

Learning to Take Cover with Navigation-Based Waypoints via

Reinforcement Learning

Tim Aris*, Volkan Ustun**, Rajay Kumar**

*U.S. Army Combat Capabilities Development Command – Soldier Center (DEVCOM SC) Simulation and Training

Technology Center (STTC), 12423 Research Parkway, Orlando, FL 32826,

**University of Southern California Institute for Creative Technologies, Playa Vista, CA, USA
timjaris@gmail.com, ustun@ict.usc.edu, kumar@ict.usc.edu

Abstract

This paper presents a reinforcement learning model designed
to learn how to take cover on geo-specific terrains, an
essential behavior component for military training
simulations. Training of the models is performed on the
Rapid Integration and Development Environment (RIDE)
leveraging the Unity ML-Agents framework. This work
expands on previous work on raycast-based agents by
increasing the number of enemies from one to three. We
demonstrate an automated way of generating training and
testing data within geo-specific terrains. We show that
replacing the action space with a more abstracted, navmesh-
based waypoint movement system can increase the generality
and success rate of the models while providing similar results
to our previous paper's results regarding retraining across
terrains. We also comprehensively evaluate the differences
between these and the previous models. Finally, we show that
incorporating pixels into the model's input can increase
performance at the cost of longer training times.

Introduction

Reinforcement learning (RL) aims to produce optimal

policies in given environments. While there has been

significant progress, learning to navigate a 3D terrain

remains challenging for RL systems.

 The specific task chosen was for the agent to take cover

in realistic environments from a stationary opponent or

opponents by finding a location where the agent is not

visible from the opponents’ perspective. This paper expands

on previous work (Aris et al. 2022) by introducing a

waypoint movement system, and changing the number and

location of enemies. Additionally, while the previous paper

focused solely on raycast-based observations, similar to the

LIDAR system in autonomous cars, this work analyzes the

effect of including pixels into the observation.

The motivation behind this selection is to explore learning

robust neural behavior models that can be used as a

component of more complex behaviors in the Rapid

Integration and Development Environment (RIDE), a

Copyright © 2023, by the authors. All rights reserved.

military training simulation environment that can interface

with the Unity game engine (Hartholt et al. 2021). Thus,

agents were trained in the RIDE platform using geo-specific

terrains and leveraging the ML-Agents framework within

Unity (Juliani et al. 2018).

 The previous paper involved a very granular action space.

Agents (hereafter referred to as “fine-grained agents”)

would move very small distances per timestep, and episodes

would have a large number of timesteps. This paper shows

the movement of traversing waypoints, with shorter

episodes and moving more distance per timestep, results in

better generality and faster execution times. Furthermore, it

shows that including pixels in the input can improve

generality at the cost of training time.

Background

Many RL systems operating in 3D environments use pixels

for observations. For example, DeepMind’s open-ended

learning agents (O.E.L. Team et al. 2021) take information

about their goal and an object they may be holding, but the

main observation is an RGB pixel image. Likewise, the

primary observation in the MineRL environment (Guss et

al. 2019) is a grayscale image.

 One example of something similar to this paper is

OpenAI’s hide-and-seek environment (Baker et al. 2019),

which uses LIDAR-inspired rays for agents to find ways to

be occluded from other agents. However, their focus is on

multi-agent scenarios rather than navigating real world

terrain. Other work on analyzing raycasts in Unity include

dodgeball (Gorgan et al. 2019), navigation (Alonso et al

2020), and self-driving cars (Hossain et al. 2019).

 ML-Agents is a toolkit that facilitates the training of

agents from within the Unity game engine. RIDE is a

middleware that can utilize the Unity game engine to

facilitate rapid development and prototyping of simulated

environments. Furthermore, RIDE supports Machine

Learning experiments through the ML-Agents framework,

allowing to directly train RL agents within the high-fidelity

military training simulation environments based on geo-

specific terrains.

Taking Cover

“Taking cover” is defined as having more than 24 out of the

27 fixed points on the agent occluded from a stationary

opponent. In other words, the goal is to have an object in

between the agent and the opponent such that the agent is no

longer visible. An agent is also considered in cover if they

are sufficiently far away from the opponent because it would

be impractical for an opponent to shoot the agent from that

distance. However, in the terrains that have been used, it’s

almost always faster to take cover by hiding behind an

object. Finally, an agent is considered to have failed if they

have not taken cover within the maximum number of

timesteps for the episode, which is 87 for these experiments.

This number was chosen to make a fair comparison between

the agents, as it makes the total distance each type of agent

can move by the end of the episode the same.

