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Abstract
The recently introduced notion of an inductive inference op-
erator captures the process of completing a given conditional
belief base to an inference relation. System W is such an in-
ductive inference operator exhibiting some notable properties
like extending rational closure and satisfying syntax splitting
for inference from conditional belief bases. However, the def-
inition of system W and the shown results regarding its prop-
erties only take belief bases into account that satisfy a strong
notion of consistency where no worlds may be completely
infeasible. In this paper, we lift this limitation and extend the
definition of system W to also cover belief bases that force
some worlds to be infeasible. We establish the position of the
extended system W within a map of other inductive inference
operators being able to deal with the presence of infeasible
worlds, including system Z and multipreference closure. For
placing lexicographic inference in this map, we show that the
definition of lexicographic inference must be slightly mod-
ified so that it is an inductive inference operator satisfying
direct inference even when there are worlds that are infeasi-
ble. Furthermore, we show that, like its unextended version,
the extended system W enjoys other desirable properties such
as still fully complying with syntax splitting.

1 Introduction
Completing a conditional belief base to an inference rela-
tion is a form of inductive inference; this process can be
formally captured by inductive inference operators as intro-
duced in (Kern-Isberner, Beierle, and Brewka 2020). One
such inductive inference operator is system W (Komo and
Beierle 2022). System W is an extension of both system
Z (Pearl 1990) (or equivalently rational closure (Lehmann
1989)) and skeptical c-inference (Beierle et al. 2018; 2021),
and it was shown to be extended by lexicographic inference
(Lehmann 1995) in (Haldimann and Beierle 2022b). Addi-
tionally, system W satisfies syntax splitting for inductive in-
ference operators from (Kern-Isberner, Beierle, and Brewka
2020), see (Haldimann and Beierle 2022b).

However, the definition of system W as well as the men-
tioned results only consider belief bases that satisfy a strong
notion of consistency: the belief base may not require a
world to be completely infeasible (the notion called strong
consistency in this paper coincides with the notion of con-
sistency in (Goldszmidt and Pearl 1996)). For instance,
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any belief base containing both the conditionals (B|A) and
(¬B|A) does not satisfy this notion of consistency as any
world satisfying A would need to be infeasible. This is an
unfortunate limitation because other approaches to infer-
ence, such as rational closure, lexicographic inference, or
multipreference closure also cover belief bases that do not
satisfy this strong notion of consistence. Especially in prac-
tical applications, belief bases may not always be carefully
designed to be strongly consistent, but are possibly assem-
bled from different, disagreeing sources or based on imper-
fect observations.

In this paper we generalize the definition of system W
to system W+ that also covers belief bases that force some
worlds to be infeasible. Then we re-establish results shown
for system W for the extended notion of system W. We
show that system W+ extends rational closure and coincides
with multipreference closure (MP-closure) (Giordano and
Gliozzi 2021) that has been proposed for reasoning in de-
scription logics with exceptions. We note that the definition
of lexicographic inference has to be slightly modified for it
to be an inductive inference operation; and we then show
that the extended system W+ is captured by lexicographic
inference. Furthermore, we extend the syntax spliting pos-
tulates from (Kern-Isberner, Beierle, and Brewka 2020) to
also cover weakly consistent belief bases and show that sys-
tem W+ fully complies with syntax splitting.

In summary the main contributions of this paper are:

• Contrasting juxaposition of the notions of weak and
strong consistency for belief bases and systematic cov-
erage of both notions.

• Extension of system W for weakly consistent belief bases.

• Placement of system W+ in a map of inductive inference
operators.

• Syntax splitting postulates for inference also from weakly
consistent belief bases.

• Showing that system W+ satisfies syntax splitting.

After recalling conditional logic in Sec. 2 and inductive
inference in Sec. 3, we develop the extended system W+

in Sec. 4. We show the connections of system W+ to other
inductive inference operators in Sec. 5, and show that ex-
tended system W satisfies syntax splitting in Sec. 6. Sec. 7
concludes and points out future work.



