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Abstract
In this work we focus on the problem of identifying drivers
with neurocognitive impairment (NCI), specifically an NCI
specific to people with HIV (PWH) called HIV-associated
neurocognitive disorders (HAND) directly from driving sim-
ulator data. Since NCI-screening is typically only effective
for more progressed forms of HAND, there is a critical need
to identify individuals that should be referred to specialists in
order to mitigate potentially dangerous driving behaviors and
improve their quality of life. Data collected from (n = 81)
study participants that used the virtual driving test (VDT)
platform were analyzed in order to predict which drivers had
NCI. Of the (n = 62) PWH participants recruited, (n = 35)
had HAND; of the remaining (n = 19) HIV negative par-
ticipants, (n = 7) had non-HAND NCI (e.g., Parkinson’s
Disease, Alzheimer’s, etc.). In three separate experiments,
subsets of VDT data were first selected via Kruskal-Wallis
feature ranking and then used as ensemble inputs to classify
whether or not drivers had NCI. Within the PWH population,
HAND could be classified with 69.4% accuracy and a risk
ratio of 2.09 (95% CI 1.52, 2.65); within the HIV negative
population, non-HAND NCI could be classified with 84.2%
accuracy, risk ratio of 8.25 (6.34, 10.16); and within the com-
bined population, NCI (regardless of causation) could be clas-
sified with 63.0% accuracy, risk ratio of 1.67 (1.22, 2.11).

Introduction
In our prior work (Grethlein et al. 2022), a subset of virtual
driving test (VDT) performance data that was most closely
linked to the presence of HIV-associated neurocognitive dis-
orders (HAND), a category of NCI that is specific to peo-
ple with HIV (PWH), in a population of (n = 65) PWH
study participants was isolated using feature selection. In
this work, an additional (n = 19) HIV negative partici-
pants were recruited, (n = 7) of whom had non-HAND
NCI (e.g., Parkinson’s Disease, Alzheimer’s, etc.), to act as
control group for detecting other forms of NCI using VDT
performance data. In this work we repeated the same feature
selection with the expanded cohort and proceeded to classify
the presence of NCI in participants using 5-fold ensembles.

Background
Failure to detect HAND early is associated with a dimin-
ished quality of life in PWH and decreased survival (Vance
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et al. 2014; Kronemer et al. 2017). However, such screens
often require trained staff to administer tests, often lack eco-
logical validity to assess impairments to activities of daily
living, tend to be sparsely available to in-need communities,
and financially prohibitive to low-income patients (Group et
al. 2013), and have limited sensitivity when detecting milder
forms of HAND (Roebuck-Spencer et al. 2017).

The VDT platform has been shown to be a rich source
of explainable data for evaluating driver behavior in sev-
eral real-world contexts (Grethlein et al. 2020; Walshe et al.
2022). Those using the VDT first undergo a 3 minute prac-
tice drive in order to acclimate to the simulated vehicle (e.g.
steering wheel sensitivity, turn signal controls, etc.) and then
take an assessment drive, lasting roughly 15 minutes, from
which performance data is extracted. In this novel research
effort, we classify the presence of NCI, particularly HAND
in PWH, using VDT performance data.

Methods and Materials
All data for this work was collected under Small Business In-
novation Research (SBIR) Grant No. R43MH122035 from
the National Institute of Mental Health (NIMH).

Recruiting Study Participants
The initial group of (n = 62) PWH participants were re-
cruited via telephone interview from the Drexel University
Comprehensive NeuroAIDS Center (CNAC) cohort (sup-
ported by NIMH P30MH092177) from November 2020 to
May 2021. The remaining (n = 19) HIV negative partici-
pants, (n = 7) of whom had non-HAND NCI (e.g., Parkin-
son’s, Alzheimer’s, etc.), were recruited from friends and
family of the CNAC cohort from July to September 2021
as the control group for this work. PWH and HIV negative
participants had similar demographic data (e.g., age, race,
years of independent driving). This was done in order to de-
termine if the traits of drivers with HAND could be reliably
detected and summarized, distinctly so from other forms of
NCI. A more complete report of the recruitment and study
visit procedures may be found in (Grethlein et al. 2022).

