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Abstract

Efficiently embedding graphs in a Euclidean space has many
benefits: It allows us to interpret and solve graph-theoretic
problems using geometric and analytical methods. It also
allows us to visualize graphs and support human-in-the-
loop decision-making systems. FastMap is a near-linear-time
graph embedding algorithm that has already found many
real-world applications. In this paper, we generalize FastMap
to Dynamic FastMap, which efficiently embeds dynamic
graphs, i.e., graphs with time-dependent edge-weights, in a
spatiotemporal space with a user-specified number of dimen-
sions, while reserving one dimension for representing time.
Through a range of experiments, we also demonstrate the effi-
cacy of Dynamic FastMap as an algorithm for spatiotemporal
embedding of dynamic graphs.

Introduction
In many real-world problem domains, the underlying en-
vironment can be modeled as a graph. Moreover, in many
such domains, these graphs are dynamic wherein the edge-
weights evolve with time. A vital aid in decision making in
dynamic environments is the ability to anticipate how the
graph changes by continually visualizing and monitoring it.
Towards that end, we require an efficient algorithm for spa-
tiotemporal embedding of dynamic graphs.

In this paper, we build on a near-linear-time graph em-
bedding algorithm called FastMap (Cohen et al. 2018; Li
et al. 2019). FastMap embeds the vertices of a given undi-
rected graph in a Euclidean space while approximately pre-
serving the shortest-path distances as Euclidean distances
for all pairs of vertices. The algorithm is itself based on
a Data Mining algorithm, also called FastMap (Faloutsos
and Lin 1995), that is designed for efficiently embedding
complex and/or abstract objects, such as long DNA strings,
multi-media datasets like voice excerpts or images, or medi-
cal datasets like MRIs, in a Euclidean space by leveraging a
domain-specific distance function between pairs of objects.
Despite the efficiency of FastMap for embedding undirected
graphs, by design, it is only applicable to static graphs.

In this paper, we present a dynamic version of FastMap,
called Dynamic FastMap, for embedding dynamic graphs:
One dimension represents time, while the other dimensions
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represent pairwise distances between vertices of the graph
at any timestep. The naive approach of invoking FastMap
independently at each timestep does not satisfactorily cre-
ate a coherent spatiotemporal embedding. This is because,
even with small changes to the edge-weights across con-
secutive timesteps, FastMap can produce large differences
in the coordinates created for a vertex. Although Dynamic
FastMap also invokes FastMap at every timestep, it allevi-
ates the foregoing issue by solving a “patching” problem
between the FastMap embeddings produced at consecutive
timesteps. The patching problem is to find an optimal lin-
ear transformation of the FastMap embedding produced at
timestep t that minimizes the “difference” relative to the em-
bedding at timestep t − 1. It can be efficiently solved using
Gurobi, a state-of-the-art optimizer developed in the Opera-
tions Research community. Through a range of experiments,
we demonstrate the efficacy of Dynamic FastMap.

FastMap
FastMap (Faloutsos and Lin 1995) embeds a collection of
abstract objects in an artificially created Euclidean space
to enable geometric interpretations, algebraic manipula-
tions, and downstream Machine Learning algorithms. It
gets as input a collection of abstract objects O, where
D(Oi, Oj) represents the domain-specific distance between
objects Oi, Oj ∈ O. A Euclidean embedding assigns a κ-
dimensional point pi ∈ Rκ to each object Oi. A good
Euclidean embedding is one in which the Euclidean dis-
tance χij between any two points pi and pj closely ap-
proximates D(Oi, Oj). For pi = ([pi]1, [pi]2 . . . [pi]κ) and
pj = ([pj ]1, [pj ]2 . . . [pj ]κ), χij =

√∑κ
r=1([pj ]r − [pi]r)2.

FastMap creates a κ-dimensional Euclidean embedding
for a user-specified value of κ. In the very first iteration,
FastMap heuristically identifies the farthest pair of objects
Oa and Ob in linear time. Once Oa and Ob are determined,
every other object Oi defines a triangle with sides of lengths
dai = D(Oa, Oi), dab = D(Oa, Ob) and dib = D(Oi, Ob),
as shown in Figure 1 (top panel). The sides of the triangle
define its entire geometry, and the projection of Oi onto the
line OaOb is given by

xi = (d2ai + d2ab − d2ib)/(2dab). (1)

FastMap sets the first coordinate of pi, the embedding of
Oi, to xi. In the subsequent κ − 1 iterations, the same pro-
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Figure 1: Illustrates how coordinates are computed and recursion
is carried out in FastMap, borrowed from (Cohen et al. 2018). The
top panel illustrates the “cosine law” projection in a triangle. The
bottom panel illustrates the process of projecting onto a hyperplane
that is perpendicular to OaOb.

