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Abstract
Pre-trained word embeddings are essential in natural
language processing (NLP). In recent years, many post-
processing algorithms have been proposed to improve
the pre-trained word embeddings. We present a novel
method - Orthogonal AutoEncoder with Variational
Dropout (OAEVD) for improving word embeddings
based on orthogonal autoencoders and variational
dropout. Specifically, the orthogonality constraint en-
courages more diversity in the latent space and increases
semantic similarities between similar words, and varia-
tional dropout makes it more robust to overfitting. Em-
pirical evaluation on a range of downstream NLP tasks,
including semantic similarity, text classification, and con-
cept categorization shows that our proposed method ef-
fectively improves the quality of pre-trained word em-
beddings. Moreover, the proposed method successfully
reduces the dimensionality of pre-trained word embed-
dings while maintaining high performance.

Introduction
Pre-trained word embeddings are a key component in nat-
ural language processing (NLP) downstream applications.
Several algorithms have been for building word embeddings,
such as Word2Vec (Mikolov et al. 2013), GloVe (Penning-
ton, Socher, and Manning 2014), and fastText (Bojanowski
et al. 2017). Recently, there has been increasing interest in
improving the quality of pre-trained word embeddings for
better performance in downstream applications. The post-
processing operation was proposed as an effective technique
to improve the pre-trained word embeddings without re-
quiring additional training data. The post-processing tech-
niques are based on the understanding of geometrical struc-
tures of the pre-trained word embedding space. Mu, Bhat,
and Viswanath (2017) showed that pre-trained word embed-
dings are distributed in a narrow cone in the embedding
space and they suggested that removing dominant princi-
pal components can improve the isotropy and the quality of
pre-trained embeddings. Meanwhile, Kaneko and Bollegala
(2020) showed that it is theoretically possible to improve
pre-trained word embeddings by retaining the top principal
components. Hence, it is not necessary to remove the largest
principle components from pre-trained embeddings. Instead,
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they proposed to use an autoencoder to post-process the pre-
trained word embeddings. The relationship between principal
components and autoencoders has been explored by several
prior works (Ladjal, Newson, and Pham 2019; Plaut 2018;
Kunin et al. 2019). In line with those studies’ findings, autoen-
coders can recover the principal components; this means the
autoencoder can learn the subspace spanned by the top prin-
cipal directions by minimizing the distance between the data
and its reconstruction during training. However, the linear
autoencoder only recovers the direction of principal compo-
nents (Kunin et al. 2019), while the regularized autoencoder
can find the exact principle components.

Variational dropout (Kingma, Salimans, and Welling 2015)
is an effective regularization method, which uses Bayesian
principles to define a variational dropout probability specif-
ically for each neuron and weight. Practically, variational
dropout provides a way to train the dropout rate by opti-
mizing the variational lower bound of the loss function. As
a result, the dropout rate becomes a variational parameter
to be optimized rather than a hyperparameter. This tech-
nique allows us to train individual dropout rate for each
layer, each neuron, and even each weight. Using a variational
dropout rate can improve pre-trained embedding quality, es-
pecially when reducing embedding size. This can produce
high-quality embeddings even when the embedding size is
significantly reduced in size by half, which is not the case
for a simple autoencoder model. Therefore, in this paper,
we propose a novel post-processing method for pre-trained
word embeddings using an orthogonal autoencoder with vari-
ational dropouts. Specifically, the proposed method utilizes
variational dropout to increase its efficiency by producing
word embeddings with better quality, even after drastically
reducing the embedding’s size. For example, when the size
is reduced by half, the linear autoencoder and the non-linear
autoencoder perform poorly while our method still retains its
high performance. The experiments suggest that orthogonal-
ization enhances the quality of pre-trained word embeddings.
The evaluations on a variety of downstream NLP tasks such
as semantic similarity, text classification, and concept catego-
rization verify the effectiveness of the proposed method.