2 Conditional Logic
A (propositional) signature is a finite set Σ of propositional
variables. Assuming an underlying signature Σ, we denote
the resulting propositional language by LΣ. Usually, we de-
note elements of signatures with lowercase letters a, b, c, . . .
and formulas with uppercase letters A,B,C, . . .. We may
denote a conjunction A ∧ B by AB and a negation ¬A by
A for brevity of notation. The set of interpretations over the
underlying signature is denoted as ΩΣ. Interpretations are
also called worlds and ΩΣ the universe. An interpretation
ω ∈ ΩΣ is a model of a formula A ∈ L if A holds in ω, de-
noted as ω |= A. The set of models of a formula (over a sig-
nature Σ) is denoted as Mod Σ(A) = {ω ∈ ΩΣ | ω |= A} or
short as ΩA. The Σ in ΩΣ, LΣ and Mod Σ(A) can be omitted
if the signature is clear from the context or if the underlying
signature is not relevant. A formula A entails a formula B if
ΩA ⊆ ΩB . By slight abuse of notation we sometimes inter-
pret worlds as the corresponding complete conjunction of all
elements in the signature in either positive or negated form.

A conditional (B|A) connects two formulas A,B and
represents the rule “If A then usually B”, where A is called
the antecedent and B the consequent of the conditonal. The
conditional language is denoted as (L|L)Σ = {(B|A) |
A,B ∈ LΣ}. A finite set of conditionals is called a be-
lief base. We use a three-valued semantics of conditionals
in this paper (de Finetti 1937). For a world ω a conditional
(B|A) is either verified by ω if ω |= AB, falsified by ω if
ω |= AB, or not applicable to ω if ω |= A. Popular mod-
els for belief bases are ranking functions (also called ordi-
nal conditional functions, OCF) (Spohn 1988) and total pre-
orders (TPO) on ΩΣ (Darwiche and Pearl 1997). An OCF
κ : ΩΣ → N0 ∪ {∞} maps worlds to a rank such that at
least one world has rank 0, i.e., κ−1(0) ̸= ∅. The intuition is
that worlds with lower ranks are more plausible than worlds
with higher ranks; worlds with rank ∞ are considered infea-
sible. OCFs are lifted to formulas by mapping a formula A
to the smallest rank of a model of A, or to ∞ if A has no
models. An OCF κ is a model of a conditional (B|A), de-
noted as κ |= (B|A), if κ(A) = ∞ or if κ(AB) < κ(AB);
κ is a model of a belief base ∆, denoted as κ |= ∆, if it is a
model of every conditional in ∆.

Note that there are different definitions of consistency in
the literature. To distinguish two different notions of consis-
tency that both occur in this paper we call one notion of con-
sistency strong consistency and the other notion weak con-
sistency.
Definition 1. A belief base ∆ is called strongly consistent if
there exists at least one ranking function κ with κ |= ∆ and
κ−1(∞) = ∅. A belief base ∆ is weakly consistent if there
is at least one ranking function κ with κ |= ∆.

Thus, ∆ is strongly consistent if there is at least one
ranking function modelling ∆ that considers all worlds
feasible. This notion of consistency is used in many ap-
proaches, e.g., (Goldszmidt and Pearl 1996). The notion of
weak consistency is equivalent to the more relaxed notion
of consistency that is used in, e.g., (Giordano et al. 2015;
Casini, Meyer, and Varzinczak 2019). Trivially, strong con-
sistency implies weak consistency.

3 Inductive Inference
The conditional beliefs of an agent are formally captured by
a binary relation |∼ on propositional formulas with A |∼B
representing that A (defeasibly) entails B; this relation is
called inference or entailment relation.

Different sets of properties for inference relations have
been suggested in literature; often the set of postulates
called system P is considered as minimal requirement for
inference relations. Inference relations satisfying system P
are called preferential inference relations (Adams 1975;
Kraus, Lehmann, and Magidor 1990).

Besides ranking functions, preferential models are an-
other class of models for conditionals that are useful in the
context of preferential inference relations.

Definition 2 (preferential model (Kraus, Lehmann, and
Magidor 1990)). A preferential model is a triple M =
⟨S, l,≺⟩ consisting of a set S of states, a function l : S → Ω
mapping states to interpretations, and a strict partial order
≺ on S. For A ∈ L and s ∈ S we denote l(s) |= A by
s A; and we define JAKM = {s ∈ S | s A}.

Note that the definition of preferential models in (Kraus,
Lehmann, and Magidor 1990) includes a smothness condi-
tion. As this condition is automatically satisfied for finite
sets of interpretations as considered in this paper, it is omit-
ted in Definition 2. A preferential model M = ⟨S, l,≺⟩ in-
duces an inference relation |∼M by

A |∼M B iff min(JAKM,≺) ⊆ JBKM. (1)

One remarkable result from (Kraus, Lehmann, and Magidor
1990) states that preferential models characterize preferen-
tial entailment relations: Every inference relation |∼M in-
duced by a preferential model M is preferential, and for ev-
ery preferential inference relation |∼ there is a preferential
model M with |∼M = |∼ .

