
Evaluation of Techniques for Sim2Real Reinforcement Learning

Mahesh Ranaweera, Qusay H. Mahmoud
Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON, L1G 0C5 Canada

{mahesh.ranaweerakaluarachchige, qusay.mahmoud}@ontariotechu.net

Abstract

Reinforcement learning (RL) has demonstrated promis-
ing results in transferring learned policies from simula-
tion to real-world environments. However, inconsisten-
cies and discrepancies between the two environments
cause a negative transfer. The phenomenon is com-
monly known as the “reality gap.” The reality gap pre-
vents learned policies from generalizing to the physical
environment. This paper aims to evaluate techniques to
improve sim2real learning and bridge the reality gap us-
ing RL. For this research, a 3-DOF Stewart Platform
was built virtually and physically. The goal of the plat-
form was to guide and balance the marble towards the
center of the Stewart platform. Custom API was created
to induce noise, manipulate in-game physics, dynamics,
and lighting conditions, and perform domain random-
ization to improve generalization. Two RL algorithms;
Q-Learning and Actor-Critic were implemented to train
the agent and to evaluate the performance in bridging
the reality gap. This paper outlines the techniques uti-
lized to create noise, domain randomization, perform
training, results, and observations. Overall, the obtained
results show the effectiveness of domain randomization
and inducing noise during the agents’ learning process.
Additionally, the findings provide valuable insights into
implementing sim2real RL algorithms to bridge the re-
ality gap.

Introduction
Advanced robotic systems have become the workforce of
the future. These platforms have been developed and re-
searched to improve the day-to-day life of humans and for
the advancement of the industrial, transportation, health-
care, and exploration sectors. However, creating robots that
have the dexterity and capability of humans or animals, or
that can effectively mimic their behavior, presents a sig-
nificant challenge. Since the real-world environment is dy-
namic in nature, creating advanced robotic platforms is of-
ten difficult; therefore, modern robotic systems are deployed
in controlled environments such as warehouses that utilize
advanced sensors. Deployed robots are pre-programmed to
perform tasks in the given domain. Recent developments in
machine learning and machine learning techniques are cur-
rently being used to train robots to perform advanced tasks.

Copyright © 2023 by the authors. All rights reserved.

One of the major disadvantages of machine learning is the
requirement for large quantities of quality training data for
the training. For robotic applications, vast amounts of hand-
crafted, generated, or real data are required. However, ac-
quiring a large amount of quality training data is often ex-
pensive, dangerous, and time-consuming. Even if the data
are acquired, deploying on an unseen domain will require re-
training the model with the new data. Without quality train-
ing data, the trained model will either be biased or may lack
the expected outcomes.

One of the emerging research areas is virtual-to-real trans-
fer learning which utilizes a virtual environment to train the
model. Virtual environments allow researchers to create a
vast amount of training data, simulating environment con-
ditions that are difficult, dangerous, or expensive to sim-
ulate in the real world. Although there are many benefits
of using a virtual environment, a virtual environment can-
not capture the real-world dynamics and collisions (OpenAI
et al. 2019). Real-world dynamics such as gravity, friction,
and surface collisions are complex to be modeled or sim-
ulated in a virtual environment. In most cases, it requires
higher computation power to simulate the virtual environ-
ments. Noise, simulated sensor disparity, calibration errors,
gear backslash, environment factors, textures, reflection, re-
fraction, and latency are some of the factors that might af-
fect the performance of the model after transferring to a
real-world environment. The performance of the model is
affected by the inherent differences between the virtual and
physical environments, this phenomenon is known as the re-
ality gap (Lomnitz et al. 2020).

This paper is an extension of our previous work
(Ranaweera and Mahmoud 2023; 2022) by enhancing the
model’s performance and generalizability. A 3-DOF Stew-
art Platform was built virtually and physically for making
observations and performing training. The virtual platform
allows the training of the RL agent in the simulated envi-
ronment. This allows further configuration and control of
the simulated environment attributes. The goal for the RL
agent is to guide the marble toward the center of the Stewart
platform. This requires precise control over the servos while
utilizing external sensors to make observations. Two RL al-
gorithms; Deep Q-Learning and Actor-Critic were created
to train the agent in the virtual environment. To generalize
the agent for the physical environment, domain randomiza-



tion, and noise were induced to increase the variability of the
training data. The hypothesis is that by increasing the vari-
ability of the virtual environment the agent could be seen as
one of the variants. This paper evaluates how each random-
ization affects the overall learning of the agent. The paper
also evaluates the agent’s success rate in the physical envi-
ronment for each randomization.