The Agents

Agents were trained using the PPO algorithm (Schulman et

al. 2017). The primary observation of the agent consists of

Unity’s rays, though pixel inputs were also included for one

experiment. The shape of these rays is described in Figure

1. Image data is taken from 4 cameras surrounding the agent.

Unlike fine-grained agents, rotation is not in the action

space, so having 4 cameras guarantees that any nearby cover

spot is visible to the agent. The observation space is stacked

from the previous two timesteps.

 The action space consists of the agent choosing which of

8 adjacent waypoints (cardinal directions and diagonals) to

move to. There is no null action. When a waypoint is visited,

the environment attempts to create adjacent waypoints in

any direction that does not have one. If a waypoint in a

direction does not exist, then that action will be pruned via

action masking. Reasons for a missing waypoint can

include: there was no valid navmesh position at that

location, there was no valid path on the navmesh to get to

that waypoint, or because the path found was far longer than

the distance between the waypoints.

 Upon successfully completing an episode, agents are

rewarded with a quantity equal to 5 + 5X, where X is the

percentage of the timesteps left in the episode. Such reward

design gives a solid signal to distinguish just barely

completing the episode before the time runs out and

provides an additional incentive for speed. The agents also

have a step penalty of 1/max_steps, so in practice, rewards

range from -1 to just under 10. Exploratory experiments

have shown that our models are not very sensitive to

changes in reward structure, so we have kept this as the

reward design.

Figure 1: The rays that make up the majority of the agent’s
observations. These rays are represented to the agent as, for each
ray, the length of the ray, and whether the ray hit the opponent,
terrain, or nothing. The shape above was chosen for the virtue of
being the most useful for a human player when the human tried the
task with only rays visible.

The Environment

Agents were trained on the geo-specific, drone-captured

terrains of the University of Southern California (USC)

campus, Catalina island, and Razish village at the National

Training Center at Fort Irwin, CA. The latter is used for

military training. Agents spawn in 16x16 unit square areas

on the terrain. In the close enemy scenario, enemies also

spawn in that square.

 Areas are chosen by sampling a random point on the Nav

Mesh, checking whether the point is contiguous with the

main mesh (to avoid roofs or places where occlusion is

impossible), and checking if the square around the point is

on the mesh to avoid agents spawning into walls. The time

agents train is sped up to the extent possible without

destabilizing the agent movements.

 In the far enemies scenario, there are two conditions for

where an enemy can spawn. One is that it can see the entire

arena where the agent can spawn. The other is that there is a

path of other enemy spawn points leading to the arena,

because locations were generated using breadth first search.

Calculating this in real time is intractable, so enemy

locations are calculated beforehand and saved to a text file.

Experiments

This paper showcases five comparisons of agents.

1. It examines the effectiveness of differing waypoint

distances.

2. It compares waypoint agents to the previous fine-

grained agents.

3. It looks at the effectiveness of transfer learning of

waypoint agents.

4. It compares the effectiveness of adding pixels to

the observation space.

5. Finally, it compares the effectiveness of training

with one near enemy versus three far enemies.

 Experiments are done using curriculum learning

(Narvekar et al. 2020). In our earlier work, we haven't

observed an improvement in the final performance using

curriculum learning. Yet, it provided a good metric to

monitor progress and hence, we utilized it again in this

effort.

 Agents are tested on different starting locations on the

terrains than they were trained on.

Waypoint Distance

As can be seen in Figure 2, for models tested outside of their

home terrain, reward tends to increase as the waypoint

distance increases. There is a tradeoff, however: if the

distance is too large, then the likelihood of the agent finding

a cover spot that is far from the closest cover spot increases.

Additionally, the human normalized score of the agents

tends to decrease with larger waypoint distances. Waypoint

distance 4 is the highest value that has positive values,

meaning the performance is due to the quality of the model,

not the ease of the environment. Thus, the distance 4 was

chosen as the smallest distance with close-to-optimal

performance.

Figure 2: Average reward of models versus the distance between
waypoints they were tested and trained with. Models were tested

in the Catalina terrain.

Comparison to Previous Agents

Compared to fine-grained agents, waypoint agents

generalize to other terrains better. As can be seen in Table

1, on terrains they weren’t trained on, waypoint agents have

both a higher success rate and a lower number of timesteps

to find cover.

 However, there is a downside to either waypoint agents

or the far enemies scenario. When retraining from a difficult

terrain to an easier one, fine-grained agents will have a

significantly lower training time compared to an

uninitialized agent. In contrast, waypoint agents trained with

far enemies take the same amount of time to reach peak

performance whether or not they were trained in another

terrain first. This effect can be seen in Figure 3.

Table 1: Comparison between models with fine grained actions and

models with waypoint actions. The first number is the median

finish time, the last number is the success rate, and for the waypoint

models, the middle number is the equivalent number of timesteps

if they were moving at the same speed as the fine grained agents.

