
SelfCode: An Annotated Corpus and a Model for Automated Assessment of
Self-explanation during Source Code Comprehension

Jeevan Chapagain1, Zak Risha2, Rabin Banjade1, Priti Oli1,
Lasang Jimba Tamang1, Peter Brusilovsky2, Vasile Rus 1

1 Department of Computer Science, Institute of Intelligent System, University of Memphis, Memphis, TN, USA
2 School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA

{jchpgain,rbanjade1,poli,ljtamang,vrus}@memphis.edu, {zjr9,peterb}@pitt.edu

Abstract
The ability to automatically assess learners’ activities
is the key to user modeling and personalization in adap-
tive educational systems. The work presented in this pa-
per opens an opportunity to expand the scope of auto-
mated assessment from traditional programming prob-
lems to code comprehension tasks where students are
requested to explain the critical steps of a program. The
ability to automatically assess these self-explanations
offers a unique opportunity to understand the current
state of student knowledge, recognize possible miscon-
ceptions, and provide feedback. Annotated datasets are
needed to train Artificial Intelligence/Machine Learn-
ing approaches for the automated assessment of stu-
dent explanations. To answer this need, we present a
novel corpus called SelfCode which consists of 1,770
sentence pairs of student and expert self-explanations
of Java code examples, along with semantic similarity
judgments provided by experts. We also present a base-
line automated assessment model that relies on textual
features. The corpus is available at GitHub repository 1.

Introduction
Assessment is a central task in education in general and
adaptive education technologies in particular (Chi, Siler,
and Jeong 2004). Assessing students’ knowledge states (and
other states, e.g., affect state) or building reliable learner
models is key to personalized instruction because it en-
ables macro- and micro-adaptation of instruction. Macro-
adaptation is the selection of appropriate instructional tasks
(also called task-level adaptation) given a student’s state.
Micro-adaptation (or within-task adaptation) means moni-
toring and providing appropriate scaffolding within a task,
such as a problem to solve or code to understand. This pa-
per expands the range of student activities an adaptive ed-
ucational system can assess, from traditional programming
problems to code comprehension tasks. Its broader focus is
on building adaptive educational systems to help students
improve their code comprehension skills.

Source code comprehension means identifying the func-
tional pieces of a computer program (code) and how they re-
late to one another to offer the holistic, higher-level function-
ality of the code, i.e., how they serve the overall aim of the

Copyright © 2023 by the authors. All rights reserved.
1https://github.com/jeevanchaps/SelfCode

code and how the functional parts are brought about utilizing
computational concepts and methods. Code comprehension
is essential for both learners and professionals. For instance,
learners trying to learn computer programming spend signif-
icant time looking at code examples from their instructor or
a textbook. Similarly, understanding code is the most time-
consuming process in software maintenance, responsible for
70% of a software product’s overall life-cycle cost (Rugaber
2000) as source code understanding is essential when a pro-
grammer maintains, reuses, migrates, re-engineers, or up-
grades software systems (O’Brien 2003).

Given the central role of code comprehension for both
learners and professional programmers, it is important to
help learners acquire advanced code comprehension skills.
Indeed, providing support to help students improve their
source code comprehension skills could have long-term ben-
efits for their academic progress and future professional
careers. Our efforts to develop a code comprehension in-
telligent tutoring system (ITS) that monitors, models, and
scaffolds learners’ code comprehension processes rely on
text comprehension strategies such as self-explanations.
The success of self-explanation for text comprehension and
learning can be linked to its constructive aspect, e.g., it ac-
tivates several cognitive processes such as generating infer-
ences to fill in missing information and integrating new in-
formation with prior knowledge, monitoring and repairing
faulty knowledge, and its meaningfulness for the learner,
i.e., self-explanations are self-directed and self-generated
making the learning and target knowledge more person-
ally meaningful, in contrast to explaining the target con-
tent to others. Self-explaining has demonstrated a positive
impact on student learning in a variety of fields, includ-
ing physics (Conati and VanLehn 2000), math (Aleven and
Koedinger 2002), and programming (Bielaczyc, Pirolli, and
Brown 1995; Rus et al. 2021).