Clinically Confirming the Presence of NCI
All participants recruited, aged 20-75 (median 54), had pre-
viously completed the comprehensive neuropsychological



assessment (CNPA) prior to recruitment and all had prior
research study experience. The CNPA consists of a battery
of tests administered by a trained psychometrist in a clini-
cal setting, lasting approximately 2 hours long. The compo-
nent tests of the CNPA evaluated 7 cognitive domains, de-
scribed in full in (Grethlein et al. 2022), and were selected
for their sensitivity to detecting HAND (Carey et al. 2004;
de Almeida et al. 2017). The presence or absence of HAND
in PWH was confirmed via the Frasceteri criteria (Antinori
et al. 2007) using at least 2 psychometric measures per do-
main. Impairment to at least 3 cognitive domains confirmed
the presence of NCI. Given the 7 cognitive domain-specific
deficit scores produced from the component tests, the CNPA
produced the NCI status, a final dichotomized value con-
firming the presence or absence of NCI, for each participant.

Virtual Driving Test Data
Each participant’s self-guided interaction with the VDT
workstation was recorded as a 10 Hz multivariate time se-
ries, comprising 40 channels, and was reduced to a vector of
scalar features offline. In total, 2601 scalar features were ex-
tracted from each participant’s VDT, as further described in
(Grethlein et al. 2022), and used as inputs to the feature se-
lection and classification analyses detailed later in this work.

Detecting NCI in Three Participant Populations
The first set of experiments we report on isolated the VDT
performance data that best explained the differences be-
tween PWH driving with and without HAND. The second
set of experiments were meant to isolate perceivable differ-
ences in driving in the control group: between HIV negative
drivers with and without non-HAND NCI (e.g., Parkinson’s,
Alzheimer’s). The third set of experiments combined the two
populations intending to uncover any differences between
driving with and without NCI (regardless of etiology). All
VDT features analyses we report on were conducted using
python (v 3.8.9) and the scikit-learn package (v 1.1.1).

Feature Selection
A subset of the 2601 VDT features was selected for each
of the 3 populations using the 5-fold consensus-forming
method described in (Grethlein et al. 2022).

Classification of VDT Data
The classification of NCI status using VDT data used the
exact same stratified 5-fold splitting as the feature selection
experiments, with random seed 0 used for generating repro-
ducible results. Only the VDT features selected in the inter-
mediate “top 100 features” ranked list for a split were used
to train each individual classifier. The reserved 5th fold of
data in each split was later used to validate the split’s clas-
sifier by predicting the presence of NCI on previously un-
seen data. We exhausted each population’s data examined
through cross-validation by validating 5 of the same type
of classifier: i.e., homogeneous ensembles. Note that these 5
classifiers were each trained on a unique subset of 4 folds
of training data, each using potentially different inputs ob-
tained from the 5 intermediate “top 100 features” lists.

We chose to use out-of-the-box classifiers requiring min-
imal setup and computing resources as this was our first at-
tempt classifying NCI status using the VDT data. We trained
and tested the following types of classifiers in order to de-
tect NCI from VDT performance data: decision tree clas-
sifiers (DTC), random forest classifiers (RFC), multi-layer
perceptrons (MLP), k-Nearest Neighbors (KNN), Logistic
Regression (LogReg), and Support Vector Machines (SVM).

We experimented building DTC and RFC ensembles us-
ing max-depth parameter values {1, 2, 3, 4, 5}. DTCs and
RFCs (in different ensembles) were trained both with and
without class balancing, setting the weights of classes to
be inversely proportionate to their frequency, to account for
lop-sided datasets. Similarly, LogReg and SVM ensembles
were tested both with and without class balancing to miti-
gate class imbalance in our small datasets. SVM ensembles
were built using both linear and radial basis function (RBF)
kernels in order to leverage potentially non-linear relation-
ships in VDT features towards the goal of NCI classification.
KNN classifiers were tested using k = {1, 3, 5, 7} in order
to evaluate whether participants with the most similar VDT
data to one another could be leveraged to predict NCI status.

