks in
hypercomplex space.

Background and Related Work

Quaternion Convolution

Deep quaternion CNN extends complex CNNs (Trabelsi et
al., 2017). This section explains cross-channel weight shar-
ing. (Gaudet and Maida, 2018) and (Parcollet et al., 2018)
extended the principles of quaternion convolution operations
and weight initialization. A quaternion number system is
formed as, Q = r + ix + jy + kz ; r, x, y, z ∈ R where,
r, x, y, and z are real values and i, j, and k are imaginary.
Quaternion convolution between quaternion filter matrix F
and quaternion input vector M , is defined as (Gaudet and

Figure 2: Bottleneck block used in our proposed separable-
hypercomplex networks. “bn” and “VCNN” stand for batch
normalization and vectormap CNN, respectively.



Maida, 2018):

M ⊛ F = (Or,Oi,Oj,Ok) = (

Mr ∗ Fr −Mi ∗ Fi −Mj ∗ Fj −Mk ∗ Fk,

Mi ∗ Fr +Mr ∗ Fi +Mj ∗ Fk −Mk ∗ Fj,

Mj ∗ Fr +Mr ∗ Fj +Mk ∗ Fi −Mi ∗ Fk,

Mk ∗ Fr +Mr ∗ Fk +Mi ∗ Fj −Mj ∗ Fi)

(1)

where, M⊛ F, and all others are quaternion numbers. Or

is the real part, and Oi, Oj, and Ok are the imaginary parts.
Although there are 16 real-valued convolutions in Equation
1, there are only four kernels that are reused. The weight
sharing happens this way (Parcollet, Morchid, and Linarès,
2019) and forces the model to learn cross-channel interrela-
tionships. A quaternion layer can accept four or m numbers
of input channels, where m is divisible by four. To process m
input channels (m ≥ 4), m/4 independent quaternion con-
volution modules is required. Also, there are m/4 weight
sets where each module has its own weight set. Cross-
channel weight sharing allows discovery of cross-channel
input correlations. Our weight initialization was the same as
(Gaudet and Maida, 2018).

Vectormap Convolution
We explain 3D generalized hypercomplex CNNs or vector-
map CNNs (VCNNs) (Gaudet and Maida, 2021) as VCNNs
are used in our proposed models. The VCNN is more flexi-
ble as it doesn’t require 4D. However, still using cross chan-
nel weight sharing this is seen in 3× 3 matrix used in Equa-
tion 2, only three filters A, B, and C are used. The Vectormap
convolution operation is defined as:[R(M ∗ F )

I(M ∗ F )
J (M ∗ F )

]
= L⊙

[
A B C
C A B
B C A

]
∗

[
x
y
z

]
(2)

where, A, B, and C are real-valued kernels, x, y, and z be-
ing real-valued vectors, and L is a learnable matrix, L ∈
RD3×D3 ; where D3 stands for 3-dimensional input chan-
nels. The initial value of this matrix L is defined as:

L =

[
1 1 1
−1 1 1
−1 1 1

]
(3)

Our weight initialization follows (Gaudet and Maida, 2021).

PHM Layer
Parameterized hypercomplex multiplication is another form
of generalized hypercomplex network, explained in (Zhang
et al., 2021). As we use this PHM layer only in the fully
connected (FC) layer, our explanation is restricted to this
PHM-based dense layer. It is defined as, y = Hx+ b, where
H ∈ Rk×d represents the PHM layer and it is calculated as,
H =