Self-explanation prompts can emphasize various aspects
of self-explanations resulting in justification-based self-
explanation prompts (Chen et al. 2020) or meta-cognitive
self-explanation prompts (Chi et al. 1994). It has been ob-
served that professional programmers are prompted to self-
explain and follow one of the three types of code compre-
hension strategies – top-down, bottom-up, or opportunistic
– however, more studies are necessary to understand how
those strategies may work for beginners and which one is



the best for whom under what circumstances. It may be the
case that a combination of those strategies may work for be-
ginners, e.g., a top-down strategy implemented as support
from the tutor/(human) instructor in which the major func-
tional blocks are identified while the learner reads the lines
of the code in those blocks and infers the functionality of
each of the blocks (a bottom-up strategy within the block)
based on which the overall goal of the code is then inferred.

The work presented here is a step forward in identify-
ing the type of self-explanations that work best for learners.
In this step, we focus on self-explanations that are guided
by a bottom-up strategy mainly as we ask learners to read
and explain each line of code as opposed to, for instance,
block-level explanations, which are more appropriate for a
top-down comprehension strategy in which the reader first
identifies the major functional blocks of the code before an-
alyzing each line of code in detail. It is important to note
that we plan to explore the role of top-down strategies in the
future, but that is beyond the scope of the effort presented in
this paper.

More specifically, the work presented here focuses on
developing a corpus called SelfCode (self-explanation of
code), which contains a wide variety of “native” (i.e., non-
expert) code self-explanations paired with expert explana-
tions and judgments of semantic similarity between native
and expert self-explanations of the same code lines. We ap-
plied a crowdsourcing approach to collect diverse explana-
tions from users with different backgrounds and skills. Ex-
pert explanations were acquired from a collection of expert-
annotated examples from a catalog of interactive learning
content (Hicks et al. 2020). Examples of expert and crowd-
sourced explanations of code lines are shown in Table 1. Fig-
ure 1 shows the interface used for the crowdsourced collec-
tion of line-by-line self-explanations.

We then manually annotated each expert and crowd-
sourced self-explanation sentence pairs using a 1-5 scale
semantic similarity scale, where 1 is not similar (incorrect
and/or irrelevant) to the expert explanation, whereas 5 means
semantically equivalent. The resulting SelfCode dataset con-
tains 1,770 sentence pairs of crowdsourced and expert self-
explanations.

The role of expert explanations in our dataset is to serve
as a benchmark (ground truth) for automated methods that
assess the correctness of students’ self-explanations. Such
methods assess correctness by computing the semantic sim-
ilarity between the student self-explanations and the expert
self-explanations. Using the semantic similarity approach,
if a student’s self-explanation is semantically similar to the
corresponding expert explanation, then the student’s self-
explanation is considered to have the same correctness level
as the expert explanation. Our “gold standard” similarity
scores allow our dataset to be used for training and testing
this type of automated correctness-assessment method.

This paper discusses the value of the SelfCode-type
datasets and reviews important steps of collecting and anno-
tating student self-explanations of code examples. At the end
of the paper, we demonstrate the application of this dataset
to training and testing a number of similarity assessment ap-
proaches, which could serve as baselines for future research

in this area.

Example code
line

Expert expla-
nation

Crowd sourced
explanation

Point1 point =
new Point1()

The variable
point holds a
reference to a
Point1 object.

Create a new
Point1.

System.out.println
(”The integer is
positive”)

This statement
prints that the
integer is posi-
tive.

Print that the
number is pos-
itive if it is
greater than 0.

String fullname
= ”John Smith”

We define a
string variable
to hold the
name.

Sets the full-
Name string to
John Smith.

translate(11,6) This line in-
vokes the
method trans-
late of the
point.

moves the X,Y
points by adding
(11,6) point.

Table 1: Crowdsourced line-by-line self-explanation vs. Ex-
pert Explanation with the corresponding line of JAVA code
shown in Figure 1.