Lastly, we tested multi-layer perceptron (MLP) homo-
geneous ensembles composed of 5 separately trained feed-
forward neural networks (Hinton 1990). Since our datasets
are all smaller than 100 VDTs, we employed dropout regu-
larization (Srivastava et al. 2014). By imputing 0 for a per-
centage of neuron inputs during training, we aimed to avoid
over-emphasizing any individual weighted connection be-
tween layers of neurons which could lead to over-fitting.

The MLP architecture we used in our experiments took
the “top 100 features” ranked list for a split as inputs and is
as follows. The input layer fed into 2 fully-connected (FC)
layers of 128 neurons each, both using sigmoid activation.
Dropout was imposed after both FC layers. Next, were 3
more hidden FC layers, all using sigmoid activation func-
tions; composed of 256, 128, and 64 neurons, respectively.
Finally, the output layer was a single neuron, using sigmoid
activation. The entire MLP consisted of 103,681 parameters.

MLPs were trained for 100 epochs using the ADAM op-
timizer (Kingma and Ba 2014), binary cross-entropy as the
loss function, a learning rate of 0.01, and a batch size of 16.
We tested MLP homogeneous ensembles using dropout =
{0%, 10%, 20%, 30%, 40%, 50%}. This was done in order
to gauge how much regularization was needed for MLPs to
distinguish NCI status in participants taking the VDT.

The input data to the DTC and RFC ensembles underwent
no normalization nor transformation, as we sought to gener-
ate rule sets expressed and interpretable in the same units
as the VDT data. The input data to the KNN, LogReg, and
SVM ensembles were first unit-normalized (subtract by fea-
ture mean, divide by feature standard deviation), and then
transformed via principle component analysis (PCA); us-
ing enough eigenvalues to preserve 90% of the total vari-
ance in the training data. Inputs to the MLP ensembles were
only normalized, to avoid large fluctuations in the values of
weighted connections during training. All validation VDT
features data (reserved 5th fold in each split) were simi-
larly transformed (using same normalization and PCA as re-



spective training data, if applicable) before being classified.
In total we tested 36 unique homogeneous ensembles, each
composed of 5 classifiers, for all 3 populations examined.

Evaluation Metrics
In order to quantify classifier success predicting NCI status,
we chose to use accuracy (Acc), risk ratio (RR) (Sistrom
and Garvan 2004) with 95% confidence interval (95% CI),
and area under the curve (AUC). Since all 5 classifiers in an
ensemble were each validated on a unique 5th fold of data
reserved, we report on the evaluation metrics listed above
for an entire ensemble.

Results
CNPA Results
All participants had their NCI status confirmed via CNPA
during their study visit, prior to taking the VDT, in a clinical
setting to ensure their CNPA results from prior visits were
still accurate. The prevalence of NCI and cognitive domain
impairments in all 3 study populations are listed in Table 1.

Feature Selection Results
None of the 28 VDT features selected in the consensus for
detecting non-HAND NCI in the HIV negative population
appeared in consensus for HAND in the PWH population
(Grethlein et al. 2022). Participants with non-HAND NCI
in the HIV negative population were most distinguishable at
traffic light intersections where they were instructed to turn
left across oncoming traffic, and where a lead vehicle stut-
tered forward when the light turned green before suddenly
stopping and then turning right (see Table 2). Those with
non-HAND NCI tended to exhibit more erratic changes in
on-screen gaze position, harder braking, and weaker throt-
tling than those without NCI in several on-road scenarios.

Of the 22 VDT features selected in the consensus for de-
tecting NCI (regardless of underlying cause) in the com-
bined population, 4 were shared (ranked 3rd, 11th, 18th,
19th) with the HAND consensus for the PWH population,
and none were shared with the consensus for detecting non-
HAND NCI in the control group. Participants with NCI in
the combined population were best characterized by a higher
accumulation of driving errors (e.g., running red lights, stop
signs, etc.), and following lead vehicles more closely. The
vehicle following behaviors of those driving with NCI was
most notable in the crosswalk zone where traffic would stop
suddenly for pedestrians crossing the road (see Table 3).

