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Abstract

Automated Theorem Proving (ATP) systems search for a
proof in a rapidly growing space of possibilities. Heuristics
have a profound impact on search, and ATP systems make
heavy use of heuristics. This work uses reinforcement learn-
ing to learn a metaheuristic that decides which heuristic to use
at each step of a proof search in the E ATP system. Proximal
policy optimization is used to dynamically select a heuristic
from a fixed set, based on the current state of E. The approach
is evaluated on its ability to reduce the number of inference
steps used in successful proof searches, as an indicator of in-
telligent search.

Introduction
An Automated Theorem Proving (ATP) problem is spec-
ified as a set of axioms and a conjecture to prove.
Saturation-based ATP systems (Bachmair et al. 2001)
search for a proof-by-contradiction, by repeatedly perform-
ing satisfiability-preserving inferences on the axioms and
negated conjecture. The negated conjecture and axioms are
typically converted into clauses (Nonnengart and Weiden-
bach 2001) that sound inference rules operate on directly. A
proof has been found when the ATP system infers the empty
clause, which serves as an explicit witness of a contradic-
tion. This paper explores the use of reinforcement learning
for guiding the proof search in the saturation-based theorem
ATP system E (Schulz, Cruanes, and Vukmirovic 2019).

E (like most saturation-based ATP systems) does not
maintain one expanding set of clauses. Instead, it main-
tains a set of processed clauses and a set of unprocessed
clauses. The unprocessed set initially contains the axiom
and negated-conjecture clauses. The processed set is initially
empty. E searches for a proof by repeatedly selecting a given
clause from the unprocessed set to move into the processed
set. The given clause interacts with all the clauses in the pro-
cessed set to infer new clauses, which are then put into the
unprocessed set, modulo redundancy elimination techniques
(Bachmair and Ganzinger 1994; Waldmann et al. 2020).
This process continues until the empty clause is inferred,
a resource limit is reached, or the unprocessed set becomes
empty (in which case the conjecture cannot be proven from
the axioms). Roughly speaking, some given clauses end up
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moving the ATP system toward a contradiction, while others
simply clutter up the processed and unprocessed sets, mak-
ing the search for a contradiction more difficult.

Most ATP research focusses on increasing the number of
problems solved in a data set with some resource limit (usu-
ally time). For instance, this is how the CADE ATP System
Competition (CASC) evaluates system submissions (Sut-
cliffe 2016). In order to improve the performance (includ-
ing solving more problems) of any search-based AI system,
the primary necessity is to prune the search space, to allow
more of the space to be searched within the same resource
limits; this is a core goal for building intelligent systems (Pa-
tel et al. 2019). Intelligent guidance of graph and tree search
has been behind some of the most amazing breakthroughs in
AI, such as AlphaGo/AlphaZero (Silver, Hubert, and others
2017). Provided that a technique does not reduce the num-
ber of problems solved, evaluation according to the reduc-
tion of search is central. In saturation-based ATP the amount
of space searched can be measured by the number of given
clauses selected. Reducing the number of given clauses used
to find a proof is a direct indication of intelligence in the
proof search. This is the evaluation approach taken here (and
as shown in Table 1, there is no meaningful change to the
number of problems solved).

Clause Evaluation Functions and Heuristics
E has a set of built-in parameterized Clause Evaluation
Functions (CEFs) that are used for given clause selection
(Schulz and Möhrmann 2016). The following are two exam-
ples of CEFs:

• FIFOWeight(ConstPrio)

• Clauseweight(ConstPrio,20,9999,4)

FIFOWeight is a CEF that selects the oldest (least re-
cently inferred) clause. ConstPrio is an example of a
priority function. Priority functions are used to limit the
scope of an E CEF to a certain subset of clauses, effec-
tively eliminating many clauses from consideration for se-
lection. ConstPrio, however, does not remove any clauses
from consideration by the CEF. The Clauseweight CEF
roughly prefers shorter clauses. The weight of a clause is a
generalization of symbol count where different symbol types
can contribute to the clause weight to different extents. The
“20” in the above example refers to the weight of function



symbols, the “9999” is the weight of variables, and the “4”
is a multiplier for the weight of positive literals (non-negated
parts of clauses).

