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Abstract

Prediction of user preferences is a challenge, in particular
when the objective is to learn them without requiring the
user to provide a profile or a significant number of interac-
tions. Many collaborative filtering algorithms exist but all of
them require the availability of huge datasets of user infor-
mation and expensive computations. In this paper, a novel ar-
chitecture is introduced which aims to predict a new user’s
interests in the context of previous users’ interactions with
minimal feedback interactions. Here, a Siamese Network is
used to generate an embedding space for data from existing
users. This information is then used in a Gaussian Mixture
Model to generate multiple soft clusters. Based on the embed-
ding space, system responses to the user are generated using
a Conditional Generative Adversarial Network which uses a
vector drawn from the Gaussian Mixture in embedding space
from the Siamese Network as the conditional input. The pre-
dictive model then interacts with the new user and based on
their feedback adjusts the Gaussian Mixture to find the dis-
tribution with the highest probability of generating the user’s
preferred data. The approach is applied in the context of an
image generation task where the goal is to learn to generate
images that match the preferences of the user using only a
minimal number of direct user interactions. Testing in this
domain has shown promising results that exemplify the abil-
ity of the approach to capture the user’s preferences while
presenting only a minimal number of image examples.

Introduction

With the popularity of the Internet and the advent of smart-
phones, there has been a great increase in Internet traffic.
There are approximately 5.16 billion Internet users, out of
which approximately 4.76 billion are social media users
(Petrosyan 2023). Since big social media companies are han-
dling such a huge population, there are pressures to under-
stand, capture and cater to user preferences with the under-
lying objective of captivating the user and generating rev-
enues. Over the years several Recommender Systems with
state-of-the-art collaborative filtering algorithms have been
proposed which use huge datasets and expensive computa-
tions to learn user preferences. However, they become diffi-
cult to use if there is very little information about the user.
The novel architecture in this paper is trying to address
this problem by aiming to predict a user’s preference with
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minimal interactions. For this, it uses the concept of collab-
orative filtering in an embedding space where, based on the
information from the previous user, the architecture predicts
the preference of the new user. A robust Siamese Network
(Bromley et al. 1993) is used which takes user data from
previous episodes and generates an embedding space for the
dataset. After the embedding space is created, a Gaussian
Mixture Model generates soft clusters in this space that help
predict the preferences of the new user. A Conditional GAN
(Mirza and Osindero 2014) is then used, which utilizes the
embedding space vector from the soft clusters as the condi-
tional input to generate new data. This data is provided to the
new user for feedback which the architecture uses to adjust
the clusters and thus the predicted preferences. To test the
approach, an image generation domain has been used where
the goal is to learn to generate images that match the user’s
preference based on minimal interactions.

In the remainder of the paper, we first discuss related
works before introducing the underlying learning theories
of the different machine-learning tools. Based on these con-
cepts the framework is introduced and the details of the ar-
chitecture are discussed. This is then followed by tests and
results. Finally, conclusions and future work are presented.

Related Work

Capturing user preferences is a difficult problem as acquir-
ing information directly from the user can be prone to error
and indirect methods have been computationally expensive
and time-consuming. Still, capturing user preferences accu-
rately helps understand and respond to the needs of the user
and thus enterprises have collected large amounts of infor-
mation on users and by using Al techniques a deeper under-
standing of user interaction has been learned. These Recom-
mender Systems have automated the generation of recom-
mendations based on the data analysis, but usually require
huge amounts of information and computation to achieve
good accuracy.

In one of the first commercial recommendation systems,
called Tapestry (Goldberg et al. 1992), the term ‘“‘collabo-
rative filtering” was introduced. The system recommended
documents from newsgroups to users. The aim was to use
social collaboration to understand the user requirements and
to save them from large volumes of preference question-
naires or document interactions. Collaborative filtering an-



alyzes all user data to find good user-item pair matches. In
contrast, the earlier methodology of content filtering was
based on information retrieval. After the early success of
collaborative filtering in the Group lens system (Resnick et
al. 1994), the problem was mapped to classification, where
dimensionality reduction was used to improve the solution.

