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Abstract

For a better understanding of the underlying biologi-
cal mechanisms, it is crucial to identify the reciprocity
between proteins. Often, extracting such interactions
between proteins from biomedical articles faces chal-
lenges due to the complex sentence structure of the tex-
tual information sources. Most of the prominent previ-
ous works have applied additional hand-crafted features
for the protein-protein interaction task. In this work, we
have utilized two tree-structured attention-based neural
network models along with a heterogeneous graph ap-
proach to perform this task. We suggest that the pro-
posed model preserves the syntactic as well as the se-
mantic information of the text. The experimental re-
sults demonstrate that even without using any additional
feature extraction techniques, this model achieves sig-
nificant performance boosts when applied on the five
standard benchmark corpora compared to the previous
works.

The exponential growth of scientific literature means that
the majority of biological information is now in text form
and can be found in the scientific literature. The MEDLINE
database has seen an increase of more than 4% each year
over the past two decennia, and currently holds more than
29 million records from various publications, which is 3 mil-
lion more than in 2020 and more than 8 million over what
it held in 2014 (Yadav et al. 2020). The massive amount of
text found in biomedical research articles represents an in-
valuable resource of information for the field of automated
biomedical information retrieval.

Given the exponential growth of biomedical data and the
intricate nature of the textual representation of this data,
it is crucial to utilize automated methods for information
retrieval to assist biologists in finding relevant informa-
tion, organizing databases, and offering decision support for
medical professionals. Several studies have been conducted
to extract the information present in these texts, including
protein-protein interactions, chemical-disease relationships,
clinical relations, drug-drug interactions, and more.

A cell’s internal biological activities, including immune
response, signal transduction, and cellular organization, are
largely a result of interactions between various proteins
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(Sledzieski et al. 2021). Understanding molecular mecha-
nisms of biological processes requires knowledge of protein-
protein interactions (PPI) (Ahmed et al. 2019). These in-
teractions have crucial relevance for biomedical fields, in-
cluding the examination of drug targets (Gordon et al. 2020)
and signal proteins (Altmann et al. 2020). Therefore, recog-
nizing protein-protein interactions (PPIs) leads to a deeper
comprehension of the functions, control, and communica-
tion between various proteins (Yao et al. 2019). The objec-
tive of recognizing PPIs is to extract the relationships be-
tween protein entities mentioned in a document (Krallinger
et al. 2008).

A significant amount of information regarding PPIs is
present in biomedical literature, but in an unstructured form.
Manually extracting PPIs is a demanding task, both in terms
of time and cost, due to the large number of published stud-
ies (Peng, Wei, and Lu 2016; Tang et al. 2022). As a re-
sult, automatically extracting PPIs from biomedical litera-
ture has become a crucial research area, garnering atten-
tion from many researchers. The information could be dis-
persed throughout the document, however, the current study
is limited to detecting only the PPIs within individual sen-
tences similar to many previous works (Pyysalo et al. 2008;
Tikk et al. 2010; Ahmed et al. 2019). As an example of a
sentence containing interactions between proteins (Howard
et al. 2000):

“At 89.3 nmol/L, maximal migration of CCR1 and
CCR8 transfected cells was prompted by LEC and at
5.6 nmol/L, cell adhesion also occurred.”

This sentence reflects two protein-protein interactions in-
volving LEC and CCR1, as well as LEC and CCR8. But, im-
portantly, no correlation is present between proteins CCR1
and CCR8.

In the early research phase, the commonly used meth-
ods for PPI extraction involved utilizing co-occurrence and
pattern recognition techniques (Baumgartner et al. 2008;
Yu et al. 2018). However, recent advancements in technol-
ogy have led to the widespread adoption of machine learn-
ing techniques which have superior performance compared
to these traditional methods. Early approaches involved con-
structing a feature set through feature engineering and ker-
nel methods and then applying support vector machines
or other classifiers for classification (Airola et al. 2008b;
Murugesan, Abdulkadhar, and Natarajan 2017). In the last



few years, several research works (Zhao et al. 2016; Hua
and Quan 2016; Choi 2016) have successfully applied deep
learning techniques to PPI extraction, taking advantage of
the widespread use of deep learning in NLP.