Inductive inference is the process of completing a given
belief base to an inference relation. To formally capture this
we use the concept of inductive inference operators.

Definition 3 (inductive inference operator (Kern-Isberner,
Beierle, and Brewka 2020)). An inductive inference oper-
ator is a mapping C : ∆ 7→ |∼∆ that maps each belief base
to an inference relation such that direct inference (DI) and
trivial vacuity (TV) are fulfilled, i.e.,

(DI) if (B|A) ∈ ∆ then A |∼∆ B, and
(TV) if ∆ = ∅ and A |∼∆ B then A |= B.

An inductive inference operator C is a preferential in-
ductive inference operator if every inference relation |∼∆ in
the image of C satisfies system P. Using preferential models
we can define p-entailment (Kraus, Lehmann, and Magidor
1990) as a preferential inductive inference operator.

Definition 4 (p-entailment). Let ∆ be a belief base and
A,B ∈ L. A p-entails B w.r.t. ∆, denoted A |∼p

∆ B, if
A |∼M B for any preferential model M of ∆. P-entailment
is the inductive inference operator mapping each ∆ to |∼p

∆.

Weak consistency can be characterized by p-entailment.

Proposition 1. ∆ is weakly consistent iff ⊤ |̸∼p
∆ ⊥.



A preferential model M is called canonical (for a belief
base ∆) if for every ω ∈ ΩΣ with ω |̸∼p

∆ ⊥ it holds that
JωKM ̸= ∅.

The inference relation |∼κ induced by a ranking function
κ is defined by

A |∼κ B iff κ(A) = ∞ or κ(AB) < κ(AB). (2)

Note that the condition κ(A) = ∞ in (2) ensures that system
P’s axiom (Reflexivity) is satisfied for A ≡ ⊥. System Z is
an inductive inference operator that is defined based on the
Z-partition (Pearl 1990). Here we use an extended version
of system Z that also covers belief bases that are weakly
consistent and that was shown to be equivalent to rational
closure (Lehmann 1989) in (Goldszmidt and Pearl 1990).
Definition 5 ((extended) Z-partition). A conditional (B|A)
is tolerated by ∆ = {(Bi|Ai) | i = 1, . . . , n} if there
exists a world ω ∈ Ω such that ω verifies (B|A) and ω
does not falsify any conditional in ∆, i.e., ω |= AB and
ω |=

∧n
i=1(Ai ∨Bi).

The (extended) Z-partition EZP(∆) = (∆0, . . . ,∆k,
∆∞) of a belief base ∆ is the ordered partition of ∆ that is
constructed by letting ∆i be the inclusion maximal subset of⋃n

j=i ∆
j that is tolerated by

⋃n
j=i ∆

j until ∆k+1 = ∅. The
set ∆∞ is the remaining set of conditionals that contains no
conditional which is tolerated by ∆∞.

It is well-known that the construction of EZP(∆) is suc-
cessful with ∆∞ = ∅ iff ∆ is strongly consistent, and be-
cause the ∆i are chosen inclusion-maximal, the Z-partition
is unique (Pearl 1990). Also, it holds that EZP(∆) has a
∆0 ̸= ∅ iff ∆ is weakly consistent.
Definition 6 ((extended) system Z). Let ∆ be a belief base
with EZP(∆) = (∆0, . . . ,∆k,∆∞). If ∆ is not weakly
consistent, then let A |∼z

∆ B for any A,B ∈ L.
Otherwise, the (extended) Z-ranking function κz

∆ is de-
fined as follows: For ω ∈ Ω, if one of the conditionals in
∆∞ is applicable to ω define κz

∆(ω) = ∞. If not, let ∆j be
the last partition in EZP(∆) that contains a conditional fal-
sified by ω. Then let κz

∆(ω) = j+1. If ω does not falsify any
conditional in ∆, then let κz

∆(ω) = 0. (Extended) system Z
maps ∆ to the inference relation |∼z

∆ induced by κz
∆.

For strongly consistent belief bases the extended sys-
tem Z coincides with system Z as defined in (Pearl 1990;
Goldszmidt and Pearl 1996). Note that for any belief base ∆
the induced κz

∆ is a model of ∆.
Lemma 1. For a weakly consistent belief base ∆ and a for-
mula A we have κz

∆(A) = ∞ iff A |∼p
∆ ⊥.