∑n
i=1 Ii ⊗Ai, where Ii ∈ Rn×n and Ai ∈ Rk/n×d/n

are learnable parameter matrices and i = 1 . . . n (n = 4
or 5). Also, d and k are the input and output dimensions.
These matrices can be reused which leads to parameter re-
duction. Also, the ⊗ represents the Kronecker product. The
flattened layer which is the output of the CNN network is

used as input to the PHM FC layer. These inputs are split
as, Qin = Qr + Qw + Qx + Qy + Qz and the outputs are
merged into Qout as, Qout = Qro+Qwo+Qxo+Qyo+Qzo

for 5D hypercomplex. The 4D hypercomplex parameter ma-
trix is discussed in (Zhang et al., 2021) which expresses
the Hamiltonian product, and the 5D hypercomplex param-
eter matrix of PHM operation is explained in (Shahadat and
Maida, 2023). This 5D parameter matrix is used to construct
a 5D PHM FC layer which preserves all properties of the
PHM layer and hypercomplex networks. This work uses a
5D PHM layer.

Proposed Separable Hypercomplex Networks
Complex CNNs, quaternion CNNs, octonion CNNs, vec-
tormap CNNs, and PHMs are all versions of HCNNs that
provide weight sharing across input channels, resulting in
the ability to discover cross-channel correlations. These HC-
NNs perform better, requiring fewer trainable parameters for
vision applications. But they are still computationally expen-
sive. For vision tasks, these HCNNs take O(N ·k2) resources
for an image of length N where N is the flattened pixel set.
And k is the kernel size. For a 2D image of height h and
width w, where N = hw, and h = w, the computational
cost is O(h · w · k2) = O(h2k2).

This section describes our proposed separable hypercom-
plex model in Figures 1 and 2 to reduce the costs. Separable
networks have been used for real-valued networks (Dong et
al., 2020; Gholami et al., 2018). Our proposed model follows
the assumption that images are approximately square where
the pixel count of h and w are the same, and both are much
less than the pixel count of hw (Wang et al., 2020). To trans-
late a quaternion convolutional bottleneck block to a sepa-
rable hypercomplex bottleneck block, we replace the 3 × 3
spatial quaternion convolutional operation with two separa-
ble VCNN layers. These layers are applied sequentially to
the height axis (3 channels 3x1 VCNN layer) and width axis
(3 channels 1x3 VCNN layer). This decomposition reduces
cost from k2 to 2k. The two 1× 1 quaternion convolutional
layers remain unchanged like the original QCNNs (Gaudet
and Maida, 2018). The 1 × 1 QCNNs are used to reduce
and then increase the number of channels. This forms our
proposed separable hypercomplex bottleneck block seen in
Figure 2. This block is stacked multiple times to construct
separable hypercomplex ResNets (SHNNs).

Separable hypercomplex models only work on one di-
mension at a time but the input images are 2-dimensional.
For two-dimensional vision tasks, a square 2D input is split
into height and width axis. The 3-channel VCNN operation
is first applied along the height axis of the input image and
then along the width axis of the input image. These two op-
erations finally merge together reducing cost to O(h · 2k) =
O(2hk) from the HCNN cost of O(h2k2).

Each quaternion convolution accepts four channels of in-
put and produces four channels of output. Hence, the re-
quired number of 1 × 1 quaternion conv2d modules equals
the number of input channels divided by four. The set of
output channels of down-sampled 1 × 1 quaternion is in-
put to the separable VCNN modules, and the output chan-
nels of separable VCNN modules are split into groups of



four again for 1×1 the up-sampled quaternion conv2d layer
(Gaudet and Maida, 2018; Shahadat and Maida, 2021). One
quaternion 2D convolution is applied to each group of four
channels and one vectormap 2D convolution is applied to
each group of three channels. Like vectormap, each separa-
ble vectormap module takes three input channels. Thus, the
weight-sharing is compartmentalized into groups of four in-
put channels and then groups of three input channels.

For better representation, a quaternion convolution layer
is also used in the stem layer (first layer of the net-
work) as a quaternion-based frontend layer and the fully-
connected dense layer as a PHM-based backend layer of
deep separable-hypercomplex networks (SHNNs). These
have not be used in most previous HCNNs. Figure 1 illus-
trates our proposed separable-hypercomplex network archi-
tecture.