cedure is followed for computing the remaining κ − 1 co-
ordinates of each object. However, the distance function is
adapted for different iterations. For example, for the first
iteration, the coordinates of Oa and Ob are 0 and dab, re-
spectively. Because these coordinates fully explain the true
domain-specific distance between these two objects, from
the second iteration onward, the rest of pa and pb’s coor-
dinates should be identical. Intuitively, this means that the
second iteration should mimic the first one on a hyperplane
that is perpendicular to the line OaOb, as shown in Fig-
ure 1 (bottom panel). Although the hyperplane is never con-
structed explicitly, its conceptualization implies that the dis-
tance function for the second iteration should be changed for
all i and j in the following way:

Dnew(O
′
i, O

′
j)

2 = D(Oi, Oj)
2 − (xi − xj)

2. (2)

Here, O′
i, O

′
j are the projections of Oi, Oj , respectively, onto

this hyperplane, and Dnew(·, ·) is the new distance function.
FastMap can also be used to embed the vertices of a given

graph G = (V,E) in a Euclidean space so as to preserve
the pairwise shortest-path distances between them. As such,
the Data Mining FastMap algorithm cannot be directly used
for generating a graph embedding in linear time, since it as-
sumes that the distance dij between two objects Oi and Oj

can be computed in “constant time”, i.e., independent of the
number of objects in the problem domain, whereas, comput-
ing the shortest-path distance between two vertices depends
on the size of the graph. This challenge is tackled in (Li et al.
2019) to build a graph-based version of FastMap that runs in
near-linear time. There, the key idea is to root shortest-path
trees at vertices Oa and Ob, in each iteration, to yield all
necessary distances dai and dib in one shot, achieving near-
constant amortized time complexity.

FastMap is presented in lines 4-23 of Algorithm 1.

Algorithm 1: Dynamic FastMap
Input: {G0, G1, . . . , GT }, κ, and ϵ.
Output: Zt = [zt1, z

t
2, . . . , z

t
N ], where zti ∈ Rκ for all

i = 1, 2, . . . , N and t = 0, 1, . . . , T .

1 Z0 = FASTMAP(G0);
2 for t = 0, 1, . . . , T do
3 Zt = PATCH(Zt−1, FASTMAP(Gt, κ, ϵ))

4 Function FastMap(G = (V,E), κ, ϵ):
5 for r = 1, 2, . . . , κ do
6 Choose va ∈ V randomly and let vb = va;
7 for t = 1, 2 . . . 10 do
8 {dai : vi ∈ V } ←

SHORTESTPATHTREE(G, va);
9 vc ← argmaxvi

{d2ai−
∑r−1

j=1([pa]j− [pi]j)
2};

10 if vc == vb then
11 Break;

12 else
13 vb ← va; va ← vc;

14 {dai : vi ∈ V } ← SHORTESTPATHTREE(G, va);
15 {dib : vi ∈ V } ← SHORTESTPATHTREE(G, vb);
16 d′ab ← d2ab −

∑r−1
j=1([pa]j − [pb]j)

2;
17 if d′ab < ϵ then
18 Break;

19 for each vi ∈ V do
20 d′ai ← d2ai −

∑r−1
j=1([pa]j − [pi]j)

2;
21 d′ib ← d2ib −

∑r−1
j=1([pi]j − [pb]j)

2;
22 [pi]r ← (d′ai + d′ab − d′ib)/(2

√
d′ab);

23 return [p1, p2, . . . , pN ];

The Dynamic FastMap Algorithm
We present Dynamic FastMap in Algorithm 1. It takes as
input snapshots of a dynamic graph on N vertices. Each
snapshot Gt, for t = 0, 1, . . . , T , describes the graph at
timestep t. Additionally, the algorithm takes as input κ, the
number of spatial dimensions for the embedding, and ϵ, a
threshold parameter required for invoking FastMap as a sub-
routine. Algorithm 1 outputs the sequence of embeddings
Zt = [zt1, z

t
2, . . . , z

t
N ], where each zti ∈ Rκ denotes the

κ-dimensional point assigned to vertex i at timestep t, for
i = 1, 2, . . . , N and t = 0, 1, . . . , T .

Algorithm 1 iterates through the timesteps in lines 2-3.
In the first iteration corresponding to timestep t = 0, it
obtains the FastMap embedding Z0 of G0. In each sub-
sequent iteration corresponding to timestep t > 0, it first
invokes FastMap on Gt to obtain an embedding Xt =
[xt

1, x
t
2, . . . , x

t
N ], where each xt

i ∈ Rκ denotes the κ-
dimensional point assigned to vertex i. The algorithm then
modifies Xt to obtain Zt. The modification is done by
patching Xt relative to the previous embedding Zt−1.