When Netflix, an online video streaming service released
a large-scale dataset containing 100 million ratings from half
a million users and announced an open competition for the
best collaborative filtering algorithm, Matrix Factorization
(Koren, Bell, and Volinsky 2009) based on linear algebra and
statistical analysis emerged as a state of the art technique.

Later, a new recommendation framework (Wang et al.
2019) was proposed which exploits user-item graphs to
propagate an embedding. This has led to modeling expres-
sive high-order connections in the graph. Collaborative fil-
tering was also used in IoT scenarios (Cui et al. 2020), where
time correlation coefficient and K-means clustering has been
used to group similar users for an accurate recommendation.

The works presented above are all based on the notion that
big datasets are available that help train the Recommender
System. In contrast, our approach is based on the notion of
accurately predicting user preference with minimal interac-
tion. Information from previous users is taken into account
to develop an embedding space, but the amount of data used
is comparably lower. This lessens the dependency on big
datasets to train and make accurate predictions.

Learning Model Background

This section introduces the learning models that will be used
to build the proposed user preference learning approach.

Siamese Networks

A Siamese neural network is an Artificial Neural Network
architecture that uses two identical subnetworks to establish
an embedding space that represents item similarity. To do
this, the same weights are used to compute output vectors for
two different inputs which can be compared to each other.
This architecture was introduced in (Bromley et al. 1993)
where it was used to compare signatures. After its introduc-
tion, the algorithm has been extensively used in face detec-
tion algorithms. (Koch, Zemel, Salakhutdinov, et al. 2015)
incorporated the concept of Siamese networks and one-shot
learning to create a system that learns from a single example
of each class. (Sheng and Huber 2019) used the concept of
Siamese networks on time series data which are trained in
a weakly supervised fashion using only information about
the similarity between data items to cluster behaviors based
on sensor data. Utilizing that the network learns to output
embedding vectors for the input data that reflect similarity
in terms of Euclidean distance, this weakly supervised tech-
nique has been shown to yield comparable performance to
fully supervised methods with reduced labeling overhead.

Conditional Generative Adversarial Networks

Generative Adversarial Networks (GAN) (Goodfellow et al.
2014) have been designed as a framework that uses two com-
peting neural networks in a zero-sum game. Here the gener-
ator network is indirectly trained to learn to generate output

that aligns with the data distribution of the training set. The
Discriminator on the other hand tries to predict whether the
data provided is from the training dataset or from the gen-
erator. The constant struggle of the generator creating data
and trying to pass them as original data and the discrimi-
nator finding out the real and false data helps the generator
to create more realistic responses. However, the basic GAN
framework uses simple noise to generate meaningful data
and is not able to differentiate between different classes of
data. For example, when given an animal dataset to train, the
GAN can learn to create images of different animals. But it
is not possible for the framework to generate images of one
type of animal. Since we need to generate data based on user
type, we need to use a GAN framework that can generate
data based on some label that characterizes the type.
Conditional GAN (Mirza and Osindero 2014) is a ma-
chine learning framework, which uses the core principle of
GAN but adds a condition vector in its input that helps gen-
erate class-based data. The conditional input represents the
labels for the data which, when fed to the generator with the
noise vector, trains it to generate data for that label. The gen-
eral architecture of a Conditional GAN is shown in Figure 1
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Figure 1: General Architecture of a Conditional GAN
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Gaussian Mixture Models

Clustering is an unsupervised learning problem aimed at
grouping unlabeled data. Several hard clustering algorithms
are used most commonly. Their main disadvantage is that
they associate each point with only one cluster which will
not yield good accuracy with datasets containing points that
cater to multiple clusters as is the case with overlapping
user preferences. By contrast, as a soft clustering technique
Gaussian Mixture Models assume that the dataset contains
multiple Gaussian distributions and that each data point can
belong to each distribution with varied degrees of probabil-
ity. Each distribution contains the following parameters:

* A mean p that defines the center of the cluster

* A covariance X that defines its width. In a multivariate
scenario, it is equivalent to the dimensions of an ellipsoid.

* A mixing probability 7 which defines how big or small
each Gaussian function is.