Most of the recent works utilize recurrent neural net-
work (RNN) models for this task considering textual rep-
resentations as sequences (Hsieh et al. 2017; Yadav et al.
2019). However, if the data is arranged in a structured for-
mat instead of being arranged in a sequence, these models
are prone to miss the semantic compositions present within
(Ahmed, Samee, and Mercer 2019a). This is due to the fact
that they only take into account the word order and ignore
the linguistic structure (Li et al. 2015). Contrarily, recur-
sive neural networks, also known as tree-structured neural
network models (Ahmed, Samee, and Mercer 2019b), pro-
cess the sentences represented in a parsed tree form, thereby
keeping both the syntax and semantics in a more effective
way. Investigations have also taken place regarding graph-
based methods for this task, where the models operate on
either a fully connected graph composed of word nodes or
on text segments of phrases (Fei et al. 2021). Our proposed
model assembles these last two methods in a novel design.

While extracting relations between target proteins, we
have considered three issues: firstly, how to retrieve the rela-
tion if the considered proteins are mentioned far apart in the
text, secondly, how to deal with the phrasal structure of text
in order to preserve the semantics so that the PPI extraction
can attend to this information, and thirdly, what will hap-
pen if instead of using fixed word representations from pre-
trained models, we update the word representations based
on the considered sentence and then use these updated rep-
resentations to impact the generated sentence representation
for this task.

Uniting these considerations, we have investigated a
model combining dependency and constituency tree trans-
formers (Ahmed, Samee, and Mercer 2019b) and a heteroge-
neous graph attention network (Wang et al. 2020) for the PPI
extraction task. The dependency tree-transformer captures
the correlations between words at different parts of the sen-
tence which allows the model to extract relations between
the considered proteins even if they are positioned far apart
in the sentence. For preserving the phrasal information we
have used the constituency tree-transformer. And for word
to sentence representation and sentence to word representa-
tion updates, we have utilized a heterogeneous graph neural
network.1 We provide a comprehensive analysis of the per-
formance of these models on benchmark PPI datasets, which
showcases the superiority of the proposed model over the
previous prominent works.

Related Work
Several NLP techniques have emerged for determining links
between proteins. At first, pattern-based methods were pop-
ular, where rules were established based on syntax and lex-
ical features for finding relationships (Blaschke et al. 1999;

1The code is available on https://github.com/sudipta90/PPI
Heterogenous.git

Leeuwenberg et al. 2015). But, these models couldn’t man-
age complex relationships expressed in relational and coor-
dinating clauses correctly. Unlike simple pattern-based ap-
proaches, dependency-based methods are more focused on
syntax and can be applied to a broader range of situations
(Erkan, Özgür, and Radev 2007; Miyao et al. 2009).

Another common method for identifying correlations be-
tween proteins is the use of kernel-based techniques. These
models acquire rich structural information through depen-
dency structures and syntactic parse trees (Singha Roy and
Mercer 2022). Airola et al. (2008a) suggested a method for
identifying interactions between target proteins by exam-
ining information from linear and dependency subgraphs.
Miwa et al. (2009) developed a system that incorporates
a Support Vector Machine with weighted feature vectors
derived from multiple corpora. Kim et al. (2010) matched
e-walks and v-walks on the shortest dependency path to
acquire non-contiguous syntactic structures by means of
a walk-weighted sub-sequence kernel for this task. Zhang
et al. introduced a neighbourhood hash graph kernel-based
model to draw out PPIs. Chang et al. (2016) used a convo-
lution tree kernel and PPI patterns to extract interlinkages
between proteins. Murugesan et al. (2017) proposed the dis-
tributed smoothed tree kernel which has demonstrated sub-
stantial advancements when compared to other kernel meth-
ods for this task.