Related Work
Post-processing of word embeddings. Many post-
processing algorithms have been developed to improve the



performance of pre-trained word embeddings. Different nor-
malization techniques have been developed, including length
normalization (Levy, Goldberg, and Dagan 2015), center-
ing the mean (Sahlgren et al. 2016), etc. Wang et al. (2019)
presented two normalization methods - variance normaliza-
tion and dynamic embedding to learn orthogonal embed-
dings. The goal of these techniques is to reduce the vari-
ance of pre-trained word embeddings and make them dis-
tribute more evenly in high-dimensional space. Mu, Bhat, and
Viswanath (2017) investigated the geometry of pre-trained
word embeddings and showed that word embeddings are
distributed in a narrow cone. They demonstrated that the
performance can be improved by removing the top princi-
pal components. However, removing these components is
likely to cause a loss on useful information, which may nega-
tively impact different downstream tasks. Furthermore, post-
processing algorithms are effective in improving the quality
of contextual word embeddings, since they are far from be-
ing isotropic. Various studies (Rajaee and Pilehvar 2021;
Liang et al. 2021) show that post-processing of BERT im-
proves the isotropy and the performance of word embeddings.
In addition, Raunak et al. (2020) showed that using PCA
post-processing does not improve the performance of some
downstream applications such as machine translation.

The connection between PCA and neural networks is well
known. (Oja 1982) established that a neural network with a
linear activation function essentially learns the principal com-
ponent representation of the input data. Furthermore, (Oja
1992) extended this concept by using neural networks for
learning independent components as well as minor compo-
nents. A large number of studies have examined the relation-
ship between autoencoders and PCA. These studies showed
that an autoencoder with a single fully-connected layer, a
linear activation function, and a squared error function can
train the weights that span the same subspace as the principal
subspace. Kaneko and Bollegala (2020) verified theoretically
that retaining the top principle component is useful for im-
proving pre-trained word embeddings. They experimented
with a linear autoencoder and a non-linear autoencoder on a
range of NLP tasks. An autoencoder can learn the direction
of the word embeddings. Nonetheless, autoencoders suffer
from overfitting to identity functions by generating output
from input (Steck 2020). Therefore, we propose a regular-
ized autoencoder that can learn optimal representations for
pre-trained word embeddings using variational dropout with
orthogonalization constraints.

Autoencoders in NLP. Autoencoders have been used in
many successful applications. Several studies suggest that
autoencoders follow the direction of the principal compo-
nent (Kunin et al. 2019; Rippel, Gelbart, and Adams 2014;
Bao et al. 2020) indicating that the autoencoder is capable of
learning the direction of the principal components, but not
able to learn the individual component and the corresponding
eigenvectors. Kunin et al. (2019) suggested that applying
l2 regularization on the encoder and the decoder of the au-
toencoder can reduce the symmetry of the stationary point
solutions to the group of orthogonal transformations. The

individual principal component can be recovered by applying
singular value decomposition (SVD). However, l2 regular-
ization convergence is ill-conditioned and worsens with the
increased latent dimension (Bao et al. 2020). Selecting the
appropriate regularized and gradient-based optimization can
further break the symmetry of the stationary points solutions
to the group of orthogonal transformations. Rippel, Gelbart,
and Adams (2014) found that the exact PCA can be deter-
mined by applying nested dropout to the hidden units. Nested
dropout highlights ordered information content in the hidden
units. Therefore, we propose to use orthogonalization regu-
larization and variational dropout, which have the potential
to improve the performance. We show that these two regular-
izations can learn optimal representations and improve the
accuracy in several downstream applications.

Variational Dropout. Variational Dropout (Kingma, Sal-
imans, and Welling 2015) is a technique for training the
dropout rate by optimizing the variational lower bound. In
essence, the variational dropout rate becomes a variational
parameter to be optimized rather than a simple hyperparame-
ter. Molchanov, Ashukha, and Vetrov (2017) examined the
effects of training individual dropout rates and concluded that
variational dropout could effectively sparsify deep neural net-
works. Variational Dropout techniques have been adapted for
a variety of applications, such as building a sparse and effi-
cient model and avoiding overfitting in NLP and computer vi-
sion tasks (Gal and Ghahramani 2015; Sang and Hung 2019;
Du et al. 2018). In addition, Variational Dropout was used
for saliency maps and explainability applications (Chang et
al. 2017).

