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Abstract 

This paper presents a reinforcement learning model designed 
to learn how to take cover on geo-specific terrains, an 
essential behavior component for military training 
simulations. Training of the models is performed on the 
Rapid Integration and Development Environment (RIDE) 
leveraging the Unity ML-Agents framework. This work 
expands on previous work on raycast-based agents by 
increasing the number of enemies from one to three. We 
demonstrate an automated way of generating training and 
testing data within geo-specific terrains. We show that 
replacing the action space with a more abstracted, navmesh-
based waypoint movement system can increase the generality 
and success rate of the models while providing similar results 
to our previous paper's results regarding retraining across 
terrains. We also comprehensively evaluate the differences 
between these and the previous models. Finally, we show that 
incorporating pixels into the model's input can increase 
performance at the cost of longer training times. 

Introduction   

Reinforcement learning (RL) aims to produce optimal 

policies in given environments. While there has been 

significant progress, learning to navigate a 3D terrain 

remains challenging for RL systems.  

 The specific task chosen was for the agent to take cover 

in realistic environments from a stationary opponent or 

opponents by finding a location where the agent is not 

visible from the opponents’ perspective. This paper expands 

on previous work (Aris et al. 2022) by introducing a 

waypoint movement system, and changing the number and 

location of enemies. Additionally, while the previous paper 

focused solely on raycast-based observations, similar to the 

LIDAR system in autonomous cars, this work analyzes the 

effect of including pixels into the observation.  

 

The motivation behind this selection is to explore learning 

robust neural behavior models that can be used as a 

component of more complex behaviors in the Rapid 

Integration and Development Environment (RIDE), a 
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military training simulation environment that can interface 

with the Unity game engine (Hartholt et al. 2021). Thus, 

agents were trained in the RIDE platform using geo-specific 

terrains and leveraging the ML-Agents framework within 

Unity (Juliani et al. 2018).  

 The previous paper involved a very granular action space. 

Agents (hereafter referred to as “fine-grained agents”) 

would move very small distances per timestep, and episodes 

would have a large number of timesteps. This paper shows 

the movement of traversing waypoints, with shorter 

episodes and moving more distance per timestep, results in 

better generality and faster execution times. Furthermore, it 

shows that including pixels in the input can improve 

generality at the cost of training time.  

Background 

Many RL systems operating in 3D environments use pixels 

for observations. For example, DeepMind’s open-ended 

learning agents (O.E.L. Team et al. 2021) take information 

about their goal and an object they may be holding, but the 

main observation is an RGB pixel image. Likewise, the 

primary observation in the MineRL environment (Guss et 

al. 2019) is a grayscale image.  

 One example of something similar to this paper is 

OpenAI’s hide-and-seek environment (Baker et al. 2019), 

which uses LIDAR-inspired rays for agents to find ways to 

be occluded from other agents. However, their focus is on 

multi-agent scenarios rather than navigating real world 

terrain. Other work on analyzing raycasts in Unity include 

dodgeball (Gorgan et al. 2019), navigation (Alonso et al 

2020), and self-driving cars (Hossain et al. 2019). 

 ML-Agents is a toolkit that facilitates the training of 

agents from within the Unity game engine. RIDE is a 

middleware that can utilize the Unity game engine to 

facilitate rapid development and prototyping of simulated 

environments. Furthermore, RIDE supports Machine 

 



 

Learning experiments through the ML-Agents framework, 

allowing to directly train RL agents within the high-fidelity 

military training simulation environments based on geo-

specific terrains. 

Taking Cover 

“Taking cover” is defined as having more than 24 out of the 

27 fixed points on the agent occluded from a stationary 

opponent. In other words, the goal is to have an object in 

between the agent and the opponent such that the agent is no 

longer visible. An agent is also considered in cover if they 

are sufficiently far away from the opponent because it would 

be impractical for an opponent to shoot the agent from that 

distance. However, in the terrains that have been used, it’s 

almost always faster to take cover by hiding behind an 

object. Finally, an agent is considered to have failed if they 

have not taken cover within the maximum number of 

timesteps for the episode, which is 87 for these experiments. 

This number was chosen to make a fair comparison between 

the agents, as it makes the total distance each type of agent 

can move by the end of the episode the same.  

