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Abstract
In this work, we present an end-to-end software-hardware
framework that supports both conventional hardware and
software components and integrates machine learning object
detectors without requiring an additional dedicated graphic
processor unit (GPU). We design our framework to achieve
real-time performance on the robot system, guarantee such
performance on multiple computing devices, and concen-
trate on code reusability. We then utilize transfer learning
strategies for 2D object detection and fuse them into depth
images for 3D depth estimation. Lastly, we test the pro-
posed framework on the Baxter robot with two 7-DOF arms
and a four-wheel mobility base. The results show that the
robot achieves real-time performance while executing other
tasks (map building, localization, navigation, object detec-
tion, arm moving, and grasping) with available hardware
like Intel onboard GPUs on distributed computers. Also, to
comprehensively control, program, and monitor the robot
system, we design and introduce an end-user application.
The source code is available at https://github.com/
tuantdang/perception_framework.

Introduction
Recent years have seen an increasing number of sensors with
different modalities integrated into robots that significantly
enhance robot perception, especially for autonomous service
mobile cobots to perform map building, localization, navi-
gation, object detection, and efficiently grasping of objects
(Hsiao et al. 2009). This requires that besides support for
conventional tasks in robot control and navigation, efficient
techniques to deal with the high computational needs of 2D
and 3D perception must also be deployed on the same sys-
tem. Therefore an efficient software-hardware framework
that enables sensors, communication, perception, naviga-
tion, and motion planning to operate seamlessly is a crucial
part of incremental robotic development.

Previous works focus mainly on only one of the aspects
(Hmedan et al. 2022; Vice et al. 2022), and flexible compo-
nent integration is often omitted. Recently, Robot Operating
System 2 (ROS 2) (Macenski et al. 2022) has improved secu-
rity and reliability, which are critical in a commercial prod-
uct; meanwhile, ROS 1 is still popular in research and indus-
try. Nevertheless, the single failure point of the ROS mas-
ter causes poor performance if multiple sensing modalities
are initiated simultaneously, especially with high bandwidth
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data in LiDAR sensors and RGB-D cameras. Moreover, in-
tegrating state-of-the-art machine learning (ML) with opti-
mal configurations into the ROS software stack can burden
developers as no official framework can handle this task.

Recent works on deploying Deep Neural Networks
(DNN) for safe and secure automation (Biondi et al. 2019;
Nazarova et al. 2021) propose a visionary hypervisor-centric
architecture. Yet, the integration of ML modules is meticu-
lously tailored for specific applications. Also, their complex-
ity worsens when they are deployed on different comput-
ing hardware. Thus, a framework is needed that eliminates
repetitive tasks (training, testing, and detection) and is com-
patible with available hardware on robot systems.

To fill this gap, we build an efficient hardware-software
framework (Fig. 1) that allows simple integration of various
tasks and different hardware versions. More importantly, we
introduce a design that can support multiple state-of-the-art
object detection models and execute them on low-end com-
modity devices in real-time, enabling developers to manage
computing tasks on available hardware in the system with
high flexibility and minimum effort.

In this work, we make the following contributions: (1)
building a complete software-hardware framework for a mo-
bile cobot system that supports map building, localization,
navigation, and motion planning, as well as 2D and 3D per-
ception using state-of-the-art DNNs, (2) verifying the frame-
work feasibility and performance on a real robot system, and
(3) producing a fast method to train multiple object detection
using transfer learning with open-source code.

Related Work
Architecture of Robot Software: Many software architec-
tures have been designed for industrial robot applications
(Rendiniello et al. 2020) to cope with robot-language depen-
dency. While they address this, they limit users’ ability to de-
velop new functions. Specifically, adding sensing modalities
or hardware becomes complicated since developers only ac-
cess services from specific robot software toolkits. Access-
ing services at the OS layer or other libraries is restricted,
preventing developers from accessing many open-source li-
braries. For those reasons, we develop a software framework
that enables developers to flexibly access multiple system
layers and open-source libraries while maintaining simple
integration with most state-of-the-art ML models.
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Figure 1: PerFC software-hardware framework includes hardware layer, OS layer, software framework, and application layer.