Preliminary Information
Bayesian Inference
Bayesian techniques have been developed over many years
in a wide range of domains, but have only recently applied
to the problem of learning in neural network. The Bayesian
approach can offer several potential advantages, including a
solution to overfitting. It is worth noting that bayesian neural
networks represent the weight as a distribution not scalar. The
uncertainty of weight estimates makes the model more robust
to overfitting (Hernández-Lobato and Adams 2015). From a
probabilistic perspective, given a dataset D = {(xi, yi)}Ni=1,
our goal is to find a set of parameters w which can approxi-
mate the correct distribution of the output for a given input
(xi, yi) ∈ D. Bayesian learning assumes that there is some
prior knowledge of model parameters w in the form of a prior
distribution p(w). Following Bayes’ rule, we can obtain the
posterior distribution after observing some data, which is
p(w|D) = p(D|w)p(w)/p(D). Unfortunately, this is gen-
erally computationally intractable as it involves computing
the marginal likelihood which is an intractable integral for
a complex model and thus approximation approaches are
needed. One popular approximation approach is variational
inference, which uses a parametric distribution qϕ(w) to ap-
proximate the true posterior distribution p(w|D) (Kingma
and Welling 2013) by minimizing the Kullback-Leibler diver-
gence DKL(qϕ(w)∥p(w|D)). This can be realized by maxi-



mizing the variational lower bound L(ϕ) defined as follows
(Kingma, Salimans, and Welling 2015).

L(ϕ) = −DKL (qϕ(w)∥p(w)) + LD(ϕ) (1)

where LD(ϕ) is called the expected log-likelihood and is
calculated as follows.

LD(ϕ) =

N∑
i=1

Eqϕ(w)[log p(yi|xi,w)] (2)

As pointed out by (Kingma, Salimans, and Welling 2015),
the lower bound L(ϕ) plus DKL(qϕ(w)∥p(w|D)) equals the
marginal likelihood which is a constant, that means maximiz-
ing the lower bound will minimize DKL(qϕ(w)∥p(w|D)).

Variational Dropout
Consider a single fully-connected layer with I input neu-
rons and O output neurons before the non-linear activation
function and M is the minibatch size. We denote the input
matrix as A ∈ RM×I , the output matrix as B ∈ RM×O

and the weight matrix as W ∈ RI×O. Dropout is a popular
regularization method for neural networks, which injects mul-
tiplicative random noise Ξ to the input layer at each iteration
of the training procedure. Thus, the output matrix B can be
specified as follows.

B = (A⊙ Ξ)W, with ξij ∼ p(ξij) (3)

where ⊙ represents the element-wise (Hadamard) product.
Dropout is a widely used technique to regularize deep neu-
ral networks. A dropout regularization scheme is initially
referred to as Bernoulli or Binary Dropout with Bernoulli dis-
tribution B(1− p), which means that a unit is removed from
the network, with all its incoming and outgoing connections,
with probability p. Later, Gaussian dropout is introduced
with continuous noise, which is found more beneficial than
discrete noise with the same relative mean and variance, i.e.,
Gaussian distribution N (1, α) with α = p/(1 − p). Varia-
tional dropout was proposed with the idea of dropout rate
becoming a variational parameter instead of a hyperparam-
eter. In this case, the model is trained to learn individual
dropout rates for each layer, neuron, or even weight.

Variational dropout is one of the most effective regulariza-
tion methods for neural networks. In (Kingma, Salimans, and
Welling 2015), the authors proposed to connect the dropout
rate with Bayesian neural networks and show that different
dropout rates ξij can be learned for individual weight if ξij is
a Gaussian noise ξij ∼ N (1, αij) with αij = pij/(1− pij).
Therefore, each weight wi,j has the following Gaussian dis-
tribution parameterized by ϕij = (θij , αij).

wij ∼ N
(
θij , αijθ

2
ij

)
= qϕij

(wij) (4)

where αijθ
2
ij is the variance of the Gaussian distribution, and

αij is enforced to be greater than zero. More details about
the variational dropout technique are available in (Kingma,
Salimans, and Welling 2015; Molchanov, Ashukha, and
Vetrov 2017). Given in Eq.(4), the first term in Eq.(1) can
be approximated by Monto Carlo method (Kingma, Sali-
mans, and Welling 2015). To compute the second term in