Related Work
Multiple research has been conducted to evaluate different
techniques that bridge the reality gap in Sim2Real learning.
The goal of using a virtual environment is to generate train-
ing data when quality data is unavailable. This methodology
is known as Sim2Real transfer learning (Doersch and Zisser-
man 2019). The learning algorithm performs random actions
in the virtual environment to make observations and train
the model. However, there is no guarantee that the model
trained on the synthetic data can perform and/or adapt to
the physical environment. Lipton et al. (Lipson et al. 2006)
state that the discrepancy is due to Quasi-static kinematics
where the model is unable to accurately predict the dynam-
ics of the physical environment. Since the machine dynam-
ics are sensitive to environmental factors such as noise, vari-
ations in parameters, and initial conditions. It is very difficult
to create a virtual environment that can accurately model
the target physical environment. The researched literature
proposes various methods to address the reality gap. Some
of the common techniques according to (Ranaweera and
Mahmoud 2021) are domain randomization, domain adapta-
tion, generating realistic virtual environments, and develop-
ing simplified simulations that focus on capturing essential
features.

Domain randomization(DR) is one of the common meth-
ods used in Sim2Real research. The main idea of this method
is to increase the variability of the training environment by
randomly changing virtual environment parameters and at-
tributes. Research (OpenAI et al. 2019), (Tobin et al. 2017),
(Park, Kim, and Kim 2020) demonstrate that domain ran-
domization techniques create a rich distribution of train-
ing data and variety, allowing the model to only learn the
policies and to show that the model can make accurate
predictions on the physical environment. OpenAI (OpenAI
et al. 2019) proposed an advanced version of DR called
Automated Domain Randomization (ADR) to solve a Ru-
bik’s cube using a multi-dexterous robotic arm. This pro-
posed method can improve the control policies and vision
estimates of the trained model. Additionally, it shows that
the model can handle situations that were not seen during
the training process. Since the ADR method progressively
generates difficult environments, the model is generalized
to adapt to changes in the real world rather than domain-
specific.

Additionally, domain adaptation (DA) is another trans-
fer learning methodology that allows the model to learn
transferable representation from the environment (Wang and
Deng 2018). There are two classes of DA: instance-based
and feature-based. DA is utilized in (Bousmalis et al. 2018;
Yan et al. 2017; Hundt et al. 2020) research to optimize
robot grasping. Research has shown that the DA method

allows the model to learn a mapping from source to target
domain (Tobin et al. 2017). Additionally, the DA method al-
lows us to learn domain invariant features from the source
domain (Gupta et al. 2017). Many of the domain adapta-
tion applications include robot grasping (Yan et al. 2017;
James et al. 2018) and visual-based navigation (Zhang et al.
2022).

One other method proposed by the research is to cre-
ate high-fidelity virtual environments to closely match the
real-world environment. This involves creating environ-
ments with higher photorealism and simulation capabilities.
NVIDIA Flex (Kar et al. 2019), Alphabet Soup, MuJoCo
and RAWSim-O (Ranaweera and Mahmoud 2021) are some
of the high-fidelity GPU-based simulators. Some of these
applications require higher computation power for accurate
rendering and simulations. Therefore, most researchers in
this context used game engines such as Unity and Unreal En-
gines as they provide highly optimized, photorealistic, real-
time, and accurate physics simulations without consuming
system resources.