Prevalence in Population: n (%)
PWH Control PWH + Control

# VDTs in Population 62 (100.0%) 19 (100.0%) 81 (100.0%)

Cognitive Domain Impaired
Prevalence of NCI

35 (56.45%) 7 (36.84%) 42 (51.85%)

Processing Speed 9 (14.52%) 5 (26.32%) 14 (17.28%)
Attention & Working Memory 15 (24.19%) 3 (15.79%) 18 (22.22%)

Motor Function 24 (38.71%) 6 (31.58%) 30 (37.04%)
Executive Function 9 (14.52%) 6 (31.58%) 15 (18.52%)

Language 7 (11.29%) 2 (10.53%) 9 (11.11%)
Verbal Memory 34 (54.84%) 3 (15.79%) 37 (45.68%)

Visuospatial Memory 24 (38.71%) 3 (15.79%) 27 (33.33%)

Table 1: Prevalence of NCI and cognitive domain impair-
ments in all 3 study populations.

Classification Results
The evaluation metrics produced by the most accurate en-
sembles for classifying NCI status in all 3 populations may
be found in Table 4. Overall MLP and SVM ensembles
tended to yield higher RRs in all 3 populations examined.

The most accurate ensemble for classifying HAND status
in the PWH population correctly predicted HAND in 26 of
the 35 participants with the condition, only incorrectly flag-
ging the presence of HAND in 10 of the 27 participants with-
out confirmed cases of HAND. Similarly, the most accurate
ensemble for the control group correctly predicted NCI in 6
of the 7 participants with confirmed cases; incorrectly flag-
ging NCI in 2 of the 12 participants without NCI. Thirdly,
the most accurate ensemble for classifying NCI in the com-
bined population correctly predicted NCI in 26 of the 42
participants with NCI; incorrectly predicting the presence of
NCI in 14 of the 39 participants without confirmed cases.

Discussion
The VDT features selected in the consensus for predicting
HAND in the PWH population were most closely associated
with the attention & working memory, motor function, and
executive function cognitive domains (Grethlein et al. 2022).

In contrast, the features selected in the non-HAND con-
sensus for the control group were most closely associated
with the processing speed, executive function, and visu-
ospatial memory cognitive domains. This was most clearly
expressed in the crosswalk zone, where participants with
impairment to these domains may have struggled to react
with the sudden start-stop lurching of traffic as pedestrians
crossed the road. Similarly, those with NCI displayed more
rapid eye movement and jerkier braking when turning across
incoming traffic and behind the lead vehicle that suddenly
stops after the traffic light at that intersection turns green.

When the two populations were combined, the consen-
sus features selected to predict NCI (regardless of etiology)
were most associated with the attention & working mem-
ory, executive function, and verbal memory cognitive do-
mains. Those with NCI showed signs of struggling when
crossing oncoming traffic, maintaining safe distance with
vehicles ahead at traffic-controlled intersections, and at the
crosswalk. Also, those with NCI tended to stop at the inac-
tive railroad crossing, possibly mistaking it for a roadway.
Difficulties in multi-tasking (e.g., gauging distance to traffic
ahead while reading signage) likely contributed to the higher
accumulation of driver errors for those with NCI.

All experiments were limited by the binary NCI status
(produced by the CNPA) that didn’t account for differences
in severity of NCI among participants; likely failing to cap-
ture the full nuance of how NCI presents in driving behavior.
The two-stage feature selection (done to mitigate lop-sided
datasets: 2601 features for fewer than 100 VDTs) performed
in this work was limited by the lack of a filtering step to re-
move highly correlated features. As a result, some nearly
identical VDT features were highly ranked together, which
likely prohibited other informative features from appearing
in the final consensus. We omitted such a filtering step to
have parity with our previous work. Our analyses were also



Rank Consensus VDT Performance Features Ranked via 5-Fold Median KW H-Value Feature Units
All VDTs (n = 19) NCI: Present (n = 7) NCI: Absent (n = 12) |%| Median Difference KW H-Value KW p-value
Median IQR Median IQR Median IQR