Lemma 2. Let ∆ be a belief base with EZP(∆) =
(∆0, . . . ,∆k,∆∞). A world ω ∈ Ω falsifies a conditional
in ∆∞ iff it is applicable for a conditional in ∆∞.

4 Extending System W
The definition of system W in (Komo and Beierle 2020;
2022) utilizes a strict partial order (SPO) called preferred
structure on worlds on the set of all worlds Ω. To accommo-
date infeasible worlds, here we allow the preferred structure
on worlds to order only a subset of Ω. Thus, we will use an

extended notion of SPO model that is a strict partial order
over a set of feasible worlds Ωfeas ⊆ ΩΣ. For an SPO model
≺ over a set Ωfeas , a world ω is feasible w.r.t. ≺ if ω ∈ Ωfeas ,
and a formula F is feasible w.r.t. ≺ if at least one model of F
is feasible. The following definition of the preferred struc-
tures on worlds is adapted from (Komo and Beierle 2022) to
use this extended notion of SPO model instead of complete
SPOs over Ω.
Definition 7 (ξj , ξ, preferred structure <w+

∆ on worlds).
Let ∆ be a belief base with the Z-partition EZP(∆) =
(∆0, . . . ,∆k,∆∞). For j = 0, . . . , k,∞ the functions ξj

and ξ are the functions mapping worlds to the set of falsi-
fied conditionals in ∆j or ∆, respectively, given by

ξj(ω) := {(Bi|Ai) ∈ ∆j | ω |= AiBi}
ξ(ω) := {(Bi|Ai) ∈ ∆ | ω |= AiBi}.

Let Ωfeas = Ω\{ω | ξ∞(ω) ̸= ∅}. The preferred structure
on worlds is the relation <w+

∆ ⊆ Ωfeas × Ωfeas defined by

ω <w+
∆ ω′ iff there exists an m ∈ {0 , . . . , k} such that

ξi(ω) = ξi(ω′) ∀i ∈ {m+ 1 , . . . , k} and

ξm(ω) ⫋ ξm(ω′) .

Every belief base ∆ induces a preferred structure on
worlds <w+

∆ . We have that ω <w+
∆ ω′ if and only if ω falsi-

fies strictly fewer conditionals than ω′ in the partition with
the highest index m where the conditionals falsified by ω
and ω′ differ. The relation <w+

∆ is an SPO model over Ωfeas .
A world ω is feasible for <w+

∆ iff ξ∞(ω) = ∅.

Definition 8 (system W+, |∼w+
∆ (adapted from (Komo and

Beierle 2022))). Let ∆ be a belief base and A,B ∈ L. Then
B is a system-W+ inference from A, denoted A |∼w+

∆ B, if
for every feasible ω′ ∈ ΩAB there is a feasible ω ∈ ΩAB

such that ω <w+
∆ ω′.

For strongly consistent belief bases this definition of sys-
tem W+ coincides with the definition of system W given in
(Komo and Beierle 2022).
Proposition 2. Let ∆ be a strongly consistent belief base
and A,B ∈ L. We have A |∼w

∆ B iff A |∼w+
∆ B.

Just as for system W we can represent every infer-
ence relation induced by system W+ with a preferential
model (see (Haldimann and Beierle 2022a)). For a belief
base ∆ the system-W+ preferential model is Mw(∆) =
⟨Ωfeas , id, <w+

∆ ⟩. The inference relation induced by Mw(∆)
coincides with system-W+ inference from ∆:

A |∼Mw(∆)B iff A |∼w+
∆ B.

This implies that system W+ is a preferential inductive
inference operator. Moreover, Mw(∆) is also a canonical
model.
Proposition 3. The system-W+ preferential model Mw(∆)
is a canonical model of ∆.

In (Haldimann and Beierle 2022b) it was shown that sys-
tem W satisfies weak rational monotony. This also holds for
system W+.



(adapted) lexicographic inference

system W+ MP-closure

(extended) system Z

p-entailment

Figure 1: Overview over relationships among inductive in-
ference operators. An arrow A ↪→ B indicates that inference
operator A is captured and strictly extended by B.

Proposition 4. System W+ fulfils weak rational monotony
(WRM), i.e., for any A,B ∈ L it holds that ⊤ |∼B and
⊤ |̸∼A imply A |∼B.

System W and therefore also system W+ do not satisfy ra-
tional monotony (RM) or semi monotony (SM) (Haldimann
and Beierle 2022b). Cautious monotony (CM) is satisfied as
system W+ is a preferential inductive inference operator.