There were shortcomings and limitations in the review
papers. Most research articles suggest that utilizing the do-
main randomization method allows for inducing variability
to generalize the model. However, one of the shortcomings
of the DR method is that it cannot randomize properties
that are not modeled in the environment. Therefore, it re-
quires additional work to create ideal learning environments.
OpenAI’s implementation of training a multi-dexterous arm
to solve a Rubik’s cube uses multiple camera systems, an
advanced Giiker cube (that consists of multiple sensors),
and a consistently lighted environment to make observa-
tions. One of the major observations made by OpenAI is,
data collected through multiple sources and sensors, re-
quires a high level of calibration and suffers from curse-
of-dimensionality. Similarly, this research utilizes external
sensors such as a camera and an accelerometer, and 3 axis
gyro sensor to track the location of the marble and deter-
mine the orientation of the platform. However, based on
the RL algorithm used, necessary sensors are selected to
minimize the number of dimensions. In addition, this re-
search uses domain randomization to randomize textures,
lighting conditions, camera location, and field-of-view to in-
duce variability. Random noise is introduced to the simula-
tion so that it may create additional variability in the sim-
ulation to generalize the model further during RL. Two RL
learning techniques: Actor-Critic and Deep Q-Learning are
utilized to understand the effect of noise and domain ran-
domization on the virtual environment. In this research, the
Deep Q-Learning method utilizes raw image data obtained
from the virtual camera, whereas the Actor-Critic method
utilized marbles position, velocity vector, and relative loca-
tion to make predictions.

Methodology
In this research, to evaluate the quality Sim2Real policy
transfer, two environments were created; a virtual environ-
ment to perform the RL learning, and a physical environ-
ment to evaluate the quality of transfer and the existence



Figure 1: Virtual environment rendered on Godot game engine
(left) and the physical environment (right)

of reality-gap. For the testing environment, a 3-DOF Stew-
art platform was created virtually and physically that are
identical as shown on Figure 1. The goal of the learning
agent was to balance a simple marble placed on the Steward
platform. The research utilized the system architecture out-
lined in (Ranaweera and Mahmoud 2023) for RL and trans-
fer learning. Both virtual and physical systems consist of
identical modules for performing set tasks. The virtual en-
vironment contains dynamic simulation, environment, and
rendering modules to perform virtual actions, containing a
virtual 3-DOF platform, camera, lighting, and rendering en-
gine respectively. The virtual environment was utilized to
train the model by performing pre-defined random actions.
Once the agent is transferred to the physical system, the goal
is to observe the performance and accuracy of the agent
while tuning the hyperparameters and environment condi-
tions until optimum performance is achieved. Additionally,
both virtual and physical environments were configured to
exact environment parameters such as action delay, degrees
of freedom, angular limitations, initial camera position, field
of view, starting position, and weight.

Virtual Environment
Stewart platform was first drafted and created in Autodesk
Inventor to create identical virtual and physical environ-
ments. Godot (godotengine.org), an open-source game en-
gine, was used to create the virtual environment. This game
engine utilizes the Bullet physics engine which allows it
to perform high-fidelity physical simulations and collisions
on rigid and soft bodies. For communication, relaying ac-
tions, and making observations, a WebSocket server was
implemented. Custom scripts were made to change environ-
ment settings such as lighting, camera position, textures, and
framerate. Additional scripts were created to randomize the
marble position, size, weight, and surface friction on colli-
sions. Game engine was configured to use GPU-based ren-
dering to improve the performance and simulation fidelity.
To reduce the memory allocation and CPU utilization, the
virtual environment was compiled into a standalone exe-
cutable. Each runnable executable was assigned a unique
TCP WebSocket port for communicating when training with
multiple instances.

A virtual camera was used to capture the view and was
mounted at a similar height relative to the physical camera.

The field of view (FOV) was configured programmatically
to match the real-world camera. Custom scripts were created
to randomize camera height and FOV, and add noise and a
gimbal on its axis to induce variability in the observations.

Rigid body and static body attributes were added to 3D
meshes of the Stewart Platform to assign dynamics and
collision properties for the physics simulations. Custom 3
DOF joints were programmed and assigned to the virtual
platform. Servo delay, motion range (minimum range and
maxim range), and torque were set as environment variables
and were randomized during the training process.

Physical Environment
To assess the learning transferred from the virtual environ-
ment, a physical 3-DOF Stewart platform was constructed.
To ensure that both virtual and physical environments are
identical, the physical platform was 3d printed using the
CAD model. A robot cage was constructed to house the
physical platform. The robot cage was used to mount the
camera, and lighting rig and to stabilize the platform. Damp-
ening was added to reduce the gear backslash and vibrations,
affecting the observations.