There are also more sophisticated CEFs. For instance,
there are some that take similarity with the negated con-
jecture clauses into account. Further examples of CEFs and
their explanations can be found in E’s documentation. While
given clause selection is not the only component guiding the
proof search in E, it is often considered the most important
component.

E also combines CEFs into heuristics, which are used
to guide its search for a contradiction. A heuristic is a set
of CEFs along with positive integers representing the fre-
quency with which each CEF should be used. An example
of a heuristic would be (3 ∗CEF1, 2 ∗CEF2, 7 ∗CEF3).
Using this heuristic, E would select and process three given
clauses according to CEF1, two according to CEF2, and
then seven according to CEF3, before looping back to
CEF1. This work describes a reinforcement learning ap-
proach that learns when to use each CEF, instead of leaving
it up to the fixed scheduling just described.

Reinforcement Learning
Reinforcement learning (RL) (Sutton and Barto 2018) is an
area of machine learning concerned with discovering how
intelligent agents should act to maximize reward. An agent
exists in a particular state, from which it takes an action
and receives a reward (which can be positive, zero, or even
negative). The possible states and actions as well as the dy-
namics of how actions lead to new states and rewards, de-
fines the environment. The agent has a policy that it uses
to select actions depending on the current state. The pol-
icy is trained to select actions that maximize the sum of re-
wards the agent will receive from the environment in the
future. Typically the future rewards are discounted, which
means that rewards in the distant future have less impact
on learning than rewards in the near future. Once a pol-
icy has been learned, it can be used to select actions in
future uses. Reinforcement learning is very naturally ap-
plied to games (Mnih et al. 2015), but also has impor-
tant real-world applications (Nagaraj, Sood, and Patil 2022;
Bojarski et al. 2016). RL training from human feedback is
also used as a part of ChatGPT (Christiano et al. 2017), in
order to get it to act like a useful assistant and not simply as
a language model.

During training a reward is given after each action. How-
ever, agents have difficulty learning to assign appropriate
credit/blame to the actions that cause positive/negative re-
wards in the future (Minsky 1961). A common solution is to
add more fine-grained rewards to incentivize helpful short-
term behavior. This is called reward shaping. Reward shap-
ing has to be done carefully as it can cause RL agents to
fixate on short term rewards, ignoring the true objective of
the environment.

Reinforcement Learning for E
The RL environment for E is its theorem proving process in-
cluding selecting a given clause, performing inferences, re-

dundancy elimination, and placing the inferred clauses into
the unprocessed set. This process changes E’s state. Given
clause selection within E can be posed as an RL problem by
deciding on the state representation, actions, and rewards.
For these decisions, it is important to strike a balance be-
tween expressivity and feasibility. For instance, with a state
representation that is too simple, the RL agent might be un-
able to learn to recognize situations where certain actions
should be preferred. On the other hand, with a state repre-
sentation that is too complex, training may be prohibitively
slow, or require a larger number of proof attempts. While
deciding how to represent E’s states, actions, and rewards, it
is also important to consider how the policy will be param-
eterized, and what RL algorithm will be used to learn those
parameters.

Keeping all of these factors simple is important as well.
E’s given clause selection loop is very efficient and fast.
Adding an expensive neural network evaluation into the loop
would reduce the rate at which E can process clauses. Any
guidance gained by RL must be sufficiently helpful to make
up for the time it takes to compute. The representations cho-
sen in this work are very simple. In addition to being faster,
simple representations are chosen to stabilize the learning,
make it quicker to train, and increase generalization.

States
It is desirable that all information that is relevant to choos-
ing an action should be in a state. In E, this would mean
including every processed and unprocessed clause along
with the history of their derivations. This would be a very
complex state, and processing that much state informa-
tion would be prohibitively slow. At the other end of the
spectrum, previous work in ATP has used a static state of
only the negated conjecture clauses (Crouse et al. 2020;
Chvalovsky et al. 2019). This work strikes a middle ground
by using a simple but dynamic state of five features:

1. The number of given clause selections so far.

2. The number of clauses in the processed set.

3. The number of clauses in the unprocessed set.

4. The average symbol count of clauses in the processed set.

5. The average symbol count of clauses in the unprocessed
set.

While this state representation is simple, it enables the
agent to choose different CEFs in different states. One ben-
efit of this state representation is that it avoids the cumber-
some and dataset-dependant task of learning clause repre-
sentations directly (Crouse et al. 2020).