5 System W+ in Relation to Other Inductive
Inference Operators

Previous papers connected system W (as defined in (Komo
and Beierle 2022)) to other inductive inference operators:
System W captures system Z (Komo and Beierle 2022), is
captured by lexicographic inference (Haldimann and Beierle
2022b), and coincides with MP-closure (Haldimann and
Beierle 2022a). In this section, we show that the system W+

is also correspondingly connected to (adapted versions of)
these inference relations. Figure 1 gives an overview over
the relations among the inference operators.

5.1 Relation to (Extended) System Z
Just as the original version, system W+ also captures (ex-
tended) system Z and thus rational closure.
Proposition 5. System W+ captures (extended) system Z,
i.e., for a belief base ∆ and A,B ∈ L it holds that A |∼z

∆ B

implies A |∼w+
∆ B.

Proof. Observing the definition of κz
∆ and <w+

∆ we see that
for any ω, ω′ ∈ Ω

• κz
∆(ω) = ∞ implies that ω is not feasible for <w+

∆ and
• κz

∆(ω) < κz
∆(ω

′) implies ω <w+
∆ ω′.

If A |∼z
∆ B then either κz

∆(A) = ∞ or κz
∆(AB) <

κz
∆(AB). In the first case, A has no feasible model in <w+

∆ ,
and therefore AB has no feasible model in <w+

∆ . Trivially,
A |∼w+

∆ B. In the second case, there is an ω ∈ ΩAB with a
smaller z-rank than any ω′ ∈ ΩAB . This implies that for any
ω′ ∈ ΩAB we have ω <w+

∆ ω′. Therefore, A |∼w+
∆ B.

5.2 Relation to Lexicographic Inference
The definition of lexicographic inference is based on the or-
dering <lex

∆ induced by every belief base ∆. Here we use
the notation used in (Komo and Beierle 2022) and in Defini-
tion 7.

Definition 9 (<lex
∆ , lexicographic inference (Lehmann

1995)). The lexicographic ordering on vectors in Nn is
defined by (v1, . . . , vn) <lex (w1, . . . , wn) iff there is a
k ∈ {1, . . . , n} such that vk < wk and vj = wj for
j = k + 1, . . . , n.

The binary relation ⩽lex
∆ ⊆ Ω × Ω on worlds induced

by a belief base ∆ with EZP(∆) = (∆0, . . . ,∆k,∆∞) is
defined by, for any ω, ω′ ∈ Ω,

ω ⩽lex
∆ ω′ iff (|ξ1∆(ω)|, . . . , |ξk∆(ω)|, |ξ∞∆ (ω)|)

⩽lex (|ξ1∆(ω′)|, . . . , |ξk∆(ω′)|, |ξ∞∆ (ω′)|).

Lexicographic inference |∼lex
∆ is induced by <lex

∆ : For for-
mulas F,G,A,B, we have:

F <lex
∆ G iff min(ΩF , <

lex
∆ ) <lex

∆ min(ΩG, <
lex
∆ )

A |∼lex
∆ B iff AB <lex

∆ AB

Note that lexicographic inference as defined by (Lehmann
1995) and presented in Definition 9 does not comply with
(DI) and therefore is not an inductive inference operator if
we also allow belief bases that are not strongly consistent.
Proposition 6. Lexicographic inference violates (DI) for
some weakly consistent belief bases.

Proof. Towards a contradiction, assume that lexicographic
inference satisfies (DI). Consider the belief base ∆ =

{(b|a), (b|a)}. Because of (DI), we have a |∼lex
∆ b and

a |∼lex
∆ b. Using the definition of |∼lex

∆ , we have that
a |∼lex

∆ b implies ab <lex
∆ ab, and a |∼lex

∆ b implies
ab <lex

∆ ab. This is a contradiction because ⩽lex
∆ is a total

preorder.

The following slightly adapted version of lexicographic
inference does comply with (DI) and is an inductive infer-
ence operator.
Definition 10 (adapted lexicographic inference). For formu-
las A,B, adapted lexicographic inference |∼alex

∆ is defined
as

A |∼alex
∆ B iff ξ∞(ω) ̸= ∅ for all ω ∈ ΩA, or

A |∼lex
∆ B

Proposition 7. Let ∆ be a belief base and A ∈ L. If A |̸∼p
∆

⊥, then A |∼lex
∆ B iff A |∼alex

∆ B.
Also, for any strongly consistent belief base ∆ lexico-

graphic inference and adapted lexicographic inference co-
incide as we then have A |̸∼p

∆ ⊥ for any A ̸≡ ⊥.
Now we are ready to connect (adapted) lexicographic in-

ference and system W+.
Lemma 3. Let ∆ be a belief base and ω, ω′ be worlds. Then
ω <w+

∆ ω′ implies ω <lex
∆ ω′.