The system was controlled through a Jetson Nano com-
pute module that allows it to host the trained RL model, cap-
ture and process real-time observations, and interface with
actuators and sensors to perform actions. There are three ac-
tuators for each axis control. For making observations and
capturing frames, a generic 1080p camera module was used.
OpenCV, an open-source vision library was utilized to in-
terface with the camera module and capture and pre-process
image data. The camera was calibrated using a checkerboard
calibration method to reduce radial distortion and tangential
distortion. Each captured frame was downscaled to 480x480
pixels for calculating the velocity vector and tracking the
marble on the platform. The captured frame was further
downscaled to 84x84 pixels before using it as input to the
Q-Learning methodology.

Reinforcement Learning
Algorithms implemented in previous work (Ranaweera and
Mahmoud 2023; 2022) have been utilized and improved
upon for this research. Two algorithms were created; Deep
Q-learning and Actor-Critic. Each algorithm was devel-
oped to use different inputs as observations. For Deep Q-
Learning, downsampled raw frames captured through the
virtual camera were used as inputs. While for the Actor-
Critic algorithm, raw frames were pre-processed to deter-
mine the marble’s position, velocity vector, and relative
location to use as inputs. In the real world, raw images
captured through the webcam were processed using the
OpenCV library and set as input to the agent. The velocity
vector, position of the marble, relative location, and acceler-
ation were also calculated and used as additional input data.

RL architecture implements four main steps to control the
environment and learning. These four steps are environment
initialization, reset action, step, and rendering. First, the en-
vironment was initialized by creating a new virtual environ-
ment instance using a random seed. Environment parameters



such as field-of-view, camera position, and lighting condi-
tions were initialized. The reset step allows the environment
to be reset when the reward reaches a certain level or if the
agent fails to perform the desired action. Rendering steps in-
volve an agent sending a random action or a prediction dur-
ing the replay after reaching a certain threshold and making
an observation by capturing data after the action has been
performed. The action space defined for the Stewart plat-
form is to discrete with an action range of [0, 4]. The RL
agent learns to perform pitch forward, pitch backward, roll
left, and roll right to guide the marble toward the center of
the platform. The reward function assigns positive and nega-
tive rewards based on the position of the marble. The reward
encourages the agent to make an observation and perform an
action such that the marble is guided towards the center goal
while making observations on the platform. The platform
is divided into three sections, where the center is the target
goal. If the marble is within the center of the platform +1
reward is awarded. If it is outside the center -0.5 is deducted
and if the marble reaches the edge of the platform the envi-
ronment is reset for a new iteration. Observations are made
through the camera, accelerometer, and 3-axis gyroscope.

Domain randomization and noise were induced during the
training to increase the generalizability of the RL agents dur-
ing the Sim2Real transfer. The goal of these techniques is to
increase the diversity of the environment and policy learn-
ing such that the RL agent is able to adapt and perform
well in novel situations or environments that are not encoun-
tered during the training. Generalization of the RL agent is
a crucial and practical aspect of Sim2Real learning to over-
come the reality gap. During domain randomization, the tex-
tures of the environment, the position of the marble, lighting
conditions, frame rate, marble weight, marble size, friction,
camera focus, and other dynamics are changed and random-
ized.

Domain Randomization and Added Noise
In this research, Domain randomization and induced noise
are important to increase the diversity of the training data. In
domain randomization, random environments are generated
by randomizing pre-defined aspects of the virtual environ-
ment; such as the position of the marble, camera, changing
lighting conditions, textures, background, and foreground.
Figure 2 and Figure 3 demonstrate the applied domain ran-
domizations and examples of the camera and lighting condi-
tions adapted from (Ranaweera and Mahmoud 2023).

Background and foreground randomization was per-
formed by setting a random RGB value between [50, 255].
Additionally, the marble’s position, size, and mass were
changed within the virtual environment. A spotlight was
set to light the platform and simulate the real-world light-
ing rig. The lighting intensity was increased at a constant
value(2.67) and defined to be within the range of [0, 16].
The position and FOV of the spotlight and camera were ran-
domized as shown. Since the physical camera, IMX219 has
a range of [20, ∞), the virtual camera was also set to the
same FOV. The randomizations on the virtual environment
(developed on the Godot game engine) were performed us-
ing custom GDScripts.

In addition, custom scripts were developed to perform
Gaussian noise on the action space and add noise during the
training to further increase the variance. The Action space
noise allows for improved exploration of the environment,
increases agents’ robustness, and allows better convergence
while preventing overfitting. As demonstrated by (Plappert
et al. 2017), the generalization error will be improved; and
thereby, the agent will be able to compensate for the reality
gap.

