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Abstract

Secure auctions and machine learning in cloud in-
creasingly employs multi-party and homomorphic en-
cryption support. A modification to Elgamal public
key cryptosystem was shown to enable homomorphic
division using an encoding of plaintext as fractions
with numerator and denominator encrypted separately.
However we notice that unlike for other homomorphic
cryptography schemes, the obtained division homomor-
phism allows for the retrieval of the input secrets from
the result of the division. Since this cancels the bene-
fit of the encryption, we propose the introduction of a
masking operation based on random factors and discuss
its success with operations in Zp and Q.

Introduction
The use of homomorphic encryption in machine learn-
ing on the cloud enhances privacy, decreases risk of data
breaches, and increases confidence in machine learning
models (Pulido-Gaytan et al. 2021). The ElGamal encryp-
tion scheme is a type of homomorphic encryption. However,
the security of the Division Homomorphism of the ElGamal
encryption scheme proposed in (Sidorov, Wei, and Ng 2022)
needs to be addressed.

Background
Homomorphic schemes can solve practical issues in
cryptography while keeping the data encrypted (Alaya,
Laouamer, and Msilini 2020). Therefore, the development
of homomorphic encryption has opened new avenues for se-
cure computation on encrypted data. The ElGamal public
key encryption scheme, a popular form of homomorphic en-
cryption, operates on the principles of modular exponenti-
ation (Tran et al. 2020). The security of the recently pro-
posed (Alaya, Laouamer, and Msilini 2020) division homo-
morphism in the ElGamal encryption scheme is a topic of
concern.

Back to the past, the earliest encryption techniques date
back to ancient civilizations, such as the Spartans and the
Greeks (Mollin 2005). One of the most famous historical
encryption techniques is the Caesar cipher, which was used
by Julius Caesar to encode messages (Dewangga, Purboyo,
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and Nugrahaeni 2017). In this cipher, each letter in the mes-
sage is shifted a fixed number of positions down the al-
phabet. Since then, numerous cryptographic methods have
been developed, including symmetric and public encryp-
tion (William et al. 2022). Symmetric-key encryption em-
ploys a single secret key for both encryption and decryp-
tion. This necessitates securely sharing the key between in-
volved parties, a practical challenge (Chandramouli, Iorga,
and Chokhani 2014). On the other hand, public-key encryp-
tion uses two keys - a public key for encryption and a pri-
vate key for decryption. The public key can be freely dis-
tributed, while the private key must be kept secret. This al-
lows for secure communication without the need for key ex-
change (Khalifa et al. 2004). Despite their usefulness, tradi-
tional encryption methods have limitations when it comes to
processing encrypted data. Because before performing any
computation on encrypted data, it requires decrypting the
data first, then performing the computation, and finally re-
encrypt the data. This exposes the data to potential security
risks and can be computationally expensive. This is where
homomorphic encryption comes in.

The classification of homomorphic encryption methods
is based on the number and type of mathematical opera-
tions that can be carried out on encrypted data. There are
three levels of homomorphic encryption, with Partially Ho-
momorphic Encryption (PHE) being the first, which only al-
lows one type of operation infinite times on the encrypted
data, such as addition or multiplication, but not both. The
second level is Somewhat Homomorphic Encryption (SHE),
which permits multiple operations to be performed on the
encrypted data but has limitations, such as on the num-
ber of some operations. As a result, the types and num-
ber of operations that can be performed are restricted.
The final level is Fully Homomorphic Encryption (FHE),
which allows unlimited operations to be performed on en-
crypted data but is the most computationally expensive and
may not be practical for all use cases (Fawaz et al. 2021;
Sidorov, Wei, and Ng 2022).

There are two types of Partially Homomorphic Encryp-
tion (PHE). First, Additive Homomorphic Encryption (ex,
Paillier, BGV cryptosystem) has the ability to sum encrypted
numerical values while keeping the original numbers con-
fidential. Second, Multiplicative Homomorphic Encryption
which can multiply encrypted values without revealing the



original values (Gao et al. 2020). The RSA and El-Gamal
cryptographic systems are examples of schemes that possess
the property of multiplicative homomorphism (Alkharji,
Liu, and Washington 2016).