Using Lemma 3, we can show that every system-W+ en-
tailment is also an entailment for adapted lexicographic in-
ference.
Proposition 8. Adapted lexicographic inference captures
system W+, i.e., for a belief base ∆ and formulas A,B it
holds that if A |∼w+

∆ B then A |∼alex
∆ B.



5.3 Relation to Multipreference Closure
In (Haldimann and Beierle 2022a) it was shown that sys-
tem W coincides with multipreference closure (MP-closure)
(Giordano and Gliozzi 2021) for strongly consistent belief
bases. Now we extend this result and show that system W+

and MP-closure coincide for all belief bases.
Let us first recall the definition of MP-closure.

Definition 11 (exceptionality of a formula/conditional
(Lehmann and Magidor 1992)). A formula A ∈ LΣ is ex-
ceptional for a belief base ∆ if ⊤ |∼ p

∆¬A. A conditional
(B|A) is exceptional for ∆ if A is exceptional for ∆. The
set of exceptional conditionals for ∆ is denoted as E(∆).

Definition 12 (rank of a formula/conditional (Lehmann and
Magidor 1992), order of a belief base (Giordano and Gliozzi
2021)). Let ∆ be belief base. We define a sequence of sets
C0, C1, . . . by C0 = ∆ and Ci = E(Ci−1) for i > 0. The
least finite l with Cl = Cl+1 is called the order of ∆.

The rank of a formula A (with respect to ∆) is the smallest
i such that A is not exceptional for Ci. If A is exceptional
for all Ci it has rank ∞. The rank of a conditional is the
rank of its antecedence.

Note that a belief base ∆ with order l does not contain
conditionals with rank l. For l > 0 the highest finite rank of
a conditional in ∆ is l − 1.

Definition 13 (MP-seriousness ordering ≺MP
∆ (Giordano

and Gliozzi 2021)). Let ∆ be a belief base with order l.
For X ⊆ ∆ let (X∞, Xl, . . . , X0)X be a tuple of sets such
that Xi is the set of conditionals in X with rank i.
For two tuples (Xn, . . . , X1) and (Yn, . . . , Y1) we define

(X1) ≪ (Y1) iff X1 ⊊ Y1

(Xi, . . . , X1) ≪ (Yi, . . . , Y1) iff Xi ⊊ Yi or
Xi = Yi and (Xi−1 ≪ Yi−1).

The MP-seriousness ordering ≺MP
∆ on subsets of ∆ is de-

fined by

X ≺MP
∆ Y iff (X∞, X l, . . . , X0)X ≪ (Y ∞, Y l, . . . , Y 0)Y .

MP-closure is defined in terms of MP-bases in (Giordano
and Gliozzi 2021).

Definition 14 (MP-basis (Giordano and Gliozzi 2021)). Let
∆ be a belief base. Let A ∈ LΣ be a formula with finite rank
with respect to ∆. A set D ⊆ ∆ is an MP-basis for A if

• A is consistent with D̃ = {B → C | (C|B) ∈ D}, and
• D is maximal with respect to the MP-seriousness ordering

among the subsets of ∆ with this property.

Definition 15 (MP-closure (Giordano and Gliozzi 2021)).
Let ∆ be a belief base. A |∼MP

∆ B is in the MP-closure
MP(∆) of ∆ if for all MP-bases D of A it holds that
D̃ ∪ {A} |= B.

This definition for MP-closure resembles the definition of
lexicographic inference in (Lehmann 1995); but MP-closure
utilizes the MP-ordering ≺MP

∆ instead of the seriousness or-
dering defined by Lehmann, and MP-bases only exist for for-
mulas with finite rank.