 USC Test Set

Catalina

Test Set

Razish Test

Set

USC Fine

Actions

932

(83%) 2294 (80%) 3282.0, (54%)

Catalina Fine

Actions

1481

(72%)

819

(91%) 5000.0, (13%)

Razish Fine

Actions

5000.0,

(42%)

1146.5,

(75%) 1608.0, (79%)

USC

Waypoints

18, 1034,

(85%)

10, 575,

(91%)

38.5, 2213,

(79%)

Catalina

Waypoints

19, 1092,

(79%)

9, 517,

(98%)

39.0, 2241,

(70%)

Razish

Waypoints

20.0, 1149,

(70%)

11.0, 632,

(91%)

19.0, 1092,

(95%)

Near versus Far Agents

Next is comparing waypoint agents trained with one nearby

enemy to three far enemies. Previous experiments, both in

this paper and the previous one, consisted of agents taking

cover from enemies that spawn very close to the agent’s

starting location. Thus, to make behaviors more in line with

taking cover in realistic conditions, the far enemy scenario

was created.

 As can be seen in Table 2, when tested with far enemies

on the same terrain they were trained, far models generally

outperform near models. Far-enemy-agents outperformed

their near-enemy-agent counterparts by +1%, +5%, and

+14% on Catalina, USC, and Razish respectively. However,

on any terrain the model wasn’t trained on, there is no

consistent difference in the performance of the near and far

models. Far models are comparable to near models in near-

enemy scenarios.

 This shows that training with far enemies makes the

agents more robust to changes in enemy positions, but that

effect is overshadowed by the difficulty of switching to an

unfamiliar terrain.

Figure 3: The lesson number of the models over time, as trained on
the three terrains. The lesson number sets the number of areas the
agent trains in, from 4 to 128.

Table 2: A comparison of agents trained with 1 nearby enemy to
agents trained with 3 far enemies. Both close and far agents were
trained on the three terrains, then tested on each combination of
terrain and enemy location. The bolded numbers are the
experiments that are also used for the comparisons in Table 3.

 USC Close Set USC Far Set

USC Close Model

18.0, 1034,

(85%)

27.0, 1552,

(77%)

USC Far Model

16.0, 920,

(88%)

25.0, 1437,

(82%)

Catalina Close Model

19.0, 1092,

(79%)

34.0, 1954,

(67%)

Catalina Far Model

20.0, 1149,

(71%)

37.0, 2126,

(59%)

Razish Close Model

20.0, 1149,

(70%)

30.0, 1724,

(61%)

Razish Far Model

21.0, 1207,

(72%) 36, 2069, (63%)

Catalina Close

Set Catalina Far Set

USC Close Model

10.0, 575,

(91%)

18.0, 1034,

(86%)

USC Far Model 9.0, 517, (91%)

20.0, 1149,

(81%)

Catalina Close Model 9.0, 517, (98%) 14.0, 805, (94%)

Catalina Far Model 8.0, 460, (98%) 14.0, 805, (95%)

Razish Close Model

11.0, 632,

(91%)

19.5, 1121,

(82%)

Razish Far Model

11.0, 632,

(88%)

21.0, 1207,

(75%)

Razish Close

Set Razish Far Set

USC Close Model

38.5, 2213,

(79%)

65.0, 3736,

(59%)

USC Far Model

35.0, 2011,

(78%)

54.0, 3103,

(63%)

Catalina Close Model

39.0, 2241,

(70%)

55.0, 3161,

(61%)

Catalina Far Model

34.0, 1954,

(74%)

49.0, 2816,

(63%)

Razish Close Model

19.0, 1092,

(95%)

23.0, 1322,

(76%)

Razish Far Model

19.0, 1092,

(96%)

25.0, 1437,

(90%)

Pixels

When including pixels into the far enemies scenario, agents

show an increase in generalization at the cost of training

times. As shown in Table 3, the success rate of the pixels-

and-rays models was within 5% of the ray models on the

terrain they were trained on. In 5 out of 6 times the models

were tested on a different terrain, the pixels-and-rays models

outperformed the ray models by over 5%.

 The ray agents trained at an average rate of 700,000

timesteps per hour, while the pixels-and-rays agents trained

at a rate of 80,000 timesteps per hour.

Table 3: A comparison of models with ray observations and models
with both rays and pixels. Like before, the first 3 numbers are the
median finish time, equivalent finish time for fine-movement
agents, and success rate. The 4th number in the bottom half is the
net gain in success rate from adding pixel inputs to the model.