The Agents 

Agents were trained using the PPO algorithm (Schulman et 

al. 2017). The primary observation of the agent consists of 

Unity’s rays, though pixel inputs were also included for one 

experiment. The shape of these rays is described in Figure 

1. Image data is taken from 4 cameras surrounding the agent. 

Unlike fine-grained agents, rotation is not in the action 

space, so having 4 cameras guarantees that any nearby cover 

spot is visible to the agent. The observation space is stacked 

from the previous two timesteps.  

 The action space consists of the agent choosing which of 

8 adjacent waypoints (cardinal directions and diagonals) to 

move to. There is no null action. When a waypoint is visited, 

the environment attempts to create adjacent waypoints in 

any direction that does not have one. If a waypoint in a 

direction does not exist, then that action will be pruned via 

action masking. Reasons for a missing waypoint can 

include: there was no valid navmesh position at that 

location, there was no valid path on the navmesh to get to 

that waypoint, or because the path found was far longer than 

the distance between the waypoints. 

 Upon successfully completing an episode, agents are 

rewarded with a quantity equal to 5 + 5X, where X is the 

percentage of the timesteps left in the episode. Such reward 

design gives a solid signal to distinguish just barely 

completing the episode before the time runs out and 

provides an additional incentive for speed. The agents also 

have a step penalty of 1/max_steps, so in practice, rewards 

range from -1 to just under 10. Exploratory experiments 

have shown that our models are not very sensitive to 

changes in reward structure, so we have kept this as the 

reward design. 

 

 

Figure 1: The rays that make up the majority of the agent’s 
observations. These rays are represented to the agent as, for each 
ray, the length of the ray, and whether the ray hit the opponent, 
terrain, or nothing. The shape above was chosen for the virtue of 
being the most useful for a human player when the human tried the 
task with only rays visible.   

The Environment 

Agents were trained on the geo-specific, drone-captured 

terrains of the University of Southern California (USC) 

campus, Catalina island, and Razish village at the National 

Training Center at Fort Irwin, CA. The latter is used for 

military training. Agents spawn in 16x16 unit square areas 

on the terrain. In the close enemy scenario, enemies also 

spawn in that square.  

 Areas are chosen by sampling a random point on the Nav 

Mesh, checking whether the point is contiguous with the 

main mesh (to avoid roofs or places where occlusion is 

impossible), and checking if the square around the point is 

on the mesh to avoid agents spawning into walls. The time 

agents train is sped up to the extent possible without 

destabilizing the agent movements. 

 In the far enemies scenario, there are two conditions for 

where an enemy can spawn. One is that it can see the entire 

arena where the agent can spawn. The other is that there is a 

path of other enemy spawn points leading to the arena, 

because locations were generated using breadth first search. 

Calculating this in real time is intractable, so enemy 

locations are calculated beforehand and saved to a text file.   

Experiments 

This paper showcases five comparisons of agents.  

1. It examines the effectiveness of differing waypoint 

distances.  

2. It compares waypoint agents to the previous fine-

grained agents.  

3. It looks at the effectiveness of transfer learning of 

waypoint agents.  

4. It compares the effectiveness of adding pixels to 

the observation space.  

5. Finally, it compares the effectiveness of training 

with one near enemy versus three far enemies.  



 

 Experiments are done using curriculum learning 

(Narvekar et al. 2020). In our earlier work, we haven't 

observed an improvement in the final performance using 

curriculum learning. Yet, it provided a good metric to 

monitor progress and hence, we utilized it again in this 

effort. 

 Agents are tested on different starting locations on the 

terrains than they were trained on.  

 

Waypoint Distance 

As can be seen in Figure 2, for models tested outside of their 

home terrain, reward tends to increase as the waypoint 

distance increases. There is a tradeoff, however:  if the 

distance is too large, then the likelihood of the agent finding 

a cover spot that is far from the closest cover spot increases. 

Additionally, the human normalized score of the agents 

tends to decrease with larger waypoint distances. Waypoint 

distance 4 is the highest value that has positive values, 

meaning the performance is due to the quality of the model, 

not the ease of the environment. Thus, the distance 4 was 

chosen as the smallest distance with close-to-optimal 

performance.  

  

 

 

Figure 2: Average reward of models versus the distance between 
waypoints they were tested and trained with. Models were tested 

in the Catalina terrain. 