MP-closure can be characterized utilizing certain prefer-
ential models called MP-models. These are defined using the
following functor F∆.
Definition 16 (functor F∆ (Giordano and Gliozzi 2021)).
Let ∆ be a belief base. The functor F∆ is a mapping from
minimal1 canonical ranked models of ∆ to preferential mod-
els defined by

F∆(⟨S, l,≺⟩) = ⟨S, l,≺F ⟩
with s ≺F t iff ξ(s) ≺MP

∆ ξ(t) for s, t ∈ S.
F∆ is extended to sets P of minimal canonical ranked

models of ∆ by F∆(P ) = {F∆(M) | M ∈ P}.
Definition 17 (MP-model (Giordano and Gliozzi 2021)).
Let ∆ be a belief base. An MP-model of ∆ is any model
in F∆(MinRC (∆)).
Proposition 9 (MP-closure representation theorem (Gior-
dano and Gliozzi 2021)). Let ∆ be a belief base. A con-
ditional (B|A) is accepted by every MP-model of ∆ iff
A |∼MP

∆ B.
The MP-closure representation uses skeptical inference

over all MP-models of a belief base. Giordano and Gliozzi
(Giordano and Gliozzi 2021) showed that all MP-models
induce the same inference relation, i.e., for any two MP-
models N ,N ′ of a belief base ∆ and any A,B ∈ LΣ we
have A |∼NB iff A |∼N ′B.

The proof that system W+ and MP-closure coincide uses
the characterization of MP-closure with MP-models.
Proposition 10. For a belief base ∆ the system-W+ prefer-
ential model Mw(∆) is an MP-model of ∆.

Using this, we can show that the MP-closure of ∆ coin-
cides with the inference relation induced by Mw(∆). This
entails that the MP-closure of ∆ coincides with system-W+

inference from ∆.
Proposition 11. For every consistent belief base ∆ and for-
mulas A,B ∈ LΣ it holds that:

• A |∼MP
∆ B iff A |∼Mw(∆)B.

• A |∼MP
∆ B iff A |∼w+

∆ B.

6 System W+ Satisfies Syntax Splitting
Initially defined for belief sets (Parikh 1999), the notion of
syntax splitting was transferred to many other belief repre-
sentation frameworks, including belief bases. Kern-Isberner,
Beierle, and Brewka formulated postulates for inductive in-
ference operators, (Rel) and (Ind), that guide the behaviour
of the inference for belief bases with syntax splitting (Kern-
Isberner, Beierle, and Brewka 2020). The postulate (Syn-
Split) is the combination of (Rel) and (Ind). In this section,
we will first adapt these syntax splitting postulates. Then we
will formulate properties of SPO-based inductive inference
operators that imply the satisfaction of the syntax splitting
postulates.

1This means minimality w.r.t. <FIMS , an SPO on ranked mod-
els. The definition of <FIMS can be found in (Giordano and Gliozzi
2021); here it is only important that (S, l,≺) <FIMS (S′, l′,≺′)
implies that S = S′ and l = l′.



Definition 18 (syntax splitting for belief bases (adapted
from (Kern-Isberner, Beierle, and Brewka 2020))). Let
∆ be a belief base over a signature Σ. A partitioning
{Σ1, . . . ,Σn} of Σ is a syntax splitting for ∆ if there is a
partitioning {∆1, . . . ,∆n} of ∆ such that ∆i ⊆ (L|L)Σi

for every i = 1, . . . , n.

In this paper, we focus on syntax splittings {Σ1,Σ2} of
∆ with size two. A syntax splitting {Σ1,Σ2} with the cor-
responding partition {∆1,∆2} of ∆ is denoted as ∆ =
∆1

⋃
Σ1,Σ2

∆2. Results for belief bases with syntax splittings

in more than two parts can be obtained by iteratively apply-
ing the postulates and constructions presented here.

While the syntax splitting postulates in (Kern-Isberner,
Beierle, and Brewka 2020) take only strongly consistent be-
lief bases into account, we now extend these postulates to
also cover weakly consistent belief bases.

Postulate (Rel+), (Ind+), (SynSplit+). An inductive infer-
ence operator C : ∆ 7→ |∼∆ satisfies

(Rel+) if for any weakly consistent ∆ = ∆1

⋃
Σ1,Σ2

∆2, and

for any A,B ∈ LΣi
for i = 1, 2 we have that

A |∼∆ B iff A |∼∆i
B. (3)

(Ind+) if for any weakly consistent ∆ = ∆1

⋃
Σ1,Σ2

∆2, and

for any A,B ∈ LΣi , D ∈ LΣj for i, j ∈ {1, 2}, i ̸= j

such that D |̸∼p
∆ ⊥, we have

A |∼∆ B iff AD |∼∆ B. (4)

(SynSplit+) if it satisfies both (Rel+) and (Ind+).