The initial Gibbs sampling training (Rasmussen 1999)
was later replaced with Expectation Maximization (Xuan,
Zhang, and Chai 2001) as it provides more accurate clusters.

Learning framework

Dataset: To develop and initially evaluate the framework,
the Fashion-Mnist dataset (Zalandor 2017) has been used for



experimentation. This dataset, examples of which are shown
in Figure 2, was chosen due to the following properties:

» Each image is 28x28 grayscale, which makes it easier to
create an initial neural network for processing.

* The dataset contains images from 10 different fashion
items where each item is visually different while sharing
lower-level features, facilitating overlapping preferences.

EMEL

Pullover (2) Trouser (1) T-shirt/Top (0)
Coat (4) Trouser (1) Ankle Boot (9) Pullover (2)

Figure 2: Examples from Fashion-Mnist Dataset

Siamese Network

The primary objective of the Siamese network in this ap-
proach is to create an embedding space for the collaborative
filter to work on. Figure 3 shows the internal structure of the
Siamese Network. It includes the following three layers:

 Input Layer - Here image pairs of two types are sent as
input. A Like-Like pair contains two images liked by the
same user. They can be of similar or different classes. A
Like-Dislike pair contains two images that can again be
of the same class but have to be from two different users.

* Embedding Layer - In this layer, we use two similar
Branch Networks which share the same weights for up-
dating. The networks take each image from the Input
Layer as input and then convert them into embedding vec-
tors which are fed as input to the Decision Layer.

* Decision Layer - The first Layer which takes both outputs
from the Embedding Layer is the Euclidean distance layer
which computes the distance between the two embedding
vectors. The images from the same user will generate em-
bedding vectors close to each other whereas images from
different users will have dissimilar embedding vectors.
The concatenated output goes through a fully connected
layer to predict either 0 (Same User) or 1 (Different User).

Based on the true and predicted answer for the pair, the net-
work is trained. Binary Cross Entropy and Adam as the op-
timizer are used for the experiment. Since they predict simi-
larity and dissimilarity, the branch networks are trained with
the same weights. Once the Siamese Network is trained, the
embedding vectors of the images from previous users gener-
ate a distribution in the latent embedding space which helps
find clusters using Gaussian Mixture Models and serves as
a condition vector to a Conditional Generative Adversarial
Network that generates sample images.
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Figure 3: Architecture of Siamese Network

Conditional Generative Adversarial Network

The main motivation for using the Conditional GAN is to
provide the architecture the power to create its own data
which will aid it to learn faster. Here the CGAN is trained
with user data collected during experimentation. For the
conditional input of the CGAN, the Branching Network of
the Siamese network is used to generate embedding vectors
for each image. The architecture is designed as follows:

* Condition Generation - We use the Embedding Layer
of the Siamese Network, where all the user data is sent as
input and an embedding vector is generated. This gives us
the conditional input for the CGAN.

* Generator Computation - The conditional input is con-
catenated with a noise vector and sent to the generator.
The generator uses this input to generate an image of the
same dimension as in the original Fashion-Mnist dataset.

* Discriminator Computation and Training - The condi-
tional input and the image (either from the source dataset
or from the generator) are concatenated and sent to the
discriminator. The discriminator outputs 1 or O depending
on whether it predicts that the image is from the source
or from the generator, and based on this the generator is
trained to learn to create images that the discriminator can
not distinguish from the originals.

Figure 4(a) and (b) show the Generator and Discriminator
network structures, respectively, and Figure 4(c) shows their
integration into the CGAN architecture.

Gaussian Mixture Model for New User Preferences

The Branching Network of the Siamese Network takes all
the images from previous users and generates embedding
vectors which create the embedding space. These unlabeled
vectors in the embedding space will be used to bootstrap
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Figure 4: Architecture of Conditional GAN. Generator (left), Discriminator (middle), and Complete CGAN (right)