Eq.(1), the authors utilized a prior distribution p(w) such
that DKL (qϕ(w)∥p(w)) depend only on αij . Therefore, the
second term in Eq.(1) can be approximated as:

DKL(qϕ(w)∥p(w)) ≈
∑
i,j

(−0.64σ(1.87

+ 1.49 logαij) + 0.5 log(1 + α−1
ij )) + C

(5)

where C is a constant and σ(·) is the sigmoid function
(Molchanov, Ashukha, and Vetrov 2017).

Method
We present here our proposed model - Orthogonal AutoEn-
coder with Variational Dropout (OAEVD). Given a set of
d-dimensional pre-trained word embeddings {ei}|V|

i=1 for a
vocabulary V , we post-process these word embeddings using
the proposed model OAEVD, which adopts the autoencoder
as a basic framework. An autoencoder, in its simplest form,
has only one hidden layer shared by the encoder and decoder.
The encoder projects the input data into the hidden space
with lower dimensions and the decoder projects it back to the
original feature space aiming to reconstruct the input data.
We denote the encoder by E : X → Z and the decoder
by G : Z → X , where X and Z are original and hidden
embedding spaces, respectively.

Training an autoencoder involves optimizing the parame-
ters θ to minimize the reconstruction loss on the given dataset
D and the reconstructed dataset D′. Thus, the objective func-
tion is given as

L(θ) = L(D,D′) = L(D, G(E(D))) (6)

where the loss function L(·, ·) denotes the squared Euclidean
distance and the loss L(θ) is the average loss over all the word
embedding samples and their reconstructions. To make the
post-processed word embeddings more robust and enhance
the expressiveness and consequently tasks’ performance, we
apply orthogonality to the hidden embedding space Z . By reg-
ularizing the hidden representations with orthogonality loss
during training, we gain consistent performance improvement
in various downstream tasks. The orthogonality encourages
more diversity in the latent feature space and increases the
semantic similarity between similar words. Furthermore, we
adopt the variational dropout technique to the proposed model
to make it more robust to overfitting. Variational dropout
can also make the neural network more sparse and reduce
the noise in the model. Interestingly, variational dropout is
helpful for finding the most important dimensions for word
embeddings, especially with

Orthogonality
Motivated by PCA which enforces the orthogonality of the
embeddings, we attempt to learn orthogonal embeddings.
Orthogonality is a desirable property for various reasons,
including better numerical stability and improved generaliza-
tion. The orthogonality constraints encourage more diversity
in the latent space and increases the semantic similarity be-
tween embeddings (Choi, Som, and Turaga 2020). It also
preserves the vector norms and the isometry of the Euclidean



distance, which produces better performance (Smith et al.
2017). However, the optimization problem with orthogonal-
ity constraints, often referred to as the optimization problem
in the Stiefel manifold, is difficult to solve except in very
specific circumstances. A generalized backpropagation algo-
rithm (GBP) is recently proposed in order to accommodate
orthogonality constraints on the network’s weights. Never-
theless, the GBP algorithm is not relevant to our model as it
adds orthogonality constraints to the embeddings but not to
the weights (Harandi and Fernando 2016).

To make the hidden representation Z matrix as orthogonal
as possible, we need to regularize the off-diagonal elements to
zero. The condition for the orthogonality is described below:

⟨zi, zi′⟩ =
{
1, if i = i′

0, otherwise
(7)

LO =

N∑
i=1

∥∥zi⊤zi − I
∥∥2
F

(8)

Here, LO is our orthogonal regularization, ∥ · ∥F represents
the Frobenius norm and I is the d× d identity matrix.

Regularization with Variational Dropout
We utilize a variational dropout technique to avoid overfitting
and make the neural network more sparse. By learning differ-
ent dropout rates for individual weight, Molchanov, Ashukha,
and Vetrov (2017) showed that the variational dropout tech-
nique can sparsify Bayesian neural networks by pruning
weights with high learned dropout rates while still achieving
the accuracy comparable to that of the unpruned weights. We
use Bayesian neural network layers instead of standard neural
network layers in the encoder and decoder of the autoencoder
model. In section we provided a description specifics of this
method. Utilizing variational dropout significantly improves
the performance, particularly when the hidden representation
space is set to be of smaller dimension than the input space.