Experiment
We conducted an extensive experiment on four classifica-
tion datasets to assess the performance of our proposed
separable-hypercomplex model. As QCNNs, VCNNs, resid-
ual networks (ResNets), QPHM (Shahadat and Maida,
2023), and VPHM (Shahadat and Maida, 2023) all perform
2D spatial convolution operation, we compare our proposed
separable hypercomplex networks performance with these
baseline models. All models perform Hamiltonian products
like our proposed model except for ResNets.

Method
Our experiments used a five-dimensional PHM dense layer
in the backend of the network, quaternion network at the be-
ginning of the network, and separable-hypercomplex resid-
ual bottleneck block on the CIFAR benchmark datasets
(Krizhevsky, Hinton, and others, 2009), the Street View
House Numbers (SVHN) (Netzer et al., 2011), and the Tiny
ImageNet (Le and Yang, 2015) datasets.

The models we tested to compare with our proposed
model, are: the standard deep CNNs (He et al., 2016), the
deep QNNs (Gaudet and Maida, 2018), ResNet with QPHM
(Shahadat and Maida, 2023), QPHM (Shahadat and Maida,
2023), VPHM (Shahadat and Maida, 2023), and our pro-
posed method. CIFAR-10 and CIFAR-100 datasets consist
of 60, 000 color images of size 32×32 pixels. These datasets
fall into 10 and 100 distinct classes and are split into a train-
ing set with 50, 000 images and a test set with 10, 000 im-
ages. We perform standard data augmentation schemes for
these datasets like (He et al., 2016; Gaudet and Maida, 2018,
2021; Shahadat and Maida, 2023). Both datasets were nor-
malized using per-channel mean and standard deviation. We
perform horizontal flips and take random crops from images
padded by 4 pixels on each side to obtain a 40 × 40 pixel
image, then a 32× 32 crop is randomly extracted.

SVHN contains about 600, 000 digit images (Netzer et
al., 2011). For experiments on SVHN, we don’t do any
image preprocessing except simple mean/std normalization.
We use similar augmentation for the Tiny ImageNet dataset
which contains 100, 000 training images of 200 classes (500
per class) downsized to 64 × 64 color images. The test set
has 10, 000 images (Le and Yang, 2015).

All baseline models were trained using the same compo-
nents as the real-valued networks, the original quaternion
network, the original vectormap network, the QPHM, and
the VPHM networks using the same datasets. All models in
Table 1 were trained using the same hyperparameters and
the same number of output channels.

In the stem layer, the 3 × 3 convolution network is used
for deep ResNets (He et al., 2016), 3 × 3 quaternion net-
work is used for the deep quaternion ResNets (Trabelsi et
al., 2017; Gaudet and Maida, 2018), for the QPHM (Sha-
hadat and Maida, 2023), and separable-hypercomplex net-
works (our proposed method), and 3×3 vectormap network
is used for the deep vectormap ResNets (Gaudet and Maida,
2021), and the VPHM (Shahadat and Maida, 2023) networks
with stride 1 & 120 output filters. We use parameterized hy-
percomplex multiplication (PHM) for the dense layer in the
backend of deep ResNets, QPHM, VPHM, and our proposed
separable-hypercomplex networks. In the bottleneck block,
the output channels of bottleneck groups are 120, 240, 480,
& 960 for all networks. In this experiment, we analyze 26-
layer, 35-layer, and 50-layer architectures with the bottle-
neck block multipliers “[1, 2, 4, 1]”, “[2, 3, 4, 2]”, and “[3,
4, 6, 3]”.

All of the models were trained using a stochastic gradi-
ent descent optimizer. We used linearly warmed-up learning
from zero to 0.1 for the first ten epochs and then used a co-
sine learning rate schedule from 11 to 150. All models were
trained using 128 batch sizes.