The recent surge in deep learning models has resulted
in a plethora of experiments aimed at uncovering PPI re-
lationships from biomedical literature (Quan et al. 2016;
Hsieh et al. 2017; Zhang et al. 2018). Zhao et al. (2016) were
the first to apply deep learning in the area of PPI relation
extraction. Their approach involved training an autoencoder
on unclassified training data to prepare the parameters for a
multi-layer perceptron (MLP) model, which was then opti-
mized through gradient descent to carry out PPI extraction.
Peng and Lu (2017) involved the utilization of a double-
channel CNN for this task. The first channel incorporated
syntax-based features like syntactic dependencies, parts of
speech, named entities, the distance of each word from the
two proteins interacting, chunk parsing details, and the word
itself. The second channel utilized a convolution process
with respect to the parent word information for each word.
The second channel provides a distributed representation of
the sentence by applying convolution over each word’s par-
ent information. For PPI extraction, a three-channel CNN
was implemented by Zhang et al. (2018). Convolution op-
erations were carried out on the original words along with
positional encoding, the shortest dependency path, and en-
coding features for dependency relations in each of the first,
second, and third channels, respectively. Zhang et al. (2019)
showed that using residual connections improves the perfor-
mance of the CNN-based models when extracting PPIs from
texts.

Since then, a series of studies have been carried out on
the PPI task, utilizing Recurrent Neural Networks (RNNs),
which have been seen to excel in processing sequential data.
Hsieh et al. (2017), to generate a sentence vector represen-
tation, concatenated the left and right-most output vectors
from a Bi-LSTM which was fed with the sentence, and then



applied a softmax classifier for the classification task. Ya-
dav et al. (2019) fed the shortest dependency information
between unit pairs as input to a Bi-LSTM with structured
attention. For their subsequent study, Yadav et al. (2020)
implemented a self-attentive approach for performing two
tasks simultaneously: extraction of protein-protein interac-
tions and extraction of drug-drug interactions. Ahmed et al.
(2019) applied structured attention over dependency tree-
LSTMs for this task and showed the supremacy of the tree-
structured neural networks over sequential models. Fei et al.
(2021) introduced a span-graph neural architecture for ex-
tracting protein entity relations from biomedical texts. Their
model jointly learns to identify the candidate entity spans
and the correlaton between them. The entity graph is con-
structed by listing out probable entity span possibilities.

Proposed Model
In this portion of the paper, we delve into the specifics of our
model. Our study of the protein-protein interaction extrac-
tion task utilizes two tree-structured neural networks: depen-
dency and constituency tree-transformers (Ahmed, Samee,
and Mercer 2019b); and a heterogeneous graph attention
network (Wang et al. 2020). How each network functions
is initially discussed. The discussion then moves on to cover
the proposed model combining these modules.

Tree-Transformers
Two tree-based representations exist for representing a sen-
tence: constituency trees and dependency trees. These forms
of representation offer syntactic information about the sen-
tence, capturing both the structure of phrases (constituency
tree) and the dependencies between individual words (de-
pendency tree). Ahmed, Samee, and Mercer (2019b) sug-
gested two tree-transformer models: dependency and con-
stituency tree-transformers utilizing these sources of syntac-
tic structure information. The objective of these models is to
traverse each sub-tree within a dependency or constituency
tree structure, attentively, and derive a vector representation
at its root.

Each node in a dependency tree holds a word. To tra-
verse a sub-tree in this kind of tree, the dependency tree-
transformer considers both the parent and child node rep-
resentations. Conversely, in a constituency tree, only the
leaf nodes hold words. The non-terminal node vectors are
computed only after the sub-tree has been fully traversed.
Ahmed, Samee, and Mercer (2019b) applied self-attention
to the sentence’s dependency and constituency tree repre-
sentations, incorporating query (Q), key (K) and value (V)
matrices. These matrices are computed as follows (Vaswani
et al. 2017):

K = ωkMk s.t. ωk ∈ Rd×d (1)

V = ωvMv s.t. ωv ∈ Rd×d (2)

Q = ωqMq s.t. ωq ∈ Rd×d (3)

In the dependency tree, the matrix M is formed by con-
catenating the word vectors of all child nodes for each cor-
responding parent node. On the other hand, for the con-
stituency tree, M is the concatenation of the word vectors

within a constituent. Using Q, K and V matrices, the tree-
transformer models compute the self attention matrix as fol-
lows:

α = softmax(
Q KT

√
dk

)V (4)

where dk refers to the dimension of K. To implement the
multi-branch attention Bi with n branches, n copies of key,
query, and value matrices are generated using the appropri-
ate weight matrices (ωi). In the end, a scaled dot product
attention (as per Eq. 4) is applied to each branch (Eq. 5).