Actions
The policy must guide the selection of an unprocessed clause
as the given clause. Doing this directly is difficult because
the policy has to be aware of all the unprocessed clauses, and
needs to perform computation proportional to the size of the
unprocessed set. That approach has been used successfully



Figure 1: Training and Testing Architecture

in ATP (Abdelaziz et al. 2021), but it is complicated and dif-
ficult to implement correctly. Aygün et al. (Aygün, Orseau,
and others 2021) directly chose given clauses, used negated
conjecture clauses as context, used supervised learning in-
stead of reinforcement learning, and used hindsight experi-
ence replay. Although the experimental results presented in
this work do not improve on the impressive results of Aygün
et al., they represent a simpler approach that warrants further
exploration.

In this work an action is a selection from a set of CEFs,
rather than a selection from the set of unprocessed clauses.
The chosen CEF is then responsible for selecting the given
clause. This can be thought of as choosing a delegate to
choose the given clause. This action representation takes
some pressure off of the state representation because even
selecting the worst CEF would likely lead to the selection of
a decent clause1.

Rewards
Rewards are a bit tricky for given clause selection because
it is impossible to know which selections are good or bad
until a proof is found. One possibility is giving a reward
of zero for all selections except for the one that finishes a
proof. However, because of the credit assignment problem,
the agent would likely struggle to learn to distinguish good
actions from bad.

In this work rewards are assigned only after a finished
proof attempt. For failed proof attempts, rewards are all zero.
For successful proof attempts, rewards are assigned at each
step when a clause that is in the eventual proof was selected.
It is a bit atypical for the rewards to be undefined until a
proof is found, but since no training happens during a proof
attempt it is a sound approach. In order to avoid incentiviz-
ing the policy to find the longest possible proof, the reward

1Unfortunately this also implies that selecting the best CEF
likely leads to selecting a clause that is worse than the best pos-
sible clause, especially as the unprocessed set grows.

for each of these selections is 1
n , where n is the number of

selected clauses in the proof. This means that discounted fu-
ture rewards are always between zero and one.

RL Algorithm and Architecture
The reinforcement learning algorithm used is Proximal Pol-
icy Optimization (PPO) (Schulman et al. 2017). Generalized
advantage estimation is also used to reduce the variance in
the policy gradient estimates, as is common in PPO. PPO is
an on-policy reinforcement learning method that belongs to
a class of methods called “actor-critic methods”. In actor-
critic methods, there are two separate models: an actor and
a critic. The actor is the RL policy (picks an action from
a given state) and the critic estimates the expected future
reward that the agent will receive from that state forward
acting according to its policy. The critic is not used during
proof attempts, and is used only to reduce the variance of the
policy gradient estimate during training.

The actor in this work is a four layer neural network with
one output unit for each CEF, with ReLU(x) = max(0, x)
for the activations on the hidden layers. Layer normalization
and a residual connection are used to help stabilize training,
although they have minimal impact for such a shallow net-
work.

The critic in this work is a three layer neural network with
one output unit, with ReLU for the activations on the hidden
layers. The critic’s evaluation is explicitly forced to be be-
tween zero and one by using the logistic sigmoid function
(σ(x) = 1

1+exp(−x) ) for the activation on the critic’s final
layer. The hidden layers of both the actor and critic networks
were chosen to have 100 units, which was experimentally
determined to be a good compromise between expressivity
and efficient computation.

A simpler actor network has also been considered, which
ignores the state completely and simply samples actions
from a learned but fixed categorical distribution. Although
this model is simple and naive, it has one interesting advan-
tage: it can be distilled into an E heuristic. This distillation



is done by mapping each action probability to an E heuris-
tic weight using w(pi) = ⌊pi ∗ 5/pmin⌋, where pmin is the
smallest action probability. The “5” was chosen experimen-
tally as the smallest integer large enough to reduce the ef-
fect of rounding on the weights to an acceptable level, as
the learned categorical model is fairly uniform. This strat-
egy ensures that every CEF is still included in the heuristic,
with the smallest CEF having a weight of 5.