The Potential of Freely Generated
Self-Explanations
Freely generated student self-explanations enable students
to freely articulate their thinking as opposed to, for instance,
multiple-choice questions where students choose an answer
from a set of given answers (only one of which is typi-
cally correct) without providing any explanations. One ma-
jor risk of using multiple-choice questions is that students
may pick the correct answer for the wrong reasons without
the assessor knowing it. While one can argue that multiple-
choice questions can be augmented with requests for expla-
nations, the student must explain their answer choice. How-
ever, this brings us back to the problem of assessing open-
ended responses. It should be noted that there is a subtle
difference between multiple-choice-with-explanation ques-
tions and traditional open-ended questions in that the former
gives students more information to work with, including the
correct answer. Some students will be able to recognize the
correct answer and, in retrospect, generate an explanation.
In contrast, in a pure open-ended question assessment sce-
nario, students are supposed to both generate the answer and
a solid explanation without any extra hints in the form of a
set of potential answer choices.

Assessing students’ open-ended responses is a complex
problem. While general solutions are preferred, state-of-the-
art solutions are specialized for specific instances of the
problem that account for the context in which the responses
are generated, e.g., short open-ended responses in the mid-
dle of a tutoring session in a particular domain such as con-
ceptual Physics. Depending on the wider context in which
they are generated, we categorize open-ended responses into



three major classes: (1) open-ended questions used in assess-
ment instruments that typically require a paragraph-length
short essay answer, (2) student utterances in tutorial dia-
logues in response to tutor prompts, which usually involve a
very short, highly contextualized response (such as “equal”
as a response to the computer tutor’s question about how
the magnitude of two physics forces compare), and (3) as-
sessing longer essays in response to SAT-like prompts (SAT
– Scholastic Aptitude/Assessment Test, a standardized test
widely used for college admission in the United States and
taken by millions of high school students each year). While
automatically assessing students’ free responses has been
explored extensively before, it has been less studied in the
context of code comprehension, the focus of this work.

In this work, our goal is to automatically assess student-
generated free explanations of code when prompted to ex-
plain line-by-line those code examples (as opposed to, for
instance, asking them to identify and explain the functional-
ity of the major blocks of code).

Figure 1: An interface for collecting line-by-line self-
explanations of a worked example - a model solution of a
programming problem.

Related Work
The development of SelfCode was guided by a number of
theories and frameworks, such as the self-explanation theory
(Chi 2000; O’Brien 2003), as well as breakthroughs in code
comprehension and text comprehension research (Brooks
1983; Graesser, Singer, and Trabasso 1994; Good 1999;
Pennington 1987) and recent advances in auto-assessment
of freely-generated student answers (Banjade et al. 2015).

The importance of building accurate mental models dur-
ing learning tasks has been well established for decades in
domains like science (De Jong and Ferguson-Hessler 1991)
as well as in CS education (Soloway and Ehrlich 1984;
Pennington 1987; Ramalingam, LaBelle, and Wiedenbeck
2004). Prior CS education research has documented the
many difficulties novice programmers face while learning
to program, such as constructing accurate mental models

during key learning activities (Ramalingam, LaBelle, and
Wiedenbeck 2004). The challenge with constructing accu-
rate mental models is not surprising given that constructing
mental representations is considered a higher-level compre-
hension skill, typically engendering a high cognitive load
(Kintsch and Walter Kintsch 1998; Graesser and McNamara
2011).

Prompting for self-explanations is a helpful strategy that
has shown promising results with respect to helping students
become better comprehenders and learners. As noted pre-
viously, self-explanations are helpful for learning because
they involve various cognitive processes, such as drawing
inferences to fill in knowledge gaps, fusing new knowl-
edge with prior knowledge, and observing and correcting
incorrect knowledge (Roy and Chi 2005). It has been dis-
covered that written self-explanation is more suited for
students who struggle with challenging reading activities,
such as reading scientific texts, which have a higher cog-
nitive load. Research conducted on undergraduates (Rezel
2003) and high school students (Alhassan 2017) showed stu-
dents who self-explained were better at program construc-
tion than those who did not. Another conclusive effect of
self-explanation can be seen in the series of studies focusing
on LISP programming (Recker and Pirolli 1990; Pirolli and
Recker 1994). The positive effect of self-explanations has
been demonstrated in learning various languages JavaScript
(Kwon and Jonassen 2011) and assembly language (Hung
2012).