Reinforcement Learning Algorithms
Deep Q-Learning. The deep Q-Learning method uses an
off-policy learning method to optimize the Q-function. The
goal is to create optimum Q-function by performing actions
against the virtual environment. In this research, Q-Learning
utilizes a Convolutional Neural Network(CNN) layer to pro-
cess raw image data. The Image data are captured through
the virtual or real camera. Then the image data are down-
scaled to 84x84 and stacked to represent a sequence. Re-
fer to Figure 8 on (Ranaweera and Mahmoud 2023), which
represents the overall model architecture. Based on the im-
age, the Q-Learning agent uses an exploration-exploitation
strategy to optimize the Q-function. The agent learns the op-
timum policy to obtain the maximum reward in the given
environment.

Actor-Critic Architecture. The Actor-Critic methodol-
ogy utilizes two separate models: one for the policy func-
tion and the other for the value function. The policy func-
tion generates a probability distribution over the set actions
space. Action is selected and performed against the environ-
ment. The value function is used to determine the expected
outcome from the observation. Refer to image On the other
hand, Actor-Critic utilizes the marble location, the velocity
vector, and the relative position of the marble on the plat-
form. This information is calculated by capturing raw image
data from the virtual and physical cameras. Using OpenCV
the marble’s location is tracked, and by stacking previous
frames, the velocity vector is approximated. The velocity
vector represents the marble’s trajectory on the platform and
allows the algorithm to make decisions based on location to
guide the marble.

Experiments and Results
Algorithms were trained in a distributed fashion on multi-
ple sessions to increase efficiency and speed up the learning
process. The main goal of this research was to identify how
each randomization affects the overall policy learning and to
evaluate each agent in the physical environment to determine
the success rate. The evaluation begins with no randomiza-
tion and ends with all randomization and noise enabled dur-
ing the training process. This is to identify the factors that
affect learning and to generalize the model further. With do-
main randomization and induced noise enabled, the agents
are exposed to a larger dataset with dynamic and complex
environments.

Each training episode was set to 1M frames and when it
reached the end, the environment was randomized using a
random seed value. The number of episodes per distributed



Figure 2: Domain Randomization applied to the virtual environment

Figure 3: Randomization of (a) Lighting intensity, (b) light position (c) camera position and FOV

learning was set to 1000 during the training. The goal of
the agent is to maximize the reward by moving the marble
toward the center of the platform. Tensor-board was used for
monitoring the training, learning, and replaying.

Once the training had been completed the trained agent
was transferred over to Jetson Nano compute module for
evaluation in the physical environment. The agent trans-
ferred to the physical environment was evaluated for 10 trials
to obtain the success rate for each randomization condition
outlined in Table 1. The success rate outlines the percentage,
in which the platform guides the marble toward the center.
The maximum average column denotes the overall average
observed in the given randomization. During the training,
the RL agent was exposed to increasingly difficult and vary-
ing environments through domain randomization and induc-
ing noise. The Table 1 shows the overall performance across
each randomization in the virtual and corresponding physi-
cal environment.

In our previous study (Ranaweera and Mahmoud 2023),
the environment was set to randomize the marble position,
camera position and the combined randomization with do-
main randomization and induced noise. In that experiment,

the combined results yield an 89.55% success rate in the
virtual and 78.56% accuracy in the physical environment.
During this evaluation, optimization to a virtual environment
and precise control over the noise levels allows for improve-
ment in the overall performance to an 89.90% success rate
in the virtual environment and an 81.45% success rate in the
physical environment respectively.

As shown, Actor-Critic outperforms the Q-Learning
agents. In both cases, the training environment with do-
main randomization and induced noise provided higher rates
of reward in the physical environment, showing that the
model was able to generalize to the physical environment.
Q-Learning results show different randomizations and their
virtual replay and physical environment results which are
drastically different.