Robot Mapping, Localization, Motion, and Navigation:
Previous works on the Baxter robot (Qureshi et al. 2019;
Pinto et al. 2016) concentrate on pick-and-place and motion
planning tasks. Thus, LiDAR sensors are crucial for its map
building and navigation. Moreover, in the past autonomous
mobile service robots with navigation and tracking modules
(Veloso et al. 2015; Bellotto et al. 2008) have been embed-
ded with lightweight, highly customized simultaneous local-
ization and mapping (SLAM) algorithms due to their appli-
cation simplicity (i.e., specific tasks and object tracking in
a known environment). This specialization has often made
these robots unexpandable for developers. Here we intro-
duce an expandable framework and reuse motion planning
supported by Moveit (Chitta et al. 2012) reflecting a well-
studied research area (Ichnowski et al. 2020).
Robot Perception: 2D perception (Liu et al. 2016; Wang et
al. 2022) is widely used in research and industrial applica-
tions, while 3D perception (Mao et al. 2022; Charles et al.
2017) is dominating in autonomous driving vehicles with Li-
DAR sensor support, but limited in everyday object percep-
tion in the robotic domain. One cause of the lack of robotic
research in 3D perception is the absence of diverse labeled
datasets since most of them are not specifically for robotic
applications. In this work, we used a hybrid method of 2D
state-of-the-art detection and 3D estimation methods.

Software-Hardware Framework
The design goals for our software-hardware framework are:
• Reusability and simple integration into systems with

mixed versions of OS and middleware: Linux & ROS.
• State-of-the-art ML models deployed with optimal config-

urations of cameras and processing devices.
Hardware is often compatible with a specific Linux ker-

nel, and a specific ROS distribution is only provided to a
specific Linux version. For this reason, selecting hardware
concurrently with selecting Linux kernels implies narrow-
ing down options in choosing a ROS distribution for devel-
opers. Unfortunately, not all hardware works well with the
same Linux kernel, leading to using various ROS versions
in the same system. Therefore, calling the same APIs from
different ROS distributions may cause backward incompat-
ibility issues due to a slight change in the function proto-
type and the underlying implementation of that supported
API. We adopt message conversion (Kim et al. 2013) be-
tween multiple communication protocols to implement the
message translator between ROS versions.

The driver incompatibility problems can be solved by us-
ing suitable Linux kernels supporting these devices’ drivers.
However, it may raise backward incompatibility between a
certain ROS distribution and APIs from other ROS distri-
butions. Indeed, we encountered these compatibility issues
with the Baxter robot (Ubuntu 14.04 and ROS Indigo) when
executing motion APIs on Linux machines with Ubuntu ver-
sions other than Ubuntu 14.04. Therefore, an OS bridge be-
tween APIs from different ROS distributions is needed.
Framework Description
As illustrated in Fig. 1, we structure the software-hardware
framework as four different layers: hardware layer, OS layer,
software framework, and application layer.

1. Hardware Layer includes distributed computers, sensors
(cameras, tactile sensors, LiDAR sensors), IMU, actua-
tors, and ML accelerators and how they interface with
each other through USB and Ethernet ports.

2. OS Layer contains an OS and device drivers that support
connecting devices at the hardware layer.

3. Software Framework is the core contribution of this
work. It bridges different Linux and ROS distributions,
selects optimal configurations (Dang et al. 2022) of sen-
sors to available hardware to operate in real-time, and sup-
ports basic functionalities of the robot system, including
map building, localization, navigation, motion planning,
and arm movement for grasping. Most of the components
are implemented on top of ROS and OpenVINO.

4. Application Layer allows users to control and monitor
the robot via a GUI, as shown in Fig. 2, which is writ-
ten using the PyQt5 toolkit. Users can manually control
the robot’s arm and joint positions, navigate the mobility
base, and program the robot using Python. Also, native
simulations such as RViz can be used to monitor the robot.

Robot Perception
To perform real-time detection and recognition of a task rel-
evant object set with limited richness compared with those in
open datasets like ImageNet and MS COCO, we adopt two
strategies: transfer learning (Zhuang et al. 2021) and single
state detection (Liu et al. 2016). We first transfer knowledge
from a rich feature domain into a sparse feature domain,
which represents our dataset. In the following we mathemat-
ically model the overall concept of transfer learning and ad-
dress the two questions: (i) what to be transferred between
models and (ii) how to transfer that knowledge.
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Figure 2: Graphic User Interface (GUI) provides robot teaching, monitoring, navigation, and programming.