Inductive inference operators can not only be defined by
directly giving the mapping from belief bases to inference
relations. Another way is to define inductive inference oper-
ators using SPOs as an intermediate step: we define a map-
ping from belief bases to SPOs and then obtain the inference
relation from the SPO by A |∼≺ B iff AB ≺ AB with

A ≺ B iff for every ω′ ∈ ΩB there is an ω ∈ ΩA

such that ω ≺ ω′.

This way we can define an SPO-based inductive inference
operator to be a mapping Cspo : ∆ 7→ ≺∆ that maps a
belief base to a SPO ≺∆ such that ≺∆ |= ∆ and ≺∅ = ∅.

Based on (Relspo) and (Indspo) (Haldimann and Beierle
2022b) we introduce the properties (Relspo+) and (Indspo+)
that ensure compliance with (Rel+) and (Ind+) also for be-
lief bases that force some worlds to be infeasible.

Postulate (Relspo+), (Indspo+). An SPO-based inductive
inference operator Cspo : ∆ 7→ ≺∆ satisfies

(Relspo+) if for any weakly consistent ∆ = ∆1

⋃
Σ1,Σ2

∆2,

and for any A,B, F ∈ LΣi for i ∈ {1, 2}, such that
A |̸∼p

∆ ⊥ and B |̸∼p
∆ ⊥ it holds that

F is feasible in ≺∆ iff F is feasible in ≺∆i
and

A ≺∆ B iff A ≺∆i
B.

(Indspo+) if for any weakly consistent ∆ = ∆1

⋃
Σ1,Σ2

∆2,

and for any A,B, F ∈ LΣi
, D ∈ LΣj

for i, j ∈ {1, 2},
i ̸= j, such that A |̸∼p

∆ ⊥, B |̸∼p
∆ ⊥, and D |̸∼p

∆ ⊥, it
holds that

F is feasible in ≺∆ iff FD is feasible in ≺∆ and
A ≺∆ B iff AD ≺∆ BD.

Proposition 12. Let Cspo be an SPO-based inductive in-
ference operator. If Cspo satisfies (Relspo+) then it satisfies
(Rel+). If Cspo satisfies (Indspo+) then it satisfies (Ind+).

To show that system W+ satisfies (Relspo+) and
(Indspo+), we first have to show how a syntax splitting on
a belief base carries over to the tolerance partition. The
main result is that the tolerance partition of a belief base
∆ = ∆1

⋃
Σ1,Σ2

∆2 is the element-wise conjunction of the

tolerance partitions of ∆1 and ∆2, i.e., ∆j
i = ∆j∩∆i. Based

on that, we can show properties of the preferred structure on
worlds induced by a belief base with syntax splitting: For
a weakly consistent ∆ = ∆1

⋃
Σ1,Σ2

∆2 and feasible worlds

ω, ω′, ωa, ωb we have that:

• If ω <w+
∆ ω′, then ω <w+

∆1
ω′ or ω <w+

∆2
ω′.

• If ω <w+
∆1

ω′ and ω|Σ2
= ω′

|Σ2
, then ω <w+

∆ ω′.

• If ωa
|Σ1

= ωb
|Σ1

, then it is ωa <w+
∆1

ω′ iff ωb <w+
∆1

ω′.

Using these results, we can show that system W+ fulfils
both (Relspo+) and (Indspo+).

Proposition 13. System W+ fulfils (Relspo+).

Proposition 14. System W+ fulfils (Indspo+).

Combining Propositions 13 and 14 yields that system W+

fulfils (SynSplit+).

Proposition 15. System W+ satisfies (SynSplit+).

7 Conclusions and Future Work
In this paper, we extended the definition of system W to also
cover belief bases that are weakly consistent. After defin-
ing the system W+, we re-established the relations of sys-
tem W+ to system Z/rational closure, lexicographic infer-
ence, and MP-closure. To do this, we had to slightly adapt
the definition of lexicographic inference for it to be an in-
ductive inference operator. Furthermore, we generalized the
postulates (Rel), (Ind), and (SynSplit) to also be applica-
ble to weakly consistent belief bases and showed that sys-
tem W+ satisfies syntax splitting.

Future work includes showing that system W+ also satis-
fies the more general conditional syntax splitting postulates
introduced in (Heyninck et al. 2023). Additionally, we will
extend c-representations (Kern-Isberner 2001; 2001) and c-
inference (Beierle, Eichhorn, and Kern-Isberner 2016) to
weakly consistent belief bases and investigate the relation
between system W+ and the thus extended c-inference.
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