Without any randomization, Q-Learning performs the
worst in the physical environment. This is due to the incon-
sistencies between the two environments (domain). Since
Q-Learning used the downscaled image data, it seems that
physical environmental conditions that were unmodelled af-
fect the final results. On the other hand, since the Actor-
Critic algorithm relies on inherited input data, it demon-



Table 1: Experimental results of evaluating the RL agent on virtual and physical environments for Q-Learning (A) and Actor-Critic (B)

(A) Q-Learning Virtual Environment Physical Environment
Environment Configuration Success Avg. maximum Reward reached Success Avg. maximum reward reached
No randomization 48.34% 2452 20.25% 668
Marble position 82.33% 7563 43.62% 2783
Marble size 56.88% 3246 18.38% 568
Camera fov 67.39% 5892 34.56% 964
Camera position, Camera fov 76.83% 6923 42.34% 234
Lighting position 55.21% 3178 24.78% 857
Lighting intensity 43.53% 3436 17.88% 525
Noise (Gaussian Noise ) - on image data 65.89% 5689 56.87% 3235
Noise (Gaussian Noise ) - on action space 78.46% 7289 66.39% 5726
With domain randomizaton (all attributes) 86.35% 7854 68.98% 6238
With domain randomizaton and induced noise 89.90% 8361 81.45% 7325

(B) Actor-Critic Virtual Environment Physical Environment
Environment Configuration Success Avg. maximum Reward reached Success Avg. maximum reward reached
No randomization 85.34% 7844 68.74% 6167
Marble position 88.45% 8102 78.67% 6821
Camera position 80.66% 7345 72.56% 6734
Marble size 78.22% 7104 66.67% 5689
Camera fov 81.45% 7389 66.88% 5718
Camera position, Camera fov 83.56% 7655 78.45% 7192
Noise (Gaussain Noise ) - on action space 88.98% 8263 82.78% 7658
With domain randomization and induced noise 96.65% 9857 86.27% 7933

strates no effect on randomizations such as lighting position
and lighting condition. However, the camera position and the
field-of-view had an effect on the marble tracking, causing a
few failed movements on the physical system. On occasions,
due to lighting, specular highlights, and other environmental
conditions, the OpenCV could not track the marble precisely
which affected the overall performance during the evalua-
tion. However, when overall lighting and camera were posi-
tioned correctly, overall performance improved. The Gaus-
sian noise on action space clearly shows an increased suc-
cess rate in the physical environment. Actor-Critic, the algo-
rithm in this research demonstrates that it requires a high-
fidelity environment to perform the successful transfer of
learning from Sim2Real. If the goals, objectives, and envi-
ronmental limitations are clearly defined, the RL algorithms
such Actor-Critic are able to learn the policies required.

Conclusion and Future Work
This research was conducted to evaluate methods proposed
to bridge the reality gap using RL. Two RL algorithms were
implemented: Deep Q-Learning and Actor-Critic. Each al-
gorithm was defined to use different inputs as observations
to identify which factors affect the overall ability to learn
new policies. To evaluate, a Stewart Platform was designed
in a virtual and physical environment. The virtual environ-
ment was utilized for RL while the physical environment
was used for evaluating. Domain randomization and noise
were induced to increase the variability and diversity in the
virtual environment.

According to the observations, the Actor-Critic method-
ology outperforms Q-Learning. Since the actor-Critic relies
on positional and velocity data, it was able to learn features

and policies that require adaptation to the physical environ-
ment. The induced noise allows generalizing of the model,
further allowing it to perform on the physical Stewart Plat-
form. Q-Learning, on the other hand, based its prediction on
the raw image data acquired through the webcam. However,
it performs poorly on the physical platform due to inconsis-
tencies in the system dynamics and environmental lighting
conditions.

To further bridge the reality gap, future research will focus
on improving Q-Learning by optimizing the DR methodol-
ogy and identifying factors affecting performance. The fi-
delity of the multi-agent learning environments should be
improved to increase the learning and further generalize the
model. Additionally, domain adaptation and transfer learn-
ing methodologies will be employed to improve the transfer
policies and to further generalize the model. Furthermore,
current results will be compared with similar implementa-
tions to further bridge the reality gap.

References
Bousmalis, K.; Irpan, A.; Wohlhart, P.; Bai, Y.; Kelcey, M.;
Kalakrishnan, M.; Downs, L.; Ibarz, J.; Pastor, P.; Konolige,
K.; Levine, S.; and Vanhoucke, V. 2018. Using Simula-
tion and Domain Adaptation to Improve Efficiency of Deep
Robotic Grasping. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), 4243–4250. ISSN:
2577-087X.
Doersch, C., and Zisserman, A. 2019. Sim2real transfer
learning for 3D human pose estimation: motion to the res-
cue. arXiv:1907.02499 [cs].
Gupta, A.; Devin, C.; Liu, Y.; Abbeel, P.; and Levine, S.