and structure the user preference for new users. When the
model works on predicting the preference of a new user, the
new user might prefer images from different clusters (previ-
ous user preferences) or sub-cluster combinations. The goal
is to capture these by building a Gaussian Mixture Model
for the new user’s likes and dislikes, capturing them in the
form of soft clusters in the embedding space. This implic-
itly assumes that the structure of the embedding space cap-
tures basic commonalities related to human tastes. Note that
we are not assuming that resulting user preferences fall into
a type that is already present among previous users (as is
done generally in collaborative filtering) but only that the
embedding space captures basic underlying data properties
in light of human preferences. The training algorithm works
in a semi-supervised fashion, treating user feedback as pref-
erence labels while assigning no labels to other users’ data.
The presence of liked and disliked examples leads to a small
modification where each Gaussian also receives a cluster la-
bel, assigning it to either the liked or disliked class for the
user. The complete algorithm operates in the following way:

* Initialization - For initialization K-means Clustering is a
good choice. The value of the cluster number k is defined
by the elbow method. These clusters provide a starting
point for the Gaussian Mixture model to train itself. The
mixing probability 7 is initialized according to the data
distribution, and as initially no data for the new user is
available, membership in the liked or disliked distribution
for each Gaussian is initialized randomly.

» Expectation-Maximization - The EM algorithm finds
the maximum likelihood of a vector among all the clus-
ters. It is divided into two steps:

E-Step - In the E-Step the posterior probabilities (Expec-
tation value) of each data point are computed with the
given 7, u, and Y. For data points that received feedback
from the new user, posterior probabilities for all Gaus-
sians that have the opposite liked or disliked label as the
feedback indicates are set to 0.

M-Step- In the M-Step, 7, 1, and 3 are updated by max-
imizing the log-likelihood with respect to the parameters.

Once data points with user feedback are available, clus-
ter labels for all Gaussians are updated according to the
likelihood of the cluster generating liked or disliked data
points from the set that the user provided feedback on.

The E-M step continues until the algorithm converges. The
architecture is shown in Figure 5
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Figure 5: Architecture of Gaussian Mixture Model

Prediction Model

The Prediction Model interacts directly with new users and
based on their feedback predicts the images a user might
like. The following steps are used for the model to work.

* Initially there is no user information, so a cluster from the
embedding space is chosen randomly and the correspond-
ing p and X are used to pick a vector from that cluster.

* This vector is then used as the conditional input for the
CGAN. The generated image is shown to the user and the
feedback is recorded as “Liked” or ”Disliked”. The em-
bedding vector is also added to the dataset.



* The EM algorithm is called to update the Gaussian Mix-
ture Model based on the latest dataset and user feedback.
During the EM step, the new images for the new user are
updated differently. If the user has liked or disliked the
image, its Expectation value for all the predefined clusters
which the model thinks has the opposite label is set to 0.
This process moves the clusters every time, customizing
the prediction for the new user.

» After the EM step, the predicted labels are updated. For
each cluster, we find the probability density values of the
liked images (li) and disliked images (di), and then use
the formula (1 — di)/(li + di). If the value is greater than
0, then the cluster is liked, otherwise, it is disliked.

¢ The model runs for at most 100 iterations. Initially, it ex-
plores 90% of the time with a decay of 20% every 20 it-
erations. This initially promotes exploration and slowly
moves towards exploitation. At each iteration, Precision,
Recall, and Accuracy are evaluated and training is stopped
if a threshold is crossed. For the experiment, the threshold
for (Precision, Recall, Accuracy) is (80%,50%,50%). We
use a higher Precision value than Recall since we want the
model to learn to present liked images early but are not as
interested in covering all interests of the user.

The Model is shown in Figure 6
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Figure 6: Prediction Model Architecture

Experiments and Results

In this section, each of the components as well as the com-
plete approach is tested and evaluated.

Siamese Network

The Siamese Network was trained with user-consistent and
user inconsistent pairs. The network ran for 250 epochs and
achieved a testing accuracy of 97% and validation accuracy
of 95%. The training loss is 0.11 and the validation loss is
0.21. The training curves are shown in Figure 7.