The training and testing architecture is shown in Figure
1. The training begins with an invocation of main.py,
which starts a trainer process for updating the policy
based on proof attempts, and a gatherer process that
runs E using the latest policy for given clause selection,
and gathers proof attempts to pass back to the trainer.
Multiple instances of E are run concurrently to minimize
the time spent by the trainer waiting for proof attempt
data. In order to ensure that the proof attempts are gener-
ated using the latest policy, the gatherer waits for an
updated policy from the trainer. E queries the policy
to select actions by communicating with the gatherer.
Each time E needs to select a given clause, it sends the cur-
rent state to the gatherer, which responds with the index
of the chosen CEF. This communication is performed us-
ing named pipes that are created by the gatherer before
each call to E. The path of the named pipes each instance
of E should use for communication are provided as an en-
vironment variable. E is run with the command line argu-
ment --training-examples=3, which makes E print
the given clauses that end up in the proof. E has also been
modified to print every given clause as its selected. Rewards
can then be extracted from the E’s output by aligning the
proof clauses with the list of all given clauses.

During testing, main.py is invoked with the saved pol-
icy. main.py passes the policy to the gatherer, which
runs one E instance at a time to avoid any potential issue in-
volving CPU scheduling having an effect on proof attempts.

Experiments & Results
The trained policies were evaluated and compared with
the performance of E’s --auto mode. The data used for
training and testing was the “bushy” problems from the
MPTPTP2078 dataset, which is a TPTP-compliant (Sutcliffe
2017) version of MPTP2078 (Alama et al. 2011). A static set
of 20 CEFs to be used as actions was chosen before train-
ing: the chosen CEFs are those most frequently used by E’s
--auto mode over the MPTPTP2078 dataset. In addition
to the trained policies and E’s --auto mode, E was also
run using a heuristic consisting of these 20 CEFs each with a
weight of “1”, so that E uses the CEFs in a round-robin fash-
ion. For all experiments other than --auto (which ignores
flags), E was invoked using command line arguments sug-
gested by E’s creator, Stephan Schulz. E’s --auto mode
and the distilled categorical model were run using a time
limit of 60 seconds. The learned models were given a bit
more time to account for the overhead of the named pipe
communication between E and the Python code that runs the
models. This time extension was given because the named
pipes are simply an implementation detail and could be elim-

inated.2

In order to fairly evaluate the approaches, five-fold cross
validation was used. The MPTPTP2078 dataset contains
2078 problems, 415 of which were in each fold’s test set.
The averaged results from the experiments are shown in Ta-
ble 1.

The first row shows the number of problems solved (con-
jectures proved) by each method averaged across the test-
ing folds. The second row shows the number of clauses
that were processed during successful proof attempts using
that method. All approaches solve roughly the same num-
ber of problems. The trained neural network model solved
the problems it solved in the fewest number of given clause
selections on average.

The last row shows how many fewer given clause selec-
tions were used by each approach for problems solved by
both that approach and --auto. The round-robin approach
surprisingly also reduces the average number of given clause
selections. This is partially due to the way that the 20 CEFs
were selected, and partially due to the command line ar-
guments received from Stephan Schulz. Interestingly, the
distilled categorical achieves better results than the original
learned categorical model across each row, even marginally
beating the trained neural network model in terms of how
many fewer given clause selections used than E’s --auto
mode. Perhaps this is an indication that the performance of
the learned networks could be improved by biasing their
sampling to be more even across time. This could be done by
learning a policy that takes recent past actions into account,
in addition to the state.

Analysis of the Critic

Figure 2 shows two histograms of the output of the trained
critic model. The green histogram with lines sloping up from
left to right shows the distribution of the critic’s outputs for
the initial states of successful proof attempts. The red his-
togram with lines sloping down from left to right shows
the distribution of outputs for failed proof attempts. Every
MPTPTP2078 problem is represented in these histograms,
but each problem’s initial state was evaluated by only the
critic that was learned when that problem was in the test-
ing set of the five-fold cross-validation. The green histogram
is clearly shifted to the right, indicating that the critic has
learned something about the difference between the initial
states of successful and unsuccessful proof attempts. The bi-
modal nature of the histograms is caused by a disagreement
between cross validation folds indicating that some folds
had harder training data in their training folds than others.
Perhaps this information could be used within Monte-Carlo
Tree Search (MCTS) (Coulom 2006) to explore regions of
the proof search space before committing to them. A sim-
ilar approach was taken by the tableaux-based ATP system
rlCop (Kaliszyk et al. 2018), but to our knowledge, MCTS

2To come up with an appropriate time extension to compensate
for named pipe communication time, E was run with and without
pipe communication, but with an immediate response from python.
From the results, a timeout of 75 seconds was decided upon.