Comparison to Previous Agents 

Compared to fine-grained agents, waypoint agents 

generalize to other terrains better. As can be seen in Table 

1, on terrains they weren’t trained on, waypoint agents have 

both a higher success rate and a lower number of timesteps 

to find cover.  

 However, there is a downside to either waypoint agents 

or the far enemies scenario. When retraining from a difficult 

terrain to an easier one, fine-grained agents will have a 

significantly lower training time compared to an 

uninitialized agent. In contrast, waypoint agents trained with 

far enemies take the same amount of time to reach peak 

performance whether or not they were trained in another 

terrain first. This effect can be seen in Figure 3. 

 

Table 1: Comparison between models with fine grained actions and 

models with waypoint actions. The first number is the median 

finish time, the last number is the success rate, and for the waypoint 

models, the middle number is the equivalent number of timesteps 

if they were moving at the same speed as the fine grained agents. 

 USC Test Set 

Catalina 

Test Set 

Razish Test 

Set 

USC Fine 

Actions 

932  

(83%) 2294 (80%) 3282.0, (54%) 

Catalina Fine 

Actions 

1481  

(72%) 

819  

(91%) 5000.0, (13%) 

Razish Fine 

Actions 

5000.0, 

(42%) 

1146.5, 

(75%) 1608.0, (79%) 

USC 

Waypoints 

18, 1034, 

(85%) 

10, 575, 

(91%) 

38.5, 2213, 

(79%) 

Catalina 

Waypoints 

19, 1092, 

(79%) 

9, 517, 

(98%) 

39.0, 2241, 

(70%) 

Razish 

Waypoints 

20.0, 1149, 

(70%) 

11.0, 632, 

(91%) 

19.0, 1092, 

(95%) 

 

Near versus Far Agents 

Next is comparing waypoint agents trained with one nearby 

enemy to three far enemies. Previous experiments, both in 

this paper and the previous one, consisted of agents taking 

cover from enemies that spawn very close to the agent’s 

starting location. Thus, to make behaviors more in line with 

taking cover in realistic conditions, the far enemy scenario 

was created.  

 As can be seen in Table 2, when tested with far enemies 

on the same terrain they were trained, far models generally 

outperform near models. Far-enemy-agents outperformed 

their near-enemy-agent counterparts by +1%, +5%, and 

+14% on Catalina, USC, and Razish respectively. However, 

on any terrain the model wasn’t trained on, there is no 

consistent difference in the performance of the near and far 

models. Far models are comparable to near models in near-

enemy scenarios. 

 This shows that training with far enemies makes the 

agents more robust to changes in enemy positions, but that 

effect is overshadowed by the difficulty of switching to an 

unfamiliar terrain.  

 



 

 

Figure 3: The lesson number of the models over time, as trained on 
the three terrains. The lesson number sets the number of areas the 
agent trains in, from 4 to 128.  

      

Table 2: A comparison of agents trained with 1 nearby enemy to 
agents trained with 3 far enemies. Both close and far agents were 
trained on the three terrains, then tested on  each combination of 
terrain and enemy location. The bolded numbers are the 
experiments that are also used for the comparisons in Table 3. 

 USC Close Set USC Far Set 

USC Close Model 

18.0, 1034, 

(85%) 

27.0, 1552, 

(77%) 

USC Far Model 

16.0, 920, 

(88%) 

25.0, 1437, 

(82%) 

Catalina Close Model 

19.0, 1092, 

(79%) 

34.0, 1954, 

(67%) 

Catalina Far Model 

20.0, 1149, 

(71%) 

37.0, 2126, 

(59%) 

Razish Close Model 

20.0, 1149, 

(70%) 

30.0, 1724, 

(61%) 

Razish Far Model 

21.0, 1207, 

(72%) 36, 2069, (63%) 

 

 

Catalina Close 

Set Catalina Far Set 

USC Close Model 

10.0, 575, 

(91%) 

18.0, 1034, 

(86%) 

USC Far Model 9.0, 517, (91%) 

20.0, 1149, 

(81%) 

Catalina Close Model 9.0, 517, (98%) 14.0, 805, (94%) 

Catalina Far Model 8.0, 460, (98%) 14.0, 805, (95%) 

Razish Close Model 

11.0, 632, 

(91%) 

19.5, 1121, 

(82%) 

Razish Far Model 

11.0, 632, 

(88%) 