On these grounds, the overall objective function of the
proposed model (OAEVD) is defined as follows.

LTotal =L(θ) + µLO + λDKLenc
(qϕ(w)∥p(w))

+ λDKLdec
(qϕ(w)∥p(w))

(9)

where µ and λ are hyperparameters controlling the impor-
tance of each loss term. The values of µ and λ should be
less than 1. L(θ) is the mean square error loss and LO is the
orthogonality constraint. DKLenc (qϕ(w)∥p(w)) is the KL-
divergence for the encoder layer, and DKLdec

(qϕ(w)∥p(w))
is the KL-divergence for the decoder layer.

Experiments
We conducted extensive experiments to assess the effec-
tiveness of our proposed model (OAEVD), considered as
a method to improve the quality of word embeddings in vari-
ous downstream NLP tasks including semantic similarity, text
classification, and concept categorization, and as a method to
reduce the dimensionality of word embeddings. To evaluate
our proposed method, we use three main pre-trained word
embeddings: Word2Vec (300 dimensions) trained on Google

News corpus (Mikolov et al. 2013), GloVe (300 dimensions)
trained on Wikipedia 2014 and the Gigaword 5 corpus (400K
vocabulary) (Pennington, Socher, and Manning 2014), and
fastText (300 dimensions) trained on one million words from
Common Crawl (Bojanowski et al. 2017).

We use a linear autoencoder and a non-linear autoencoder
as baselines. The linear autoencoder is implemented as a
single neural network layer for encoder and decoder, and
the squared L2 regularization is minimized using the Adam
optimizer. The tanh function is used for the non-linear autoen-
coder. Each encoder is implemented as a neural network with
a hidden layer using Variations Dropout. We use the Adam
optimizer with mini-batch size 256 and learning rate 0.00001
and train the model for 20 epochs. The hyperparameters are
chosen based on experiments using the GloVe pre-trained
embedding. The pre-trained word embedding used as input
for the encoder’s hidden layer is extracted as a new represen-
tation for the word embedding. The size of the hidden layer
is 300D. We also implemented our proposed method with
different hidden layer sizes, such as 200D and 150D.

Semantic Similarity
For evaluation in downstream NLP tasks, we start with the
standard word similarity benchmarks described in (Faruqui
and Dyer 2014). The datasets cover a wide range of simi-
larity tasks in various domains, used to evaluate word simi-
larity measures. The data set has word pairs (WP) that have
been assigned similarity scores by human annotators. Co-
sine similarity is used to calculate the similarity between
each pair of words, and then the Spearman’s correlation co-
efficient (Rho× 100) between the model rankings and the
human rankings is calculated. The detailed performance on
the twelve datasets is reported in table 1, we can observe that
our proposed method produces consistent improvement of
semantic similarity across all the datasets over the original
pre-trained word embedding and baseline methods linear au-
toencoder (LAE) and non-linear autoencoder(AE) with an
average improvement of 2.99%. This improvement is sug-
gested by orthogonalized hidden representation of autoen-
coder which leads to a strong semantic similarity between
words. In addition, the use of variational dropout technique
produces a better dropout rate for the autoencoder model and
reduces the overfitting to the identity function.

Text Classification
For the classification task, we used the SentEval toolkit
(Conneau and Kiela 2018). SentEval is a standard evalua-
tion dataset for text classification and semantic analysis. It
covers a wide range of domains. In SentEval, the sentences
are represented by the mean of their word embeddings. Lo-
gistic regression and multi-layer perceptron are used as the
main classifiers. The datasets allow binary classification (MR,
CR, SUBJ, MPQA) and multi-class classification (SST-FG,
TREC, Entailment Sick-E), and semantic relatedness (STS-
B). Table 2 compares the accuracy of our method to the orig-
inal pre-trained word embeddings and the baseline methods.
It can be observed that our method improves the accuracy
with an average performance of 0.5% across nine datasets.