Transfer Learning Definition: A domain is defined by D =
{X , P (X)} where X = {x1, x2, ..} ∈ X with X represent-
ing the feature space, and P (X) its marginal distribution.
Let T = {Y, P (Y |X)} be the learning task that learns from
training pairs (xi, yi) with yi ∈ Y in the label space. The ob-
jective of transfer learning is to improve the predictive func-
tion P (Yt|Xt) in target domain Dt = {Xt, P (Xt)} using
knowledge in the source domain Ds = {Xs, P (Xs)} and
source learning task Ts = {Ys, P (Ys|Xs)}. Let P (Y |X) =
f(X,β) where f is the task function. The minimizer for the
trainable parameters, β, is written in terms of the loss func-
tion, L(·, ·), and the task function, f , as follows:

argminβ

∑
X

L [f (X,β) , Y ] (1)

With respect to DL and computer vision concepts, we di-
vide the task function into two components: feature extrac-
tion (backbone) and detection (head), such that f(X,β) =
(fD ◦ fF )(X,βD, βF ) where fD and fF are task function
for detection and feature extraction, respectively, and βD,
βF are parameters for detection and feature extraction, re-
spectively. The analogous minimizer for βF

t and βD
t is:

argmin{βD
t ,βF

t } =
∑
Xt

L
[(

fD
t ◦ fF

t

)(
Xt, β

D
t , βF

t

)
, Yt

]
(2)

Since features in the source domain are more generalized
and sufficiently cover our target domain, we assume that the
feature spaces in the source and target domain are similar.
However, our target labels are different (Ys ̸= Yt) since
we retrain the models with in-lab objects (cone, cube, and
sphere). Here, we utilize two transfer learning strategies: (1)
instance transfer, where the marginal distribution of source
features is different from that of target features, and (2) fea-
ture representation transfer, where we fit the source feature
domain into the target feature domain.

To implement instance transfer, we transfer
(
βD
s , βF

s

)
→(

βD
t , βF

t

)
, where βD

s and βF
s are resultants from source

task functions, and fine-tune
(
βD
t , βF

t

)
using Eq. 2. For fea-

ture representation transfer, we separate the source task into
two components (backbone and head) and transfer the en-
tire source task’s backbone into the target task. Specifically,
we transfer βF

s → βF
t , and train βD

t using Eq. 2. We also
train with randomly initialized weights as a third strategy for
accuracy comparisons in the Evaluation section.
Depth Estimation: We obtain depth images and RGB im-
ages simultaneously from an Intel RealSense D435i camera,

which handles the depth image creation process, including
camera calibration, image rectification, and disparity com-
putation. As the whole predicted bounding box also covers
non-detected objects, averaging the depth of the bounding
box would incur estimation errors. We therefore down-scale
the bounding box around its center and calculate the esti-
mated depth of the object, D, by averaging depth values of
each pixel in the scaled region as follows:

D = (w × h)−1 ·

 x0+w/2∑
i=x0−w/2

y0+h/2∑
j=y0−h/2

d(i, j)

 (3)

where d(i, j) returns the depth value at pixel (i, j), w and h
indicate width and height of the scaled region, respectively,
and (x0, y0) are center coordinates of the bounding box.

Evaluation & Demonstration
We evaluate the add-on components for system complete-
ness, such as 2D and 3D vision, hardware configurations,
and their performance. Other components such as mapping,
localization, navigation, and planning are well-supported
ROS packages: 2D Navigation Stack and MoveIt!.

Data Preparation
To verify the correctness of our proposed method, we first
collect data from three in-lab objects: cones, cubes, and
spheres. We then label them with annotations in Pascal VOC
format and split our custom dataset into three sets: training
set (70%), validation set (20%), and test set (10%).