If self-explanation is to be used in an adaptive instruc-
tional system, students’ self-explanation must be automati-
cally assessed in order to assess their comprehension level
and provide adequate feedback. With respect to building au-
tomated methods for assessing self-explanations, related re-
sources such as annotated datasets to train-test automated
methods using supervised methods are needed. There has
been plenty of work in this area (Rus, Banjade, and Lin-
tean 2014) but not in the context of code comprehension,
which can be more challenging as students’ free expla-
nations mix natural language with code/programming lan-
guage constructs and program-specific references such as
variable names or task-specific lingo such as referring to
Bingo game terms in the case of a code example that gen-
erates Bingo boards. Hence, the need to develop an auto-
mated method for assessing students’ self-explanations dur-
ing code comprehension and the related needed resources
such as the novel dataset and some baseline auto-assessment
methods presented here. To the best of our knowledge, no
such annotated dataset exists for the domain of intro-to-
programming and code comprehension. The most relevant
related works are highlighted below.

A comprehensive overview of paraphrase identification
corpora, including datasets for assessing student answers, is
provided in (Rus, Banjade, and Lintean 2014). Paraphrase
identification is a closely related task to computing the se-
mantic similarity for assessing student-free responses. For
instance, the paraphrasing task can be framed as a binary,
qualitative task in which the outcome is a binary decision
about whether two short texts paraphrase each other, i.e.,
convey the same meaning differently.



SimLex-999 (Hill, Reichart, and Korhonen 2015) is an
important dataset for assessing distributive semantic mod-
els that measure similarity rather than relatedness. The an-
notation protocol they used assigns a low ranking to pairs of
connected items that are not actually similar.

Banjade and colleagues (Banjade et al. 2016) developed
the DT-Grade corpus comprising short generated responses
collected from tutorial conversations between students and
an ITS for the domain of Newtonian Physics. They anno-
tated the student responses for correctness given the larger
context (not only the student self-explanation and the expert
explanation in isolation). Also, they judged the usefulness
of contextual information to correctly assess the student re-
sponse in order to overcome some limitations of prior efforts
in which student’s short responses and the corresponding ex-
pert explanation were provided as input ignoring the larger
context such as the Physics problem the student is tasked to
solve or the prior dialogue history between the learner and
the tutor.

Mohler and Mihalcea (Mohler and Mihalcea 2009) re-
leased a collection of short student responses and grades for
a computer science course to assess student responses based
on textual similarity. However, their dataset was not in the
context of code comprehension.

Data Collection and Annotation
We created the SelfCode dataset starting with a subset of
the open-source collection of expert-annotated Java code ex-
amples available from a catalog of interactive learning con-
tent (Hicks et al. 2020). In total, 10 Java code examples were
selected to form the core of our dataset. These examples
were extended with line-by-line self-explanations, and then
we added semantic similarity expert judgments.

Crowdsourced Data Collection
Amazon Mechanical Turk (MTurk) was selected as a venue
for collecting code self-explanations since this crowdsourc-
ing platform provides access to a wide range of workers, in-
cluding workers with programming experience. To collect
the self-explanations, we developed a dedicated interface
that prompts crowd workers to explain each line of code in
our selected worked examples (Fig. 1). To ensure the quality
of collected data, we focused our recruitment on responsible
workers with demonstrated Java programming knowledge.
The code examples to be explained through this interface
were offered as Human Intelligence Tasks (HITs) to work-
ers from the US and Canada with a track record of at least
100 HITs approved and a 97% approval rate. Participants
were informed they would be shown a Java program for
which they should have to provide self-explanations for each
line of code. Crowd workers had to answer three multiple-
choice program construction questions by selecting the cor-
rect missing line to qualify for this work. Participants needed
to answer 2 out of 3 tasks correctly to obtain qualification —
multiple attempts were not permitted.

For our first round of explanations, crowd workers were
provided a Java program and a goal description, framed
as high-level instructions given to another user who imple-
mented the program. Users were then prompted to “Please

explain in your own words why the lines with red question
marks are used while constructing the program given the
goal description.” A total of 10 Java programs were used
across 5 HITs. Workers were compensated monetarily.