These results show that the Siamese network is able to
learn consistent embedding of the distinguishing character-
istics of existing user data with high precision.
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Figure 7: Accuracy of Siamese Network

Gaussian Mixture Model

Using the embedding space and the existing user data with-
out labels, a Gaussian Mixture Model with 18 clusters (cho-
sen by the elbow method) is trained and then customized us-
ing new user feedback. The clusters are shown in Figure 8§,
where (a) displays the clusters before training with the new
user’s feedback, and (b) shows the clusters after training,
where red clusters are Disliked and green clusters are Liked.

Figure 8: Soft Clusters in Embedding Space Before (a) and
After (b) User Interaction

This figure shows that the system is able to form distinct
clusters that align with the users, indicating that it can iden-
tify relevant characteristics within the embedding space.

Prediction Model

Once the Gaussian Mixture is pre-trained, the prediction and
feedback process is started with a set of 50 new users with
randomly initialized preferences defined as subsets of the
Fashion-Mnist categories. To compare the efficiency of the
proposed architecture, another experiment is set up with the
same number of clusters but where the Gaussian Mixtures do
not utilize previous users’ data but only the new user’s data
points and feedback. This corresponds to the situation where
no collaborative filtering is used but preferences are learned
in a supervised way using the pre-trained embedding space.
Figure 9 shows the number of iterations the models required
in each condition to reach the prediction thresholds for each
of the new users and how many Liked and Disliked images
each user has seen during the training process. The use of
the collaborative filtering approach by pre-trained Gaussian
Mixtures (shown in the right figure) significantly reduces the
need for user feedback compared to the baseline (shown on
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the left) and thus increases the efficiency of the architecture.
Using this, the system is able to learn preference distribu-
tions relatively fast, with many users having to rate less than
20 images. However, the results also show that there still is
significant variance among users, indicating the potential for
improvement in the way data points are generated from the
Mixture distribution. Focusing more on liked clusters should
here increase precision at the cost of recall with fewer dis-
liked images, while focusing longer on exploration should
yield higher recall but more disliked images. The model
with no pre-trained Gaussian Mixture (shown in the right
figure), required significantly more interactions with only 3
instances where fewer than 40 images were shown. For the
rest of the users, the model completed its run of displaying
all 100 images and never reached the desired thresholds.

To check how efficient the proposed user preference learn-
ing approach is in predicting user preferences, we generated
100 images from each liked and disliked cluster according
to the trained user-specific Gaussian Mixture model’s pre-
dicted preference for the user. These images were then tested
against the actual preference of the user and precision and
recall values were computed. Precision shows how well the
model can generate items matching each user’s preference
while Recall measures how comprehensively the user’s pref-
erences are captured. Figure 10 shows the precision and re-
call for each of the 50 new users for the proposed model with
the pre-trained Gaussian Mixture from previous users’ data.
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Figure 10: Precision and Recall of Prediction Model

The model achieved an average precision of 81.9% and
an average recall of 71.3% across all 50 users. By contrast,
the model without the pre-trained mixture only achieved an
average precision of 36.6% and an average recall of 37.2%.

Figure 11 similarly shows the model accuracy value for
each user using the pre-trained Mixtures.
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Figure 11: Accuracy of Predictive Model

The average accuracy here is 82.67%, which contrasts
with only 60.18% without the collaborative pre-training.
These results again demonstrate the ability of the proposed
architecture to learn effective user preferences with limited
interactions and illustrate the importance of the approach’s
ability to utilize previous users’ data.

Conclusion and Future Work

This paper presents a novel framework that uses the con-
cept of collaborative filtering in conjunction with a Siamese
Network, Gaussian Mixture Models, and CGAN to create a
predictive model that generates an accurate preference pre-
diction for new users with limited amounts of user-specific
data. For this, it establishes a user preference distribution as
a Gaussian Mixture Model on an embedding space learned
by a Siamese Network using other users’ data. Results in an
image generation domain show that the system is capable
to embed important general preference characteristics, suc-
cessfully using these to build a user preference distribution
of unknown preferences from limited feedback and generate
training data efficiently using a Conditional GAN network.
While the results presented here are promising, the used ex-
ploration and exploitation policy is very simple and could
be improved upon in terms of reducing false-positive expo-
sures using other exploration strategies. We can also use ex-
ploration strategies that are more targeted to a specific task
to further improve the experience of users with the system.
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