1 Minimum forward jerk at lead-car sudden stop intersection mph/sec2 -71.08 8.65 -79.51 5.72 -68.88 10.16 13.38% 9.39 2.18E-03
2 Maximum forward acceleration at lead-car sudden stop intersection mph/sec 9.62 1.39 10.73 0.53 9.31 1.96 13.21% 8.68 3.22E-03
3 Minimum vehicle speed at lead-car sudden stop intersection mph -0.08 5.25 -0.12 0.01 -0.03 20.12 77.36% 7.37 6.62E-03
4 Minimum difference of vehicle speed with posted speed limit at lead-car sudden stop intersection mph -20.08 1.87 -20.12 0.01 -20.03 14.98 0.46% 7.37 6.62E-03
5 Minimum ratio of vehicle speed with posted speed limit at lead-car sudden stop intersection ratio 0.00 0.26 -0.01 0.00 0.00 0.79 77.36% 7.37 6.62E-03
6 Maximum brake pedal depression at second left turn across oncoming traffic intersection % depressed 0.37 0.92 0.95 0.11 0.03 0.36 96.42% 6.91 8.57E-03
7 Maximum forward jerk at lead-car sudden stop intersection mph/sec2 117.85 81.25 164.97 18.79 91.74 55.43 44.39% 6.72 9.52E-03
8 Minimum change in on-screen gaze position within the crosswalk pixels/sec 29.86 32.72 4.68 19.45 39.89 10.73 88.27% 6.63 1.00E-02
9 Maximum distance to the right of road median at final right turn stop sign intersection meters 6.30 2.06 4.83 1.73 6.63 0.86 27.18% 6.62 1.01E-02

10 Mean horizontal change in on-screen gaze position during box-truck following task pixels/sec 364.98 122.55 523.36 208.65 304.68 136.95 41.78% 6.22 1.26E-02
11 Minimum change in on-screen gaze position in crosswalk zone pixels/sec 3.87 16.67 0.00 0.00 15.95 18.64 100.00% 6.21 1.27E-02
12 Mean horizontal change in on-screen gaze position at lead-car sudden stop intersection pixels/sec 620.88 160.20 728.33 139.31 550.17 87.81 24.46% 6.13 1.33E-02
13 Mean standard deviation in change in on-screen gaze position over a 1 second period at lead-car sudden stop intersection pixels/sec 1066.51 288.34 1249.27 237.61 983.79 203.34 21.25% 6.13 1.33E-02
14 Standard deviation of brake pedal depression at at second left turn across oncoming traffic intersection % depressed 0.14 0.25 0.26 0.06 0.01 0.12 97.99% 6.04 1.40E-02
15 Mean throttle pedal depression at left turn merge onto main road intersection % depressed 0.17 0.13 0.10 0.08 0.24 0.13 59.60% 6.00 1.43E-02
16 Minimum forward acceleration at lead-car sudden stop intersection mph/sec -16.62 9.83 -22.30 3.02 -13.14 7.61 41.09% 6.00 1.43E-02
17 Amount of time spent actively braking at second left turn across incoming traffic intersection seconds 1.42 4.37 4.94 8.20 0.06 1.64 98.74% 5.76 1.64E-02
18 Mean throttle pedal depression at first left turn across incoming traffic intersection % depressed 0.14 0.07 0.11 0.02 0.16 0.07 36.04% 5.69 1.70E-02
19 Mean throttle pedal depression at second left turn across incoming traffic intersection % depressed 0.22 0.17 0.17 0.11 0.29 0.11 39.09% 5.56 1.84E-02
20 Minimum change in on-screen gaze position at first right turn stop sign intersection pixels/sec 0.00 9.81 0.00 0.00 9.23 11.01 100.00% 5.40 2.01E-02
21 Minimum horizontal change in on-screen gaze position at first right turn stop sign intersection pixels/sec 0.00 1.52 0.00 0.00 1.38 1.76 100.00% 5.40 2.01E-02
22 Minimum vertical change in on-screen gaze position at first right turn stop sign intersection pixels/sec 0.00 1.13 0.00 0.00 0.39 2.15 100.00% 5.40 2.01E-02
23 Number of stops made by vehicle at second left turn across incoming traffic intersection count 0.00 1.00 1.00 0.50 0.00 0.25 100.00% 5.40 2.01E-02
24 Median difference of vehicle speed to posted speed limit at second left turn across incoming traffic intersection mph -21.83 12.32 -33.15 10.78 -19.72 6.58 40.50% 5.01 2.51E-02
25 Median forward jerk of vehicle in the crosswalk zone mph/sec2 -1.57 3.80 -3.38 12.56 0.00 2.44 100.00% 4.87 2.73E-02
26 Median forward acceleration of vehicle in the crosswalk zone mph/sec 0.22 0.47 0.45 1.67 0.00 0.29 100.00% 4.87 2.73E-02
27 Mean vehicle speed in second left turn across incoming traffic intersection mph 15.10 8.31 8.59 7.75 17.55 7.00 51.03% 4.86 2.75E-02
28 Mean ratio of vehicle speed to posted speed limit in second left turn across incoming traffic intersection ratio 0.40 0.21 0.24 0.21 0.47 0.18 48.86% 4.86 2.75E-02