21.0, 1207, 

(75%) 

 

 

Razish Close 

Set Razish Far Set 

USC Close Model 

38.5, 2213, 

(79%) 

65.0, 3736, 

(59%) 

USC Far Model 

35.0, 2011, 

(78%) 

54.0, 3103, 

(63%) 

Catalina Close Model 

39.0, 2241, 

(70%) 

55.0, 3161, 

(61%) 

Catalina Far Model 

34.0, 1954, 

(74%) 

49.0, 2816, 

(63%) 

Razish Close Model 

19.0, 1092, 

(95%) 

23.0, 1322, 

(76%) 

Razish Far Model 

19.0, 1092, 

(96%) 

25.0, 1437, 

(90%) 

 

Pixels 

When including pixels into the far enemies scenario, agents 

show an increase in generalization at the cost of training 

times. As shown in Table 3, the success rate of the pixels-

and-rays models was within 5% of the ray models on the 

terrain they were trained on. In 5 out of 6 times the models 

were tested on a different terrain, the pixels-and-rays models 

outperformed the ray models by over 5%.   

 The ray agents trained at an average rate of 700,000 

timesteps per hour, while the pixels-and-rays agents trained 

at a rate of  80,000 timesteps per hour.  

 



 

Table 3: A comparison of models with ray observations and models 
with both rays and pixels. Like before, the first 3 numbers are the 
median finish time, equivalent finish time for fine-movement 
agents, and success rate. The 4th number in the bottom half is the 
net gain in success rate from adding pixel inputs to the model. 

 

USC  

Test 

Catalina 

Test 

Razish 

Test 

USC Rays 

25.0, 

1437, 

(82%) 

20.0, 

1149, 

(81%) 

54.0, 

3103, 

(63%) 

Catalina Rays 

37.0, 

2126, 

(59%) 

14.0, 

805, 

(95%) 

49.0, 

2816, 

(63%) 

Razish Rays 

36, 

2069, 

(63%) 

21.0, 

1207, 

(75%) 

25.0, 

1437, 

(90%) 

USC Rays and 

Pixels 

27.0, 

1552, 

(81%), 

(-1%) 

16.0, 

920, 

(89%), 

(+8%) 

44.0, 

2529, 

(74%), 

(+11%) 

Catalina Rays and 

Pixels 

35.0, 

2011, 

(68%), 

(+8%) 

18.0, 

1034, 

(91%) 

(-4%) 

62.0, 

3563, 

(54%), 

(-9%) 

Razish Rays and 

Pixels 

37.0, 

2126, 

(71%), 

(+9%) 

30.0, 

1724, 

(81%), 

(+6%) 

28.0, 

1609, 

(95%), 

(+5%) 

Discussion and Conclusion 

This paper demonstrates that waypoint movement can be a 

powerful tool for RL agents to find cover. It shows that 

waypoint agents generalize to new terrains better than fine-

grained agents, at the cost of no longer benefiting from 

retraining. It shows that training with more far enemies can 

increase the robustness of the models, though that aspect 

doesn’t generalize to new terrains. Finally, it shows that 

including pixel inputs substantially increases the models 

ability to generalize at the cost of almost 10x training times.  

 A note on how we see waypoints agents being 

implemented in a practical setting: rather than have the 

agents trace the waypoint path, querying the RL model 

whenever it is at a waypoint, instead we can split the agent 

into two: the RL “ghost” agent, and an A* pathing agent. 

The more complex agent that calls the Take Cover 

behavior would instantiate a “ghost agent,” which could 

then move once per frame. Thus, with 60 frames a second, 

it can usually find a cover spot in under 1.5 seconds, and 

the more complicated agent can traverse to that location 

using the navmesh. This method  offers the benefits of an 

RL agent finding a coverspot without the drawback of 

inefficient pathing. In other words, from the human 

trainee’s perspective, the opponent or ally will take a 

quicker and more direct path to taking cover. 

 Future work will include changing the reward function to 

be more proportional to the agent’s likelihood of being shot. 

Currently, if the nearest cover spot requires moving directly 

past the enemy, there is no incentive for the agent not to do 

that. Other future work will involve multiple agents taking 

cover (with punishments if the agent obstructs an ally’s sight 

of an enemy), changing the pixel inputs to a depth map, and 

letting the agent change its posture. 
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