After reviewing the initial set of explanations, we at-
tempted to increase the diversity of types of explanations and
ensure that crowd workers were more focused on explaining
the code. Our second round attempted to elicit two types of
explanations: (1) why a line was necessary given the goal
of the program, i.e., identifying a subgoal the line achieves,
and (2) how it achieves the particular subgoal, i.e., explana-
tions that describe the behavior of a line. We tried to guide
the participants by providing one type of explanation; in this
case, why a line was included in the program. Participants
were then prompted “How does this line achieve the above
goal? What action does it perform?” We expected that by
providing one form of explanation as an example, we would
help the crowd workers differentiate between different as-
pects of the code. The second round used 5 Java programs
spread across 3 HITs, less than the first round, to elicit fo-
cused responses. Workers were compensated monetarily.

Throughout all HITs, we had a total of 30 unique crowd
workers. The workers of the first round were not eligible to
participate in the second round. Of these workers, 90% cor-
rectly answered all three qualification questions, suggesting
Java competency. In our first round, we collected a total of
574 line explanations for the 10 Java programs. In the sec-
ond round, we collected a total of 221 line explanations for
5 Java programs.

Annotation
Once the data was collected, we annotated it with expert
judgments of self-explanation correctness. Since we had
available expert explanations, the annotation aimed to judge
whether the crowd workers provided self-explanation for a
given line of code and whether the expert-provided explana-
tion was semantically equivalent (or not).

There is another important methodological step we must
mention. Both participants’ self-explanations and the expert
explanations for each line of code may contain more than
one sentence. For annotation purposes, we decided to pair
sentences and, therefore, use a sentence as the unit of anal-
ysis, as sentences are the basic language unit expressing a
full idea. There are two other important reasons to work at
the sentence level: (1) prior semantic similarity corpora fo-
cused on sentence-level similarity, and we wanted to main-
tain some level of compatibility to prior efforts for com-
parison purposes, and (2) many previously developed state-
of-the-art automated methods for semantic similarity work
at the sentence level (they can be expanded to paragraph
level in various ways as explained below). Therefore, crowd-
sourced and expert explanations were broken down into in-
dividual sentences. The sentences were paired with each
other, each pair consisting of a participant self-explanation
sentence and an expert-generated explanation sentence, re-
sulting in a dataset of 1,770 sentence pairs.

The annotation was performed by 6 Ph.D. students profi-
cient in computer programming. They were first trained on
the annotation guidelines before doing any annotations. The



goal of the annotation was twofold: (1) separate why/goal-
oriented explanations from what/behavior-oriented expla-
nations and (2) judge the semantic similarity between the
crowdsourced explanations and the expert explanations.

The annotation protocol followed the main steps pre-
sented below:

• For each sentence in an expert explanation, a judgment
was first made whether the sentence is related to the over-
all goal of the corresponding code example (why the line
is needed given this goal) or describes the behavior (how)
of the code.

• For each sentence in the crowd-sourced self-explanation,
a judgment was made with respect to their semantic sim-
ilarity to the corresponding expert sentence using the fol-
lowing rating scale: 5 - semantically equivalent, 4 - al-
most semantically equivalent, meaning the rater has high
confidence that the student explanation has high cover-
age of the concepts in the expert explanation, 3 - medium
coverage of the concepts mentioned in the expert expla-
nation, 2 - low coverage of the concepts mentioned in
the expert explanation, and 1 - incorrect/irrelevant. For
the latter category, incorrect/irrelevant annotators were
supposed to make a note if a major misconception was
present in the collected self-explanation.

Three students annotated each sentence pair, with three
students rating the first half of the data and another three stu-
dents annotating the second half. The annotation was com-
pleted in two stages. In the first round, each annotator pro-
vided judgments for the first 100 sentence pairs; disagree-
ments in the ratings were discussed to resolve them and
reach a common understanding of the annotation protocol.
Once the rating protocol was well understood and consis-
tently applied by all for the first 100 pairs, a second round of
the annotation was completed for the rest of the instances.
After the second round, a disagreement mitigation step fol-
lowed with the goal of bringing the scores within at most 1
point difference among annotators. Due to slight differences
in interpreting the sentences, we viewed a difference of zero
or one as “agreement”. With a couple of exceptions, each
sentence pair received a similarity rating that differed by no
more than 1 point among the three annotators (except in just
a few situations). We then took the average of annotators’
ratings to generate a single rating score.

Using Fleiss Kappa (Fleiss 1971), inter-rater agreement
was computed, resulting in an inter-rater agreement kappa
of 0.33 for the first round and 0.99 for the second round,
indicating a fair and great agreement, respectively, among
the annotators.