Table 2: Consensus of 28 VDT performance features selected and then ranked via 5-Fold median KW H-value that were most
associated with non-HAND NCI (e.g., Parkinson’s, Alzheimer’s, etc.) status in the HIV negative population.

Rank Consensus VDT Performance Features Ranked via 5-Fold Median KW H-Value Feature Units
All VDTs (n = 81) NCI: Present (n = 42) NCI: Absent (n = 39) |%| Median Difference KW H-Value KW p-value
Median IQR Median IQR Median IQR

1 Median difference in vehicle heading with road following direction in construction zone degrees 1.39 1.39 1.77 2.16 1.18 0.85 33.52% 7.47 6.26E-03
2 Amount of time spent coasting in inactive railroad crossing zone seconds 1.67 3.41 0.88 2.1 2.78 3.6 68.23% 7.29 6.94E-03
3 Number of collisions with other vehicles to the side of or behind participant vehicle over whole assessment drive count 0 0 0 1 0 0 UNDEF 7.27 7.02E-03
4 Minimum time to collision with other vehicles in 10 meters of road leading up to crosswalk seconds 10.00 0.00 10.00 0.00 10.00 0.00 0.00% 7.01 8.09E-03
5 Mean time to collision with other vehicles in 10 meters of road leading up to crosswalk seconds 10.00 0.00 10.00 0.00 10.00 0.00 0.00% 7.01 8.09E-03
6 Standard deviation of time to collision with other vehicles in 10 meters of road leading up to crosswalk seconds 0.00 0.00 0.00 0.00 0.00 0.00 UNDEF 7.01 8.09E-03
7 Minimum difference in vehicle heading with road following direction over the whole assessment drive degrees 3.70E-04 5.77E-04 2.33E-04 4.22E-04 5.56E-04 9.24E-04 58.17% 6.48 1.09E-02
8 Minimum time to collision with lead vehicle in 10 meters of road leading up to crosswalk seconds 10.00 0.00 10.00 0.00 10.00 0.00 0.00% 6.10 1.35E-02
9 Mean time to collision with lead vehicle in 10 meters of road leading up to crosswalk seconds 10.00 0.00 10.00 0.00 10.00 0.00 0.00% 6.10 1.35E-02
10 Standard deviation of time to collision with lead vehicle in 10 meters of road leading up to crosswalk seconds 0.00 0.00 0.00 0.00 0.00 0.00 UNDEF 6.10 1.35E-02
11 Mean forward jerk of vehicle in inactive railroad crossing zone mph/sec2 -0.73 15.69 -4.36 11.76 3.81 11.95 187.44% 5.97 1.46E-02
12 Number of instances driving where time to collision with vehicles less than 5 seconds in crosswalk zone count 0 0 0 0 0 0 UNDEF 5.93 1.48E-02
13 Number of instances driving where time to collision with vehicles less than 5 seconds in 10 meters of road leading up to crosswalk count 0 0 0 0 0 0 UNDEF 5.93 1.48E-02
14 Amount of time spent driving where time to collision with vehicles less than 5 seconds in crosswalk zone seconds 0.00 0.00 0.00 0.00 0.00 0.00 UNDEF 5.92 1.50E-02
15 Distance driven where time to collision with vehicles less than 5 seconds in crosswalk zone miles 0.00 0.00 0.00 0.00 0.00 0.00 UNDEF 5.92 1.50E-02
16 Amount of time spent driving where time to collision with vehicles less than 5 seconds in 10 meters of road leading up to crosswalk seconds 0.00 0.00 0.00 0.00 0.00 0.00 UNDEF 5.92 1.50E-02
17 Distance driven where time to collision with vehicles less than 5 seconds in 10 meters of road leading up to crosswalk miles 0.00 0.00 0.00 0.00 0.00 0.00 UNDEF 5.92 1.50E-02
18 Minimum rotation of the steering wheel from resting position during the ambulance interaction % rotation -0.03 0.02 -0.03 0.03 -0.02 0.02 23.79% 5.75 1.65E-02
19 VDT error score: linear combination of frequencies of high-level driving errors over whole assessment drive error score 32.00 46.00 45.5 65.5 27 36.5 40.66% 5.35 2.08E-02
20 Number of instances driving where time to collision with lead vehicle less than 3 seconds at first traffic light intersection count 0 0 0 0 0 0 UNDEF 5.17 2.30E-02
21 Amount of time spent driving where time to collision with lead vehicle less than 3 seconds at first traffic light intersection seconds 0.00 0.00 0.00 0.00 0.00 0.00 UNDEF 5.16 2.31E-02
22 Median forward acceleration in 10 meters of road leading up to crosswalk mph/sec 0.00 0.63 0.03 0.63 0.00 0.68 100.00% 4.97 2.58E-02

