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Abstract 

Bidirectional Associative Memories (BAMs) are Artificial 
Neural Networks frequently utilized in cognitive modeling. 
While bipolar encoding is commonly used in BAMs for op-
timal performance, binary encoding presents interesting 
properties. As such, this study introduces a novel transmis-
sion function for binary encoding and compares its perfor-
mance to the conventional bipolar transmission function. To 
evaluate, an auto-association learning task and a noisy recall 
task were implemented. Results revealed that despite longer 
learning times, binary encoding preserves or enhances the 
properties observed in binary encoding. Findings are prom-
ising from a cognitive perspective, as they open the possibil-
ity of building intricate models of human cognition. 

 Introduction   

Artificial Neural Networks (ANNs) are computational 

models inspired by the structure and function of biological 

neural networks. They can be an interesting approach to-

wards explaining cognitive processes [Hasson et al, 2020]. 

One notable group of ANNs used in cognitive modeling is 

Bidirectional Associative Memories (BAMs), which oper-

ate based on a neurodynamic perspective. BAMs use feed-

back weights to learn pairs of stimuli and are noise toler-

ant, capable of recalling inputs when only given partial 

information [Acevedo-Mosqueda et al., 2013]. BAMs 

usually use bipolar encoding, where input vectors are com-

posed of values of -1 and 1, since it increases learning 

performance over binary encoding, where input vectors are 

composed of 0 and 1 [Kosko, 2021]. However, when using 

ANNs for cognitive modelling, they must be built on prin-

ciples grounded in processes occurring in the brain while 

avoiding methods that merely enhance computational effi-

ciency [O'Reilly, 1998]. Binary encoding is believed to be 

more biologically plausible since it is a closer representa-

tion of the presence and absence of spikes. Furthermore, it 

provides the absorbent property of 0, which could allow 

the implementation of more cognitive processes, like true 

sparseness, gating, filtering and more. Therefore, this paper 
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introduces a binary transmission function for the BAM, 

derived from its bipolar implementation, and compares 

their learning speed and recall performance under noise.  

Methodology 

This study used a BAM with two layers where the weights, 

W and V, are feedback connections between each layer, as 

shown in Figure 1 and in [Chartier & Boukadoum, 2006]. 

 

 

Figure 1. The BAM's architecture. 

 Each layer receives a set of external inputs, x[0] and 

y[0], which are given to the network and cycled through 

the weights matrices t times to generate x[t] and y[t]. 

Weights are updated using a Hebbian/anti-Hebbian learn-

ing rule defined by equations 1a and 1b: 

1a)   𝐖[𝑘+1] = 𝐖[𝑘] + 𝜂(𝐲[0] − 𝐲[𝑡])(𝐱[0] + 𝐱[𝑡])
T
 

 

 Here, η is the learning parameter, and k is a given learn-

ing trial. V is updated using an equivalent process. The 

newly introduced binary transmission function is a varia-

tion of the cubic bipolar function outlined in [Rolon-

Merette et al., 2018]. It maintains the cubic form but with 

saturating limits at 1 and 0, as expressed by equation 2: 

 

(2) ∀𝑖, … , 𝑀, 𝐱𝑖[𝑡 + 1] =  {

1,    𝑖𝑓 𝐖𝐱𝑖[𝑡] > 1

0,   𝑖𝑓 𝐖𝐱𝑖[𝑡] < 0

3(𝐖𝐱𝑖[𝑡])
2 − 2(𝐖𝐱𝑖[𝑡])

3, 𝐸𝑙𝑠𝑒

 

 
 Where M is the number of units in each layer, i is the 

index unit, and t is the time index. A similar process is 

used to obtain 𝐲𝑖[𝑡 + 1] by replacing 𝐖𝐱𝑖[𝑡] with 𝐕𝐲𝑖[𝑡]. 
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 To compare the performance of both transmission func-

tions, an auto-association task was conducted where the 

network had to learn the 26 letters of the alphabet. Each 

letter was represented by a 49-dimensional input vector, 

where black pixels indicated 1s and white pixels were 

either 0 for binary encoding or -1 for bipolar encoding. An 

example of these input vectors is provided in Figure 2. 

 

 

Figure 2. Inputs of the auto-association task 

 The task was learned under three different conditions, 

which were established by varying the learning parameter 

for slow (η = 0.001), medium (η = 0.005), and fast (η = 

0.01) learning. Learning was stopped when a minimum 

mean square error (MSE) was achieved between the stored 

and actual input vectors of 10e-5. Following training, the 

network's recall performance was evaluated on a random 

pixel flip noise task, with the number of pixels flipped 

ranging from 0 (0%) to 24 (50%). For each learning condi-

tion and noise percentage, learning and recall were repeat-

ed for 1000 trials with different randomly generated noise. 

Finally, an additional recall task was used on each learning 

condition to determine the proportion of spurious attrac-

tors. This was done by giving 1000 random input vectors 

to the network to find the number of vectors that stabilize 

in a spurious state divided by the total number of vectors. 

To ensure the network would self-stabilize, the number of 

cycles t during recall was set to 100.  

Results 

The average learning times are shown in Figure 3. Results 

indicate that learning time is, on average, three times long-

er than bipolar regardless of learning condition.  

 

 

Figure 3 – Average learning time 

 The average recall performances under the noisy pixel 

flip task are shown in Figure 4. Results show the tradition-

al graceful degradation found in BAMs. However, binary 

encoding showed slightly superior recall performances (%) 

on average) for each learning condition compared to bipo-

lar. No significant effect was found by manipulating the 

learning parameter. 

 

 

Figure 4 – Average recall performance under noise. 

 The proportion of spurious attractors present in the net-

work was, on average, at least 20% lower with binary en-

coding, as shown in Figure 5. This could explain why the 

recall performance under noise was better with binary.  

 

 

Figure 5 – Average proportion of spurious attractors. 

Conclusion 

This study aimed to introduce a new transmission function 

for binary encoding in a BAM that maintained the learning 

properties and performances obtained by its bipolar coun-

terpart. Results showed that the binary's ability to learn the 

task remained unaffected despite expected longer learning 

times. Furthermore, the model showed better recall under 

noise and fewer spurious attractors with binary encoding. 

These findings suggest that binary encoding can be used 

without sacrificing performance or losing the properties 

previously observed in bipolar encoding. Further research 

should evaluate binary encoding when using different 

architectures and cognitive tasks (Rolon-Mérette, et al., 

2019) and explore the additional properties gained. 
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