Dataset

Table 2 offers a descriptive statistics summary of the re-
sulting dataset of 1,770 annotated sentence pairs. 17.95%
of sentence pairs contained a rating score of 4 or 5, while
58.50% of sentence pairs were incorrect (score 1) or had low
coverage of the concepts (score 2).

Annotation Label No. of sentence pairs
1 529 (29.88%)
2 507 (28.62%)
3 419 (23.65%)
4 253 (14.45%)
5 62 (3.50%)

Table 2: Summary of SelfCode dataset

Baseline Models: Experiments and Results
Our main goal was to create a dataset to foster the develop-
ment of state-of-the-art natural language processing meth-
ods for automatically assessing student explanations during
source code comprehension tasks.

To this end, we experimented with developing baseline
automated methods for assessing the student explanations in
the SelfCode dataset. To build those methods, we extracted
textual features from each sentence pair and used those fea-
tures in a machine learning model trained using a number of
supervised machine learning algorithms.

The textual features of the model are the total word count
difference between the crowd-sourced self-explanation and
the expert explanation, the number of overlapping words as
a way to capture content/semantic overlap, and the number
of overlapping word bigrams as a way to capture word or-
der (syntax) information and a semantic similarity score ob-
tained using SentenceBERT (Reimers and Gurevych 2019)
embeddings. The features were then used with four differ-
ent machine learning algorithms: Logistic Regression (LR),
Decision Tree (DT), Support Vector Machine (SVM), and
Naive Bayes (NB) using different feature combinations.

Models Precision Recall F1-score Accuracy
LR 0.30 0.27 0.25 36.91%
DT 0.30 0.30 0.29 33.24%

SVM 0.18 0.21 0.15 30.69%
NB 0.36 0.35 0.32 37.93%

Table 3: Performance of the models with textual features
(M1)

Models Precision Recall F1-score Accuracy
LR 0.37 0.37 0.36 47.31%
DT 0.32 0.33 0.32 37.25%

SVM 0.18 0.21 0.15 30.92%
NB 0.43 0.41 0.40 46.40%

Table 4: Performance of the models with textual features and
semantic similarity score from SentenceBERT (M2)

To accurately assess the performance of our models with
the limited dataset of 1770 sentence pairs, we used a 10-fold
stratified cross-validation technique. We also used Synthetic
Minority Oversampling Technique (SMOTE) to balance the
data across all the classes, but the result showed overfitting
due to oversampling, so we discarded the oversampling tech-



(a) (b)

Figure 2: Confusion matrix for M1 and M2 respectively

nique. Table 3 & Table 4 shows the result of the 10-fold strat-
ified cross-validation experiment using textual features (M1)
and using textual as well as the embedding feature (M2), re-
spectively.

We then took the best-performing models and explored
their performance for each of the 1-5 ratings. Figure 2a and
Figure 2b show the plot for the confusion matrix for best-
performing models in M1 and M2. The confusion matrix
in the figure indicates that models M1 and M2 generally
make correct predictions for their respective classes, with
relatively high values in the diagonal elements. However,
they struggle to distinguish the correct class for instances
with a score of 5, potentially due to either the model’s fail-
ure to capture sufficient contextual information for the class
with a score of 5 in comparison to the other scores or it was
adversely affected by the issue of class imbalance.

Crowd Sourced
Explanation

Standard Expla-
nation

M1 M2

A P A P
It declares an Ar-
ray of integers.

We initialize the
array by separat-
ing elements with
a comma and en-
closing the collec-
tion in braces

3 1 3 3

Ask the user to
input an integer
for seconds.

We prompt the user
to enter the sec-
onds.

5 2 5 4

set the maxValue
to the value at
position 0 in the
value array.

We need variable
maxValue to store
the maximum
value of the array.

4 2 4 3

It closes this
scanner.

We close the scan-
ner as we do not
want to process
any input from the
user in the rest of
the program.

2 4 2 1

Table 5: Comparison of models M1 and M2 where the pre-
diction of the models varied. Columns A and P represent the
Actual and Predicted scores respectively.