Bi = αi∈[1,n](queryi ω
query
i , keyi ω

key
i , valuei ωvalue

i ) (5)

Afterwards, a residual connection is utilized on these tensors
and a batch normalization layer is applied layer-wise, subse-
quently. Then, a scaling factor µ is employed to generate the
branch representation as follows:

B̃i = LayerNorm(Biω
b
i + Bi)× µi (6)

Subsequently, a position-wise CNN (PCNN) is employed to
every B̃i. This PCNN layer consists of two convolution op-
erations on each position with a ReLU activation function in
between. This PCNN layer works as Eq. 7:

PCNN(x) = Conv(ReLU(Conv(x) + b1)) + b2 (7)

The final attentive representation of these semantic sub-
spaces, generated from the PCNN layer, is obtained by per-
forming a linear weighted summation (Eq. 8) where γ ∈ Rn

is a model hyper-parameter.

BranchAttn =

n∑
i=1

γiPCNN(B̃i) (8)

In the last step, a residual connection is established with
BranchAttn and non-linearity (tanh) is applied. The par-
ent node representation is achieved by performing element-
wise summation (ExS). Eq. 9 represents the operation of this
step.

ParentNode = EWS(tanh((χattn + χ)ω + b)) (9)

In Eq. 9, χ and χattn symbolize the input and output features
of the attention computation module.

Heterogeneous Graph Attention Network
The heterogeneous graph attention network (H-GAT) (Wang
et al. 2020) was initially introduced for the textual sum-
marization task to provide enriched cross-sentence relation-
ships. In this work, we have utilized this approach to im-
prove the sentence representation quality. At each itera-
tion, this module is deployed once the constituency and de-
pendency tree-transformers’ forward passes are done. Via
sentence-to-word and word-to-sentence update processes,
this module provides enriched sentence vectors.

For this module the graph G has been structured as G =
{V,E}. The set V represents the nodes in the graph, while
E represents the edges between those nodes. For any sen-
tence S containing n words (wi), V = {w1, w2, ..., wn, S}.



As this task finds protein-protein interactions in single sen-
tences, the edges are established in such a way that the sen-
tence node S is connected to every word node wi. Once
the graph G has been constructed, a Graph Attention Net-
work (GAT) (Veličković et al. 2017) is employed to modify
the feature values of the nodes. Let hi ∈ Rdh be the hid-
den states of the word and sentence nodes, where i ∈ {1 :
(n+1)} and dh is the hidden state dimension. Then the GAT
layer can be represented as:

κi,j = LeakyReLU(ωa[ωqhi;ωkhj ]) (10)

αi,j =
exp(κi,j)∑

l∈Ni
exp(κi,l)

(11)

Zi = σ(
∑
j∈Ni

αi,jωvhj) (12)

where the ωa, ωq , ωk, and ωv weight-matrices are updated
via backpropagation. The set of neighbouring nodes for any
considered node is represented by Ni. The attention score
between hi and hj is represented by αi,j . The GAT incorpo-
rating multi-head attention, with M attention heads, can be
defined as:

Zi = ||Mm=1σ(
∑
j∈Ni

αm
i,jω

mhi) (13)

In order to avoid the vanishing of gradients over time, a
residual connection is also established. With the informa-
tion ui from this residual connection, the final hidden state
representation is formulated as follows:

hi = ui + hi (14)

By means of the previously described GAT and a position-
wise feed forward network (FFN) layer, which consists of
two linear transformations (Wang et al. 2020), the word
nodes are updated based on the information from the sen-
tence node seen in Eqs. 15 and 16:

Z1
s→w = GAT(H0

w,H0
s,H0

s) (15)

H1
w = FFN(Z1

s→w +H0
s) (16)

where H0
w is the set of word nodes (the Bio-RoBERTa-based

embeddings for words (Gururangan et al. 2020)) for the
words present in the sentence. H0

s is the average of the sen-
tence representations from the dependency and constituency
tree-transformers. In Eq. 15, H0

w has been considered as the
query matrix and H0

s has been considered as both the key
and value matrices following the work of Vaswani et al.
(2017).