Table 3: Consensus of 22 VDT features most associated with NCI (HAND or non-HAND) status in the combined populations.

Population Examined Homogeneous Ensemble Acc AUC RR (%95 CI)
HAND in PWH SVM w/RBF + class balancing 69.35% 0.32 2.09 (1.52, 2.65)

non-HAND NCI in Control MLP w/20% dropout 84.21% 0.90 8.25 (6.34, 10.16)
NCI in PWH + Control MLP w/0% dropout 62.96% 0.62 1.67 (1.22, 2.11)

Table 4: Evaluation metrics of most accurate ensembles.

limited by the small number of study participants (fewer
than 100); likely causing over-fit in the MLP ensembles and
casting doubt on how generalizable our results are.

Conclusions
Our current findings suggest that HAND can be detected
in PWH with moderate reliability, risk ratio of 2.09 (1.52,
2.65), using VDT data by observing the accumulation of
driving errors (e.g. running red lights and stop signs),
MVCs, and vehicle control (e.g. lane position and driving
off-road). More acutely, non-HAND NCI can be detected
in HIV negative drivers with greater reliability, risk ratio of

8.25 (6.34, 10.16), using VDT data by tracking erratic on-
screen gaze, poorer vehicle acceleration (e.g., weak throt-
tling and overzealous braking) and below-average speed
management (e.g., driving well below the posted speed
limit). Then NCI in the combined population could be de-
tected with less reliability; producing a risk ratio of 1.67
(1.22, 2.11) by keeping tabs on the accumulation of driving
errors and the distance maintained with vehicles ahead.

In future work, we intend to recruit a larger study popula-
tion to see if our results hold with more participants taking
VDTs. We also plan on filtering out VDT features found to
be highly correlated in the training data before the selection
process. Next, we intend to build a consensus using Shapley
values (Lundberg et al. 2020) to quantify the relative contri-
bution of each feature towards accurate classifications. Ad-
ditional research is also required to determine if the VDT
can alleviate strain on the NCI-screening process as a whole
(e.g., higher user acceptance, or more screens performed).
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