Error Analysis
Table 5 shows a number of self-explanations for which the
predicted semantic similarity score differs from the actual
gold score obtained from the human annotators. It should
be noted that the two models, M1 and M2, are pretty sim-
ple, i.e., they are baseline models, and therefore, they are
not expected to perform very well. Nevertheless, this error
analysis for those baseline models can reveal and inform the
future development of more advanced models based on the
SelfCode dataset. From the examples in the table, we note
the following. First, the expert explanations seem to overuse
the personal pronoun ‘we,’ whereas crowd workers do not
self-explain the code in this style. One fix is to train stu-
dents to use the same style or discard or ignore this pronoun
when computing the semantic similarity automatically. Sec-
ond, the expert explanations are much longer, which sug-
gests a two-stage assessment approach may be useful, i.e.,
in the first stage, the crowd workers’ explanation is first as-
sessed to be correct, and in the second stage, whether it is
complete. This is something to explore in future work.

Conclusion
We presented the development of a corpus called Self-
Code which consists of crowdsourced line-by-line Java code
self-explanations, expert explanations for the same lines,
and expert-provided similarity scores. The dataset was de-
signed to assist the development of supervised machine-
learning methods for automated assessment of the correct-
ness and similarity of student explanations of code compre-
hension in introductory programming. We hope that Self-
Code will stimulate the development of state-of-the-art as-
sessment methods for code comprehension and eventually
develop fully-fledged intelligent tutoring systems that help
students become better code readers. Our future work in-
cludes: a) extending the single expert explanations to multi-
ple sentences, which helps to provide adequate explanations
compared to a single sentence. b) check the quality of the
explanations provided by crowd workers, which can also be
added as alternate explanations that help make the dataset
richer.

References
Aleven, V. A., and Koedinger, K. R. 2002. An effective
metacognitive strategy: Learning by doing and explaining
with a computer-based cognitive tutor. Cognitive Science
26(2):147–179.
Alhassan, R. 2017. The effect of employing self-explanation
strategy with worked examples on acquiring computer pro-
graming skills. Journal of Education and Practice 8(6):186–
196.
Banjade, R.; Niraula, N. B.; Maharjan, N.; Rus, V.; Ste-
fanescu, D.; Lintean, M.; and Gautam, D. 2015. NeRoSim:
A system for measuring and interpreting semantic textual
similarity. In Proceedings of the 9th International Workshop
on Semantic Evaluation (SemEval 2015), 164–171. Denver,
Colorado: Association for Computational Linguistics.



Banjade, R.; Maharjan, N.; Niraula, N. B.; Gautam, D.;
Samei, B.; and Rus, V. 2016. Evaluation dataset (dt-grade)
and word weighting approach towards constructed short an-
swers assessment in tutorial dialogue context. In Proceed-
ings of the 11th Workshop on Innovative Use of NLP for
Building Educational Applications, 182–187.
Bielaczyc, K.; Pirolli, P. L.; and Brown, A. L. 1995. Train-
ing in self-explanation and self-regulation strategies: Inves-
tigating the effects of knowledge acquisition activities on
problem-solving. Cognition and Instruction 13(2):221–252.
Brooks, R. 1983. Towards a theory of the comprehension of
computer programs. International Journal of Man-Machine
Studies 18(6):543–554.
Chen, B.; Azad, S.; Haldar, R.; West, M.; and Zilles, C.
2020. A validated scoring rubric for explain-in-plain-english
questions. In Proceedings of the 51st ACM Technical Sym-
posium on Computer Science Education, 563–569.
Chi, M. T.; De Leeuw, N.; Chiu, M.-H.; and LaVancher, C.
1994. Eliciting self-explanations improves understanding.
Cognitive Science 18(3):439–477.
Chi, M. T.; Siler, S. A.; and Jeong, H. 2004. Can tutors
monitor students’ understanding accurately? Cognition and
Instruction 22(3):363–387.
Chi, M. 2000. Self-explaining: The dual processes of gener-
ating inference and repairing mental models. In Glaser, R.,
ed., Advances in Instructional Psychology: Educational De-
sign and Cognitive Science. Vol. 5. Mahwah, NJ: Lawrence
Erlbaum Associates. 161–238.
Conati, C., and VanLehn, K. 2000. Further results from
the evaluation of an intelligent computer tutor to coach self-
explanation. In International Conference on Intelligent Tu-
toring Systems, 304–313. Springer.
De Jong, T., and Ferguson-Hessler, M. G. 1991. Knowl-
edge of problem situations in physics: A comparison of good
and poor novice problem solvers. Learning and Instruction
1(4):289–302.
Fleiss, J. L. 1971. Measuring nominal scale agreement
among many raters. Psychological Bulletin 76(5):378.
Good, J. 1999. Programming Paradigms, Information
Types, and Graphical Representations: Empirical Investiga-
tions of Novice Program Comprehension. Ph.D. Disserta-
tion, University of Edinburgh.
Graesser, A. C., and McNamara, D. S. 2011. Computational
analyses of multilevel discourse comprehension. Topics in
Cognitive Science 3(2):371–398.
Graesser, A. C.; Singer, M.; and Trabasso, T. 1994. Con-
structing inferences during narrative text comprehension.
Psychological Review 101(3):371.
Hicks, A.; Akhuseyinoglu, K.; Shaffer, C.; and Brusilovsky,
P. 2020. Live catalog of smart learning objects for computer
science education. In Sixth SPLICE Workshop ”Building
an Infrastructure for Computer Science Education Research
and Practice at Scale” at ACM Learning at Scale 2020.
Hill, F.; Reichart, R.; and Korhonen, A. 2015. SimLex-
999: Evaluating semantic models with (genuine) similarity
estimation. Computational Linguistics 41(4):665–695.