Results
The results of all models (base models and our proposed
networks) appear in Tables 1 and 2. Table 1 shows the re-
sults for the CIFAR10, CIFAR100, and SVHN datasets. All
datasets were tested using the 26, 35, and 50-layer architec-
tures. The performance measures are the parameter count,
FLOPS count (number of multiply-add operations), infer-
ence time or latency (time required to process a single im-
age after training), and the percentage accuracy of valida-
tion results. We evaluated the original ResNets (He et al.,
2016), ResNet with QPHM (Shahadat and Maida, 2023),
original quaternion networks (Gaudet and Maida, 2018),
original vectormap networks (Gaudet and Maida, 2021),
QPHM (Shahadat and Maida, 2023), and VPHM (Shaha-
dat and Maida, 2023) with the same configuration like our
proposed separable-hypercomplex networks. Our proposed
separable-hypercomplex networks perform almost 3% bet-
ter in validation accuracy with fewer parameters and FLOPS
for CIFAR-10, CIFAR-100, and SVHN datasets than the
baseline networks. More precisely, our proposed method
takes almost six times, three times, two times, three times,
and two times fewer parameters than the ResNets, quater-
nion networks, vectormap networks, QPHM, and VPHM
respectively. Moreover, separable-hypercomplex networks
achieved state-of-the-art results for these CIFAR bench-
marks in hypercomplex space.

The performances for the Tiny ImageNet datasets are
shown in Table 2 for all architectures. The separable-
hypercomplex network’s validation accuracies outperform
the other base networks with fewer trainable parameters and



Model Name Layers Params FLOPS Latency Validation Accuracy
CIFAR10 CIFAR100 SVHN

ResNet

26

41.2M 2.56G 0.89ms 94.68 78.21 96.04
RQPHM 40.9M 2.56G 0.64ms 95.32 79.14 96.64
Quaternion 10.6M 1.15G 0.64ms 94.89 77.65 95.88
Vectormap 13.6M 1.15G 0.64ms 94.76 77.65 95.93
QPHM 10.3M 1.11G 0.65ms 95.26 78.15 95.97
VPHM 13.4M 1.09G 0.66ms 95.15 78.14 96.24
SHNN 6.2M 1.06G 0.69ms 95.91 79.42 97.21
ResNet

35

58.1M 3.31G 1.07ms 94.95 78.72 95.74
RQPHM 57.8M 3.31G 0.81ms 95.80 79.65 96.22
Quaternion 14.5M 1.51G 0.81ms 95.33 78.96 95.95
Vectormap 19.3M 1.48G 0.84ms 95.06 79.52 95.97
QPHM 14.5M 1.47G 0.82ms 95.55 78.46 95.99
VPHM 19.6M 1.45G 0.82ms 95.60 79.86 96.34
SHNN 9.2M 1.36G 0.85ms 96.49 79.93 97.25
ResNet

50

82.9M 4.57G 1.36ms 94.08 78.95 95.76
RQPHM 82.6M 4.57G 1.09ms 95.86 79.89 96.78
Quaternion 21.09M 1.96G 1.06ms 95.42 79.17 96.24
Vectormap 27.6M 1.93G 1.13ms 95.37 79.39 96.39
QPHM 20.7M 1.93G 1.05ms 95.75 78.22 96.46
VPHM 27.5M 1.92G 1.08ms 95.76 79.49 96.49
SHNN 13.6M 1.75G 1.09ms 96.79 80.81 97.47

Table 1: Image classification performance on the CIFAR benchmarks and SVHN for 26, 35, and 50-layer architectures. QPHM,
VPHM, and RQPHM define the quaternion networks with the PHM FC layer, vectormap networks with the PHM FC layer, and
ResNets with the PHM FC layer, respectively.