The process of patching intends to obtain a smooth tran-
sition of the points between the embeddings Zt−1 and Zt.
Specifically, the idea is to obtain Zt from Xt while preserv-
ing all the pairwise distances between its points and mini-
mizing the difference between Zt and Zt−1. Any operation



Figure 2: Illustrates the working of Dynamic FastMap. The first three panels in the top row show the ground truth, i.e., a dynamic graph on
5 vertices, colored red, at t = 0, 1, and 2, respectively. The fourth panel shows the trajectories of individual vertices, with red, purple, and
blue representing t = 0, 1, and 2, respectively. The panels in the second and third rows are in correspondence with the first row, but show the
FastMap embedding Xt in green and the Dynamic FastMap embedding Zt in blue, respectively. Dynamic FastMap produces trajectories that
are significantly closer to the ground truth.

that preserves pairwise distances is referred to as an iso-
metric operation. Examples include rotation, reflection, and
translation. Here, we broadly consider our isometric opera-
tion to be a combination of a (linear) orthogonal transforma-
tion and a (linear) translation. An orthogonal transformation
generalizes both rotation and reflection. Moreover, the dif-
ference between Zt and Zt−1 can be quantified using the
sum of N squared L2 norms

∑N
i=1 ∥zti − zt−1

i ∥2.
We let zti = Atxt

i+bt, where At represents an orthogonal
transformation and bt represents a translation. At is a κ ×
κ matrix of unknowns, and bt is a κ-dimensional vector of
unknowns. Patching solves the optimization problem:

min
At,bt

N∑
i=1

∥Atxt
i + bt − zt−1

i ∥2 (3)

s.t. ∥At
i∥2 = 1 ∀ 1 ≤ i ≤ κ,

At
i ·At

j = 0 ∀ 1 ≤ i < j ≤ κ.

Here, At
i denotes the ith column of At, and the constraints

enforce the orthogonality of At.
This optimization problem has κ2+κ unknowns, indepen-

dent of N , and with κ typically equal to 2 or 3 for visualiza-
tion. Therefore, it can be solved efficiently using a state-of-
the-art optimizer such as Gurobi. Figure 2 shows that solv-
ing the patching problem imparts smooth trajectories to the
points between embeddings produced by Dynamic FastMap.

Experimental Results
In this section, we present experimental results. We imple-
mented all algorithms and experimentation procedures using
Python3 with the NetworkX library. For the FastMap sub-
routine in Algorithm 1, we used κ = 3 and ϵ = 10−4. All
experiments were conducted on a laptop with a 1.6GHz Intel
Core i5 processor and 8GB 1600MHz DDR3 memory.

We generated dynamic graphs derived from static graphs
obtained from the benchmark datasets DIMACS, Small
World, and the Waxman graph generator. Each benchmark
instance serves as the initial graph G0. For 0 < t ≤ T ,
Gt is derived from Gt−1 by perturbing each edge-weight to
be within [1 − δ, 1 + δ] times its previous value. The DI-
MACS graphs were obtained from http://networkrepository.
com/dimacs.php and https://mat.tepper.cmu.edu/COLOR/
instances.html, and the Small World graphs were generated
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Table 1: Shows the superior performance of Dynamic FastMap (DFM) over FastMap (FM). Entries in both tables indicate the objective value
in Equation (3) on various benchmark instances. δ is a perturbation parameter used for changing the edge-weights across timesteps. In the
left table, we vary δ, fixing T = 5. In the right table, we vary T , fixing δ = 0.1.

using the Newman-Watts-Strogatz method in NetworkX. In
both cases, each edge-weight was chosen uniformly at ran-
dom from the interval [1, 10]. The names of the Small World
graphs indicate the parameter values of N , the number of
vertices, k, the number of neighbors in a ring, and p, the
probability of adding a new edge. The Waxman generator is
widely used for communication networks. A Waxman graph
‘wx(N , α, β)’ has N nodes, where the parameter α controls
the ratio of short edges to long edges and the parameter β
controls the overall density of the graph.

Table 1 shows the comparative performances of Dynamic
FastMap and FastMap on 5 representative instances from
each of the benchmark suites. The left table varies δ while
fixing T and clearly shows that Dynamic FastMap signifi-
cantly outperforms FastMap on a measure of stability quan-
tified by Equation (3). The right table varies T while fixing
δ and shows similar results.

Conclusions
In this paper, we considered the problem of embedding dy-
namic graphs in a spatiotemporal space to support visu-
alization and human-in-the-loop decision making. We pre-
sented an efficient algorithm, called Dynamic FastMap, that

builds on the efficient FastMap algorithm for embedding
static graphs. Dynamic FastMap invokes FastMap at every
timestep but also solves a critical patching problem between
consecutive timesteps. We showed that the patching prob-
lem can also be solved efficiently, imparting viability to Dy-
namic FastMap. Through experiments, we demonstrated the
efficacy of Dynamic FastMap compared to FastMap. In fu-
ture work, we will apply Dynamic FastMap to understand
and predict the behavior of dynamic graphs in communica-
tion networks, social networks, and traffic networks.
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