Model
WS
-353
-ALL

MTurk
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WS
-353
-SIM
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MTurk
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-LEX
-999

SIM
-MC-30

RG
-65

MEN
-TR
-3k

Word2Vec-original 69.18 67.13 62.19 55.90 53.42 77.71 49.73 68.40 44.20 78.80 74.98 77.08
LAE 62.01 66.23 55.50 54.57 53.04 72.55 49.59 64.68 45.06 72.10 70.62 75.14
AE 68.53 66.10 61.12 55.44 53.70 77.85 44.87 66.92 44.00 77.07 75.83 76.75
OAEVD 66.74 67.94 58.41 56.36 55.20 76.40 51.62 65.00 47.09 78.71 77.00 77.44
GloVe-original 60.54 65.01 57.26 56.13 41.18 66.38 30.51 63.32 37.05 70.26 76.62 73.75
LAE 59.81 62.38 57.24 56.54 38.93 64.93 31.72 62.38 36.08 72.28 73.46 71.65
AE 64.14 64.63 60.51 59.12 44.25 70.17 30.00 64.43 39.18 79.94 76.67 74.27
OAEVD 66.10 68.43 62.87 58.67 46.09 71.56 34.07 66.18 40.65 73.31 77.72 77.09
fastText-original 70.84 71.01 65.00 51.87 52.33 81.02 46.27 70.50 45.00 83.63 84.51 79.06
LAE 68.62 70.73 61.68 52.05 52.64 79.79 46.95 70.61 45.24 82.70 82.63 78.33
AE 67.18 68.71 61.97 51.59 49.37 78.61 43.37 66.88 45.97 88.63 82.39 76.20
OAEVD 73.69 73.99 68.76 55.77 56.45 81.81 46.45 70.65 48.61 86.86 84.34 80.99

Table 1: Performance on a similarity task for the original embeddings and their post-processed versions by linear autoencoder
(LAE), nonlinear autoencoder (AE) and our model (OAEVD) for the pre-trained Word2Vec, GloVe and fastText embeddings.

Model MR CR MPQA SUBJ STS-B SST-FG TREC SICK-E MRPC

Word2Vec-orginal 76.97 79.34 88.29 90.46 81.11 42.51 82.60 77.92 71.65
LAE 76.50 78.94 88.03 90.01 80.89 43.76 82.60 78.71 71.83
AE 76.19 77.54 87.69 89.88 81.23 43.76 80.60 77.53 69.62
OAEVD 76.86 78.28 88.18 90.61 81.56 42.63 83.80 78.88 72.52
GloVe-orginal 74.99 75.81 86.35 91.04 78.20 40.77 66.60 77.19 72.46
LAE 75.29 76.05 86.45 91.26 78.31 41.58 69.40 77.76 72.35
AE 74.31 76.71 86.05 90.72 76.94 41.31 69.40 78.51 72.78
OAEVD 75.56 75.95 86.93 91.02 77.92 42.08 71.20 78.24 72.59

fastText-orginal 77.65 80.48 87.78 92.10 82.15 44.30 84.40 79.60 74.38
LAE 76.94 77.83 87.75 90.74 81.33 42.94 82.80 77.35 72.04
AE 75.62 77.99 86.82 91.26 80.67 44.48 80.00 77.43 72.06
OAEVD 76.92 78.53 87.92 92.33 82.47 45.16 85.27 78.77 73.64

Table 2: Classification performance of the original pre-trained embedding models (Word2Vec, GloVe, and fastText) and their
post-processed versions by linear autoencoder (LAE), autoencoder (AE), and our model (OAEVD).