Model Name Layers Parameters FLOPS Latency Accuracy
ResNet 41.6M 10.2G 3.06 57.21
RQPHM 41M 2.56G 2.31 57.84
Quat. 11.0M 4.54G 2.48 53.84
Vect. 26 14.4M 4.56G 2.88 56.15
QPHM 10.4M 1.11G 2.31 54.02
VPHM 13.8M 4.44G 3.27 53.11
SHNN 6.3M 1.06G 2.49 58.56
ResNet 58.5M 13.2G 3.21 57.80
RQPHM 57.9M 3.31G 2.85 59
Quat. 15.2M 5.98G 3.52 54.53
Vect. 35 20.0M 5.98G 3.76 55.99
QPHM 14.6M 1.47G 2.88 56.42
VPHM 19.4M 5.88G 4.08 56.10
SHNN 9.3M 1.36G 2.97 60.06
ResNet 83.2M 18.2G 3.77 59.06
RQPHM 82.6M 4.57G 3.66 60.30
Quat. 21.4M 7.87G 4.14 56.63
Vect. 50 28.3M 7.87G 4.34 57.52
QPHM 20.8M 1.93G 3.88 59.42
VPHM 27.7M 7.75G 4.51 58.96
SHNN 13.7M 1.75G 3.93 62.73

Table 2: Image classification performance on the Tiny ImageNet benchmarks for 26, 35, and 50-layer architectures. Here,
“Quat.”, “Vect.”, “RQPHM”, “QPHM”, and “VPHM” stand for quaternion networks, vectormap networks, ResNets with
QPHM, the quaternion networks with the PHM FC layer, and vectormap networks with the PHM FC layer, respectively.

FLOPS like CIFAR benchmarks and SVHN datasets. The
result Tables 1, and 2 show our proposed model performance
ranges of three runs. However, the latency of separable-

hypercomplex networks is a little bit higher in some cases
than the quaternion-based networks. This may be due to the
use of vectormap networks along with quaternion networks



as the latency for vectormap networks is higher.

Discussion and Conclusions
This paper proposes separable-hypercomplex convolutions
to reduce the cost of 2D convolutional operations and shows
their effectiveness of image classification tasks. We also
applied 4D PHM in the network’s backend. On CIFAR
benchmarks, our proposed separable-hypercomplex network
was formed by stacking separable vectormap convolutions
(three-dimensional) in the quaternion bottleneck blocks,
achieved state-of-the-art results among hypercomplex net-
works.

Our main conclusion is that using quaternion convolutions
as the frontend stem layer, four/five-dimensional PHM-
based densely connected backend layer, and separable-
hypercomplex bottleneck block improves classification per-
formance on the CIFAR benchmarks, SVHN, and Tiny Ima-
geNet datasets in comparison to the other models we tested.
Our proposed method factorizes a channel-wise 2D convo-
lution (hypercomplex convolution which works along the
channels) to a column convolution and a row convolution.
Extensive experiments show that this leads to systematic
improvement with far fewer trainable parameters on image
classification. This proposed method can save almost 36%
and 51% trainable parameters compared to original quater-
nion and vectormap networks and QPHM and VPHM net-
works, respectively.

Although our proposed separable-hypercomplex design
reduced parameter counts and FLOPS, it exhibited higher
latency than real-valued and hypercomplex-valued CNNs.
This is because the model performs convolution twice
(height-axis and width-axis) and takes transition time from
quaternion to two separable VCNNs. As we replaced spa-
tial quaternion (four-dimensional hypercomplex network)
2D convolution using two separable vectormap (three-
dimensional hypercomplex network) convolutions, the num-
ber of output channels is restricted to 120 or a multi-
ple of 120 which are divisible by three and four. Our
investigation concludes that the performance comparison
between the hypercomplex networks and our proposed
separable-hypercomplex networks shows that the separable-
hypercomplex convolution provides better validation perfor-
mance with fewer trainable parameters and FLOPS for im-
age classification tasks.

Further work may be directed toward the architecture of
the separable quaternion network and separable vectormap
network. Moreover, other datasets will be tested to check
if these proposed architectures can perform similarly or
not. Finally, separable-quaternion and separable vectormap
convolutional methods will help to remove the number-of-
channels constraint.
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