Paillier cryptosystem is an example of Additive Homo-
morphic Encryption scheme introduced in 1999 by Pascal
Paillier. The Paillier cryptosystem is based on the com-
putational difficulty of the decisional composite residuos-
ity assumption, which is a variant of the decisional Diffie-
Hellman assumption (Yaji, Bangera, and Neelima 2018). In
MPC protocols using Shamir polynomial shares, the data
is divided into shares using a secret sharing scheme based
on Shamir polynomials. Each share is then encrypted using
Paillier encryption (Demmler, Schneider, and Zohner 2015).
The encrypted shares are sent to the other parties, who can
perform computations on them. The final result is obtained
by combining the results of the computations on the en-
crypted shares and then applying the inverse of the secret
sharing scheme.

MPC protocols have many applications, such as secure
data processing, privacy-preserving machine learning, and
secure cloud computing (Mohassel and Zhang 2017). How-
ever, HE and MPC are computationally intensive, and the
size of ciphertexts can be significantly larger than plaintexts,
which can lead to performance and storage challenges.

Indeed, it should be recognized that while PHE has its
benefits, it also has certain restrictions, such as its inability
to handle certain types of computations. Nonetheless, PHE
can prove valuable when maintaining data confidentiality
is essential, such as in secure cloud computing or privacy-
protecting data analysis (Acar et al. 2018).

The current state of the field highlights the need for fur-
ther research on the enhancement of security for the Division
Homomorphism with the ElGamal encryption scheme.

Analysis
With a public key p, g, y, the Elgamal Encryption of a mes-
sage m is given by: E(m) = (m ∗ yx mod p, gx mod p) =
(α, β) where x is a value chosen randomly at each encryp-
tion, and where

α = m ∗ yx mod p

and

β = gx mod p

This scheme is partially homomorphic. It offers, based on

E (m1) = (m1 ∗ yx1 mod p, gx1 mod p) = (α1, β1)

and

E (m2) = (m2 ∗ yx2 mod p, gx2 mod p) = (α2, β2) ,

the result:

E (m1 ∗m2) = (α1α2, β1β2) = E(m1) · E(m2)

A new version scheme E′ for Elgamal was proposed
in (Sidorov, Wei, and Ng 2022) for division with ElGamal
encryption by encoding values as fractions a∗10k

10k
.

For E′ one selects an integer k and one defined

E′(m) = E′
(
m ∗ 10k

10k

)
= (E (m1) , E (m2)) .

where m1 = m ∗ 10k and m2 = 10k.
At decryption, the two components of the result, m1 and

m2, are decrypted separately and m = m1

m2
. As such now

we have E′(a) = E′
(

a∗10k
10k

)
= (E (a1) , E (a2)), while

E′(b) = E′
(

b∗10k
10k

)
= (E (b1) , E (b2)).

The product is now:

E′(a ∗ b) = (E (a1 ∗ b1) , E (a2 ∗ b2))
In (Sidorov, Wei, and Ng 2022) it was proposed to also

compute division as:

E′(a/b) = (E (a1 ∗ b2) , E (a2 ∗ b1))
Unfortunately, this approach no longer guarantees that

from E′(a ∗ b), at decryption, one would no longer be able
to retrieve the original values a and b.

For example, if a = 5 and b = 6 while E′ uses k = 3,
then E′(a/b) is decrypted by independently obtaining the
numerator 5000000 and denominator 6000000, leading to
the result 5000000

6000000 .
However, from this decryption process it is obvious that

the inputs were a = 5 and b = 6.
An additional blinding step is required in order to hide

the input secrets when the result is decrypted. An addi-
tional radom non-zero fraction c

c has to be generated and
(E(c), E(c)) must be multiplied into the mix by the party
performing the multiplication.

The result will be:

E′(a/b) = (E (a1 ∗ b2 ∗ c) , E (a2 ∗ b1 ∗ c))
If the operation of division is intended to be performed in

Zp, then the value of c can be any non-zero random value in
Zp.

However, if the computation is intended to be performed
in Q, then c has to be selected carefully to avoid overflows
and to contain many prime factors that are likely to occur in
a and b.

Conclusion
In conclusion, the modification to the Elgamal public key
cryptosystem proposed in this research paper has success-
fully enabled homomorphic division. However, it has been
noted that the division homomorphism is invertible, which
negates the security benefits of encryption. To address this
issue, we proposed the introduction of a masking operation
based on random factors and demonstrated its effectiveness
in operations over both Zp and Q. Our research highlights
the need for further improvement in homomorphic cryptog-
raphy to ensure secure and efficient computations on en-
crypted data.
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