Concept Categorization
Given a set of concepts, the algorithm needs to cluster
words into different categories. The clustering performance
is evaluated based on the cluster purity measure (Christo-
pher, Prabhakar, and Hinrich 2008) that is based on the
fraction of the total number of objects that were classi-
fied correctly. We selected three datasets: the Almuhareb-
Poesio (AP) dataset (Almuhareb 2006) which contains 402
concepts in 21 categories; the ESSLLI 2008 Distributional
Semantic Index; and the ESSLLI 2008 Conceptual Analy-
sis Workshop shared-task dataset (Katrenko, Adriaans, and
others 2008) that contains 44 concepts in 6 categories;
and the Batting test set (Baroni and Lenci 2010) that con-
tains 83 words in 10 categories. We follow the same set-
ting and algorithms as (Mu, Bhat, and Viswanath 2017;
Baroni, Dinu, and Kruszewski 2014) to cluster words (based
upon their representations) using k-means (for fixed k) and
report the results in Table 3. We found that our method con-
sistently outperformed the baseline method (AE) on the three
datasets with an average improvement of 3.70%. The results
in Table 3 indicate that our method contributes to improving
concept categorization as it produces a steady and remarkably
better purity score compared to baseline method AE.

Dimensionality Reduction
We evaluate the performance of the proposed method with
smaller embedding dimensions. To train the model, we se-
lect 300 dimensions as input, and we select two different

Model AP Batting Bliss

Word2Vec 47.85 71.26 71.85
AE 48.86 70.79 74.83
OAEVD 51.38 72.76 74.87
GloVe 55.97 59.99 73.52
AE 56.64 59.47 77.59
OAEVD 56.78 57.4 77.53

fastText 83.58 87.13 97.01
AE 83.10 86.24 95.53
OAEVD 85.32 88.59 99.15

Table 3: The performance of original embeddings, AE, and
OAEVD in concept categorization task with three main em-
bedding algorithms (Word2Vec, GloVe and fastText.

hidden dimensions (200D and 150D). These numbers were
chosen based on the trade-off between complexity and perfor-
mance. We use semantic similarity measures to evaluate the
effectiveness of our model in dimensionality reduction. The
proposed method is compared with autoencoder approaches
and the original pre-trained embeddings on the three main em-
beddings algorithms (Word2vec, GloVe, and fastText). The
experimental results are compared in Table 4 and Table 5. We
can observe that the autoencoder approaches perform well
when the embedding size is reduced to 200D with accuracy
comparable to the original 300D on semantic similarity tasks.
However, they perform poorly when the embedding size is
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Word2Vec-300D 69.18 67.13 62.19 55.90 53.42 77.71 49.73 68.40 44.20 78.80 74.98 77.08
LAE-200D 68.84 65.83 62.30 52.22 52.68 76.83 43.18 67.87 42.01 76.93 77.51 77.65
AE-200D 68.43 66.67 61.04 52.86 50.00 76.06 40.41 62.13 42.30 73.64 76.08 75.56
OAEVD-200D 69.06 68.44 62.27 55.12 53.69 77.15 48.95 65.98 44.96 82.25 79.45 78.68
GloVe-300D 60.54 65.01 57.26 56.13 41.18 66.38 30.51 63.32 37.05 70.26 76.62 73.75
LAE-200D 60.51 63.86 56.17 56.08 40.08 65.93 31.88 62.00 35.69 73.04 76.36 73.43
AE-200D 63.99 63.29 59.43 58.17 42.01 68.80 36.06 64.84 40.86 70.61 76.32 76.02
OAEVD-200D 65.38 67.98 61.36 63.54 45.11 71.01 38.38 65.24 40.64 70.64 74.89 76.97
fastText-300D 70.84 71.01 65.00 51.87 52.33 81.02 46.27 70.50 45.00 83.63 84.51 79.06
LAE-200D 68.35 69.79 61.86 48.58 50.02 79.07 46.99 69.37 42.25 85.97 86.11 77.61
AE-200D 65.69 70.02 60.92 51.51 50.56 79.51 47.46 68.35 41.41 84.17 84.83 78.43
OAEVD-200D 74.67 73.24 70.73 55.30 54.30 81.40 49.68 70.07 49.68 91.18 89.03 81.49

Table 4: Comparison of the proposed model (OAEVD) with 200 dimensions with original embeddings, LAE and AE of the three
main algorithms Word2Vec, GloVe, and fastText.