–auto Round Learned Distilled Neural
Robin Categorical Categorical Network

Problems Proved 228.2 232.0 231.6 232.2 231.3

Given Clauses 4407.8 2329.0 2377.4 2262.6 2013.0

Fewer Given Clauses than --auto 0 1895.6 1743.6 1899.0 1897.6

Table 1: Experimental Results: The best result in each row is bolded.

has not yet been applied to saturation based theorem prov-
ing.

Figure 2: Critic output histogram for initial states

Analysis of the Actor
To analyze the actor, a single representative problem and the
learned policy from the first cross validation fold were used
to create Figures 3 and 4. MPT1152+1.p was chosen ran-
domly from the set of problems that matched these criteria:

1. The chosen actor was not trained on the problem.
2. The problem was proved during testing.
3. The proof attempt was sufficiently long to demonstrate

the behavior of the policy over the course of a long proof
attempt.
In both Figure 3 and Figure 4, each band represents a dif-

ferent CEF and their heights represent the probability of that
CEF being selected by the actor. Figure 3 shows the actor’s
CEF preferences for the initial state of MPT1152+1.p over
the course of training. (After each learning step, the latest
model was saved so that the intermediate models could be
revisited after training.) It shows that the actor learned to
prefer one particular CEF to use for the beginning of proof
searches. At the beginning of training, no CEF was strongly
preferred for the initial state, but over the course of training,
the policy learned to prefer one CEF strongly for the ini-
tial state. Interestingly, in the middle of training the policy

also switched from somewhat strongly preferring one CEF
to very strongly prefer another one.

Figure 4 shows the CEF preferences of the actor for each
state of MPT1152+1.p over the course of a proof attempt
using the final model. While the x-axes of Figure 3 and Fig-
ure 4 are not the same, the first vertical slice of Figure 4 is
the same as the last vertical slice of Figure 3 as they both
refer to the actor’s CEF preferences for the initial state af-
ter training. Figure 4 shows that CEF preferences become
more uniform as a proof attempt proceeds. This transition
to uniform CEF preferences is at least partially due to the
entropy term in the PPO loss that encourages exploration
in RL environments. When looking at the CEF preferences
during proof attempts of other problems, the general pattern
is the same, but the transition to uniform CEF preferences
takes different numbers of given clause selections. This in-
dicates that the transition to uniform CEF preferences is not
induced only by the number of given clause selections, but
also by other state features.

Conclusion
We have shown that using a relatively simple state space and
simple models, E’s proof search can be improved by learning
a metaheuristic to select CEFs, rather than trying to learn the
selection of given clauses directly. This approach has two
main advantages. The first advantage is that it performs a
fixed amount of computation per given clause selection, and
therefore does not become a bottleneck as the proof search
proceeds and the clause sets grow. The second advantage is
that it sidesteps the issue of representing clauses as inputs to
a neural network (Crouse et al. 2020).

There are many ways to incrementally improve the setup
described in this work. The most apparent way is to add
more features to the state representation, and add more ac-
tions (CEFs). Adding more features to the state representa-
tion seems promising because the actor’s component of the
loss reached its minimum value rather quickly during train-
ing. This is likely an indication that the state representation
was too simple to enable learning the most effective policy.

Reinforcement learning problems are more formally re-
ferred to as Markov Decision Processes (MDPs) (Sutton and
Barto 2018). The defining property of MDPs is that the prob-
ability of ending up in state s′ from taking action a in state
s should not depend on any previous states. The simple state
representation described above likely does not meet that as-
sumption. This has often not been an issue in practice, as
many reinforcement learning problems that are technically



Figure 3: CEF Preferences for the initial state of
MPT1152+1.p during training

Figure 4: CEF Preferences for each state of
MPT1152+1.p during testing

not MDPs have still been solved using standard RL tech-
niques (Mnih et al. 2015). Our approach could be modified
to consider the list of states received so far, making the prob-
lem a legitimate MDP. This would allow the policy to be
adjusted based on how the previous given clause selections
affected the sizes of the unprocessed and processed sets.
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