2017. Learning Invariant Feature Spaces to Transfer Skills
with Reinforcement Learning. arXiv:1703.02949 [cs].
Hundt, A.; Killeen, B.; Greene, N.; Wu, H.; Kwon, H.; Pax-
ton, C.; and Hager, G. D. 2020. ”Good Robot!”: Efficient
Reinforcement Learning for Multi-Step Visual Tasks with
Sim to Real Transfer. IEEE Robotics and Automation Let-
ters 5(4):6724–6731. arXiv:1909.11730 [cs].
James, S.; Wohlhart, P.; Kalakrishnan, M.; Kalashnikov, D.;
Irpan, A.; Ibarz, J.; Levine, S.; Hadsell, R.; and Bousmalis,
K. 2018. Sim-to-real via sim-to-sim: Data-efficient robotic
grasping via randomized-to-canonical adaptation networks.
CoRR abs/1812.07252.
Kar, A.; Prakash, A.; Liu, M.-Y.; Cameracci, E.; Yuan,
J.; Rusiniak, M.; Acuna, D.; Torralba, A.; and Fidler, S.
2019. Meta-Sim: Learning to Generate Synthetic Datasets.
arXiv:1904.11621 [cs].
Lipson, H.; Bongard, J.; Zykov, V.; and Malone, E. 2006.
Evolutionary Robotics for Legged Machines: From Simula-
tion to Physical Reality. 11–18.
Lomnitz, M.; Hampel-Arias, Z.; Lopatina, N.; and Mejia,
F. A. 2020. A general approach to bridge the reality-gap.
arXiv:2009.01865 [cs].
OpenAI; Akkaya, I.; Andrychowicz, M.; Chociej, M.;
Litwin, M.; McGrew, B.; Petron, A.; Paino, A.; Plappert,
M.; Powell, G.; Ribas, R.; Schneider, J.; Tezak, N.; Tworek,
J.; Welinder, P.; Weng, L.; Yuan, Q.; Zaremba, W.; and
Zhang, L. 2019. Solving Rubik’s Cube with a Robot Hand.
arXiv:1910.07113 [cs, stat].
Park, S.; Kim, J.; and Kim, H. J. 2020. Zero-Shot Transfer
Learning of a Throwing Task via Domain Randomization. In
2020 20th International Conference on Control, Automation
and Systems (ICCAS), 1026–1030. ISSN: 2642-3901.
Plappert, M.; Houthooft, R.; Dhariwal, P.; Sidor, S.; Chen,
R. Y.; Chen, X.; Asfour, T.; Abbeel, P.; and Andrychowicz,
M. 2017. Parameter space noise for exploration. CoRR
abs/1706.01905.
Ranaweera, M., and Mahmoud, Q. H. 2021. Virtual to real-
world transfer learning: A systematic review. Electronics
10(12):1491.
Ranaweera, M., and Mahmoud, Q. H. 2022. Bridging
Reality Gap Between Virtual and Physical Robot through
Domain Randomization and Induced Noise. Proceed-
ings of the Canadian Conference on Artificial Intelligence.
https://caiac.pubpub.org/pub/kzx3gl4e.
Ranaweera, M., and Mahmoud, Q. H. 2023. Bridging the re-
ality gap between virtual and physical environments through
reinforcement learning. IEEE Access 11:19914–19927.
Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; and
Abbeel, P. 2017. Domain Randomization for Transferring
Deep Neural Networks from Simulation to the Real World.
arXiv:1703.06907 [cs].
Wang, M., and Deng, W. 2018. Deep Visual Do-
main Adaptation: A Survey. Neurocomputing 312:135–153.
arXiv:1802.03601 [cs].
Yan, M.; Frosio, I.; Tyree, S.; and Kautz, J. 2017. Sim-to-

Real Transfer of Accurate Grasping with Eye-In-Hand Ob-
servations and Continuous Control.
Zhang, T.; Zhang, K.; Lin, J.; Louie, W.-Y. G.; and Huang,
H. 2022. Sim2real learning of obstacle avoidance for robotic
manipulators in uncertain environments. IEEE Robotics and
Automation Letters 7(1):65–72.