Hung, Y.-C. 2012. Combining self-explaining with com-
puter architecture diagrams to enhance the learning of as-
sembly language programming. IEEE Transactions on Edu-
cation 55(4):546–551.
Kintsch, W., and Walter Kintsch, C. 1998. Comprehension:
A paradigm for cognition. Cambridge University Press.
Kwon, K., and Jonassen, D. H. 2011. The influence of re-
flective self-explanations on problem-solving performance.
Journal of Educational Computing Research 44(3):247–
263.
Mohler, M., and Mihalcea, R. 2009. Text-to-text semantic
similarity for automatic short answer grading. In Proceed-
ings of the 12th Conference of the European Chapter of the
ACL (EACL 2009), 567–575.
O’Brien, M. P. 2003. Software comprehension–a review
& research direction. Department of Computer Science &
Information Systems University of Limerick, Ireland, Tech-
nical Report.
Pennington, N. 1987. Comprehension strategies in program-
ming. In Empirical Studies of Programmers: Second Work-
shop, 1987, 100–113.
Pirolli, P., and Recker, M. 1994. Learning strategies and
transfer in the domain of programming. Cognition and In-
struction 12(3):235–275.
Ramalingam, V.; LaBelle, D.; and Wiedenbeck, S. 2004.
Self-efficacy and mental models in learning to program. In
Proceedings of the 9th SIGCSE Conference on Innovation
and Technology in Computer Science Education, 171–175.
Recker, M. M., and Pirolli, P. 1990. A model of self-
explanation strategies of instructional text and examples in
the acquisition of programming skills. In Annual Meeting of
American Educational Research Association. ERIC.
Reimers, N., and Gurevych, I. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084.
Rezel, E. 2003. The effect of training subjects in self-
explanation strategies on problem-solving success in com-
puter programming. Ph.D. Dissertation, Marquette Univer-
sity.
Roy, M., and Chi, M. T. 2005. The self-explanation prin-
ciple in multimedia learning. The Cambridge Handbook of
Multimedia Learning 271–286.
Rugaber, S. 2000. The use of domain knowledge in program
understanding. Annals of Software Engineering 9(1):143–
192.
Rus, V.; Banjade, R.; and Lintean, M. 2014. On paraphrase
identification corpora. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evaluation
(LREC’14), 2422–2429.
Rus, V.; Akhuseyinoglu, K.; Chapagain, J.; Tamang, L.; and
Brusilovsky, P. 2021. Prompting for free self-explanations
promotes better code comprehension. In 5th Educational
Data Mining in CS Education Workshop at EDM2021.
Soloway, E., and Ehrlich, K. 1984. Empirical studies of
programming knowledge. IEEE Transactions on Software
Engineering (5):595–609.