Model
WS
-353
-ALL

MTurk
-771

WS
-353
-REL

YP
-130

RW
-STAN
-FORD

WS
-353
-SIM

VE
-RB
-143

MTurk
-287

SIM
-LEX
-999

SIM
-MC
-30

RG
-65

MEN
-TR
-3k

Word2Vec-300D 69.18 67.13 62.19 55.90 53.42 77.71 49.73 68.40 44.20 78.80 74.98 77.08
LAE-150D 67.82 64.91 60.89 50.04 50.65 75.58 37.16 64.98 39.92 83.41 78.25 77.18
AE-150D 64.44 66.14 61.25 47.79 50.30 73.36 40.77 68.25 40.79 79.49 80.11 77.35
OAEVD-150D 69.59 68.72 63.48 53.10 53.53 78.20 44.52 66.29 42.62 85.79 81.69 78.16
GloVe-300D 60.54 65.01 57.26 56.13 41.18 66.38 30.51 63.32 37.05 70.26 76.62 73.75
LAE-150D 54.20 57.82 48.94 49.93 35.67 60.58 26.90 57.77 32.80 72.10 75.25 69.72
AE-150D 60.37 58.79 56.70 56.42 37.91 65.73 37.34 63.46 37.29 73.30 76.04 70.12
OAEVD-150D 64.43 64.59 59.05 59.55 42.99 70.68 41.74 61.98 38.62 75.46 80.12 75.38
fastText-300D 70.84 71.01 65.00 51.87 52.33 81.02 46.27 70.50 45.00 83.63 84.51 79.06
LAE-150D 63.42 65.67 55.15 44.17 47.57 75.34 47.35 69.05 39.17 82.36 81.17 76.00
AE-150D 65.06 63.92 57.44 45.61 47.95 74.17 44.56 69.60 39.61 85.21 85.51 75.91
OAEVD-150D 73.38 70.74 68.09 54.08 52.73 80.19 47.09 71.50 43.51 91.06 89.40 80.80

Table 5: Comparison of the proposed model (OAEVD) with 150 dimensions with original embeddings, LAE, and AE of the
three main algorithms Word2Vec, GloVe, and fastText.

reduced to 150D. At the same time, our method achieves bet-
ter performance and outperforms the autoencoder approaches
on most datasets with 200D and 150D embeddings. We ob-
tain consistent performance improvement in dimensionality
reduction with an average improvement of 4.5% for 200D
and 2.99% for 150D.

Isotrophy of Word Embeddings

We demonstrate the effectiveness of our method on the geo-
metric properties of the word embeddings by enhancing the
isotropy of the word embeddings. Isotropy is a useful prop-
erty for vectors in any data not only for word embeddings.
For a vector to be isotropic, its values have to be uniformly
distributed in all directions. Previous research showed that
isotropy for word embeddings can improve their performance.
We utilize the isotropy measure (Arora et al. 2016).

minc∈C F (c)

maxc∈C F (c)
(10)

where C is the set of principle component vectors for a given
set of pre-trained word embedding. F (c) =

∑
e∈V exp(c⊤e)

is the normalization coefficient in the partition function. Ta-
ble 6 shows the comparison between the baseline autoen-
coders (LAE and AE) and our proposed method (OAEVD).
All techniques based on autoencoders improve the isotropy
of the word embedding over the original embedding.

Model Word2Vec GloVe fastText

Original 0.489 0.096 0.600
LAE 0.960 0.703 0.970
AE 0.976 0.782 0.990
OAEVD 0.954 0.908 0.900

Table 6: The isotropy measure of word embeddings for origi-
nal embeddings, LAE, AE and OAEVD.

Conclusion and Future Work
This paper presents an effective method for post-processing
word embedding using a regularized autoencoder based on
orthogonality constraints and variational dropout. Our ap-
proach outperforms simple autoencoders in semantic simi-
larity and text classification tasks. Additionally, we produce
more isotropic representations, which are desirable properties
for representing words. The proposed method successfully re-
duces dimensionality and produces smaller-size embeddings
with good performance, which is a critical factor when the
resources are limited. In an online environment, autoencoders
could be implemented by using a small batch of words at a
time, allowing them to handle new data without processing
all the data at once as in a post-processing method based on
the PCA algorithm. Further research along this line will be
to investigate using this approach to post-process contextual
word embeddings and sentence embeddings to improve their
isotropy, and, eventually, the performance of downstream
applications.
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