USC

Test

Catalina

Test

Razish

Test

USC Rays

25.0,

1437,

(82%)

20.0,

1149,

(81%)

54.0,

3103,

(63%)

Catalina Rays

37.0,

2126,

(59%)

14.0,

805,

(95%)

49.0,

2816,

(63%)

Razish Rays

36,

2069,

(63%)

21.0,

1207,

(75%)

25.0,

1437,

(90%)

USC Rays and

Pixels

27.0,

1552,

(81%),

(-1%)

16.0,

920,

(89%),

(+8%)

44.0,

2529,

(74%),

(+11%)

Catalina Rays and

Pixels

35.0,

2011,

(68%),

(+8%)

18.0,

1034,

(91%)

(-4%)

62.0,

3563,

(54%),

(-9%)

Razish Rays and

Pixels

37.0,

2126,

(71%),

(+9%)

30.0,

1724,

(81%),

(+6%)

28.0,

1609,

(95%),

(+5%)

Discussion and Conclusion

This paper demonstrates that waypoint movement can be a

powerful tool for RL agents to find cover. It shows that

waypoint agents generalize to new terrains better than fine-

grained agents, at the cost of no longer benefiting from

retraining. It shows that training with more far enemies can

increase the robustness of the models, though that aspect

doesn’t generalize to new terrains. Finally, it shows that

including pixel inputs substantially increases the models

ability to generalize at the cost of almost 10x training times.

 A note on how we see waypoints agents being

implemented in a practical setting: rather than have the

agents trace the waypoint path, querying the RL model

whenever it is at a waypoint, instead we can split the agent

into two: the RL “ghost” agent, and an A* pathing agent.

The more complex agent that calls the Take Cover

behavior would instantiate a “ghost agent,” which could

then move once per frame. Thus, with 60 frames a second,

it can usually find a cover spot in under 1.5 seconds, and

the more complicated agent can traverse to that location

using the navmesh. This method offers the benefits of an

RL agent finding a coverspot without the drawback of

inefficient pathing. In other words, from the human

trainee’s perspective, the opponent or ally will take a

quicker and more direct path to taking cover.

 Future work will include changing the reward function to

be more proportional to the agent’s likelihood of being shot.

Currently, if the nearest cover spot requires moving directly

past the enemy, there is no incentive for the agent not to do

that. Other future work will involve multiple agents taking

cover (with punishments if the agent obstructs an ally’s sight

of an enemy), changing the pixel inputs to a depth map, and

letting the agent change its posture.

Acknowledgments

The project/effort/work depicted here was or is sponsored

by the U.S. Army Research Laboratory (ARL) under

contract number W911NF-14-D-0005. Statements and

opinions expressed and content included do not necessarily

reflect the position or the policy of the Government, and no

official endorsement should be inferred.

References

Alonso, E., Peter, M., Goumard, D. and Romoff, J., 2020. Deep
reinforcement learning for navigation in aaa video games. arXiv
preprint arXiv:2011.04764.

Aris, T., Ustun, V. and Kumar, R., 2022, May. Learning to Take
Cover on Geo-Specific Terrains via Reinforcement Learning. In
The International FLAIRS Conference Proceedings (Vol. 35).

Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G.,
McGrew, B. and Mordatch, I., 2019. Emergent tool use from multi-
agent autocurricula. arXiv preprint arXiv:1909.07528.

Gorgan, D., 2019. Performance Analysis in Implementation of a
Dodgeball Agent for Video Games. International Journal of User-
System Interaction, 12(4), pp.225-240.

Guss, W.H., Houghton, B., Topin, N., Wang, P., Codel, C., Veloso,
M. and Salakhutdinov, R., 2019. MineRL: A large-scale dataset of
Minecraft demonstrations. arXiv preprint arXiv:1907.13440.

Hartholt, A., K. McCullough, E. Fast, A. Reilly, A. Leeds, S.
Mozgai, V. Ustun, and A. S. Gordon. 2021. “Introducing RIDE:
Lowering the Barrier of Entry to Simulation and Training through
the Rapid Integration & Development Environment”. 2021 Virtual
Simulation Innovation Workshop.

Hossain, S. and Lee, D.J., 2019. Autonomous-driving vehicle
learning environments using unity real-time engine and end-to-end
CNN approach. The Journal of Korea Robotics Society, 14(2),
pp.122-130.

Juliani, A., Berges, V. P., Teng, E., Cohen, A., Harper, J., Elion,
C., ... & Lange, D. (2018). Unity: A general platform for intelligent
agents. arXiv preprint arXiv:1809.02627.

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor, M.E. and
Stone, P., 2020. Curriculum learning for reinforcement learning
domains: A framework and survey. The Journal of Machine
Learning Research, 21(1), pp.7382-7431.

Schulman J., Wolski F.,Dhariwal F., Radford A., and Klimov O.
2017. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

Team, O.E.L., Stooke, A., Mahajan, A., Barros, C., Deck, C.,
Bauer, J., Sygnowski, J., Trebacz, M., Jaderberg, M., Mathieu, M.
and McAleese, N., 2021. Open-ended learning leads to generally
capable agents. arXiv preprint arXiv:2107.12808.