Evaluation Metrics
To evaluate how well the transfer learning strategies perform
during training stages, we calculate the validation loss, aver-
age precision (AP), and mean average precision (mAP) for
MobileNetv1 (Howard et al. 2017), MobileNetv2 (Sandler
et al. 2018), SqueezeNet (Iandola et al. 2016), VGG-16 (Si-
monyan et al. 2014), and YOLOv7 (Wang et al. 2022). We
train each model with three different strategies. Data aug-
mentation is also used in a preprocessing procedure to enrich
the training dataset, including rotation, cropping, and color
distortion. We also evaluate the detection performance on
test sets using AP and mAP calculated based on multiple in-
tersections over union (IoU) thresholds. The IoU thresholds
range from 0.01 to 1.00 with a step of 0.01. After evaluat-
ing detection proposals on all IoU thresholds, we calculate
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Figure 4: Estimated depth measurements compared to
ground truth distances from kinematic transformation.

the AP and mAP for each model: mAP = (
∑c

k=1 APk)/c,
where c is the number of classes, as shown in Fig. 3.
Results
Test Performance: We test detectors on commodity com-
puters using Intel processors (i.e., Core i3-3217U and HD
Graphics 4000). The fine-tuning strategy gives the high-
est accuracy, while the feature extraction strategy gives the
best result except for YOLOv7 (Fig. 3). The feature ex-
traction strategy performs better than the randomly initial-
ized weights strategy regarding YOLOv7. When detecting a
sphere, there is a slight difference in the precision between
feature extraction transfer and fine-tuning transfer strate-
gies. Fig. 3 also reveals that the source feature extraction
in YOLOv7 works well with objects in our target domain,
while other models fail to extract features from objects in our
target domain. Lastly, YOLOv7 achieves the highest preci-
sion at the maximum IoU threshold, while the feature extrac-
tion transfer learning strategy does not work for SqueezeNet.

Network #Params CPU Intel GPU VPU
MobileNetv1 6,883,296 14.87 ± 0.12 19.37 ± 0.23 11.74 ± 0.07
MobileNetv2 3,087,328 17.35 ± 0.19 19.96 ± 0.22 10.15 ± 0.05
SqueezeNet 1,639,648 18.35 ± 0.22 22.53 ± 0.28 14.82 ± 0.11

VGG-16 24,013,744 2.49 ± 0.01 5.15 ± 0.02 2.22 ± 0.005
YOLOv7-tiny 6,652,669 12.59 ± 0.07 21.47 ± 0.22 13.67 ± 0.08

Table 1: Detection performance of models in frames per
second (fps) on different hardware configurations (imple-
mented using OpenVINO) with a confidence level of 95%.

Hardware Configuration: We run each detection model on
CPU, GPU (Intel), and VPU (Intel NCS2) for n = 300
samples and calculate confidence intervals: CI = fps ±
zα/2 · (σ/

√
n), where fps is mean frame rate (fps), σ is

the standard deviation, and z is the confidence level value
of α = 95%. The test is implemented using OpenVINO,
which enables ML models to run on Intel onboard GPU. We
also test on a VPU interfacing via USB. The onboard GPU
outperforms other computing devices in terms of frame rate.

Figure 5: Simultaneous object detection using YOLOv7-
tiny and depth estimation on Intel RS D435i camera.

MoblileNetv2 outperforms YOLOv7 when being tested on
the CPU but underperforms YOLOv7 on the onboard GPU
and VPU. Lastly, the VPU maintains the most stable perfor-
mance as measured by the variance (Table 1).
Depth Estimation: We use techniques described in Eq. 3
to estimate depth of detected objects (Fig. 5). To generate
ground truth distances, we teach the robot to grasp and hold
an object in its gripper and then calculate the distance be-
tween the robot and that object using the kinematic transfor-
mation. Fig. 4 shows that the minimum error is 1.00 cm, the
maximum error is 3.00 cm, and the mean error is 1.75 cm.
Demonstration
The demonstration video includes two scenarios: (1) the
robot grasps an object while estimating the depth of the de-
tected object, and (2) the robot performs SLAM while fol-
lowing a person using a face recognition module running on
the Intel NCS2: https://youtu.be/q4oz9Rixbzs.

Conclusions & Future Works
This work proposes a software-hardware framework for mo-
bile cobots focusing on building and optimizing 2D and 3D
perception with different commodity hardware. We build the
framework on top of multiple ROS distributions, Linux ver-
sions, and OpenVINO. For design purposes, the framework
can support multiple hardware and find the optimal configu-
rations for input devices/sensors and computing devices. To
address task specific object sets, we introduce transfer learn-
ing strategies and evaluate them on different computing de-
vices. We then tested our framework on a 7-DOF two-arm
Baxter robot with 2D detection and 3D depth estimation.
An end-user application is also introduced to facilitate soft-
ware reusability. We reserve advanced techniques in robot
3D perception, such as segmentation, detection, and recog-
nition, from a point cloud perspective for future work.
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