After updating the word nodes based on the sentence
node, the next step involves updating the sentence node
based on the just updated word nodes. These sentence-to-
word and word-to-sentence node refinement processes con-
tinue at each iteration. For the t-th iteration, the process can
be represented in the following manner:

Zt+1
s→w = GAT(Ht

w,Ht
s,Ht

s) (17)

Ht+1
w = FFN(Zt+1

s→w +Ht
w) (18)

Zt+1
w→s = GAT(Ht

s,Ht+1
w ,Ht+1

w ) (19)

Ht+1
s = FFN(Zt+1

w→s +Ht
s) (20)

Figure 1: This diagram illustrates the approach for com-
bining features from the dependency and constituency tree-
transformers together with a heterogeneous graph attention
network to create an integrated architecture for PPI predic-
tion. The blue numbers in the Constituency and Dependency
Tree Transformers indicate the attention value for the asso-
ciated tree branches.

Model Architecture
Figure 1 sketches the overall architecture of the model. Each
unit of the model is initially fed with the Bio-RoBERTa
(Gururangan et al. 2020) word embeddings. Then the con-
stituency and dependency tree transformers generate the
sentence representations (SCTT and SDTT, respectively) in
parallel. A point-wise average operation is applied to these
two sentence vectors. This averaged sentence vector (Savg)
is then used for the sentence-to-word and word-to-sentence
update steps in the heterogeneous graph attention network.
This step provides another sentence representation (Sgraph).
In the following step, max-pooling is applied and followed
by a multi-layer perceptron for the PPI extraction.

Experimental Details and Performance
Analysis

In this section, we present the performance of the proposed
model, evaluated using the F1-score. We have formulated
the PPI extraction as a classification task. We conclude by
comparing the efficacy of the proposed model to the lead-
ing sequential, tree-structured, and graph-based architec-
tures that have been previously proposed for the PPI task.
We first include a statistical overview of the five primary
PPI corpora utilized in this task, as well as a discussion of



the pre-processing techniques employed on these corpora.

Corpus Description
First, to assess the performance of the examined model, we
evaluate its performance on the five standard PPI benchmark
corpora: BioInfer (Pyysalo et al. 2007), AIMed (Bunescu et
al. 2005), HPRD50 (Fundel, Küffner, and Zimmer 2007),
IEPA (Ding et al. 2001), and LLL (Nédellec 2005). In all of
the experiments, the following transformed version of each
corpus is employed, as specified by Ahmed et al. (2019) and
Singha Roy and Mercer (2022). To provide a consistent clas-
sification task across all five corpora, all protein names are
replaced with three distinct symbols: if a pair of proteins
are to be considered as potentially interacting in a given
sentence, they are substituted with the labels PROT1 and
PROT2 and all other proteins mentioned in the sentence are
substituted with PROT0. Thus, this approach has the model
consider an interaction between two proteins, one at a time.
To work with sentences containing more than two proteins,
two proteins at a time are tagged with PROT1 and PROT2
and their interaction (positive or negative) is identified. Se-
quentially, all protein pairs are considered. So, for each sen-
tence in the corpus containing η proteins, the modified cor-
pus will feature ηC2 variations. As an example, consider
the following sentence: “At 89.3 nmol/L, maximal migra-
tion of CCR1 and CCR8 transfected cells was prompted by
LEC and at 5.6 nmol/L, cell adhesion also occurred.” To
identify the possible relationship between LEC and CCR1,
we replace their respective protein names with PROT1 and
PROT2, while replacing CCR8 with PROT0. When the ob-
jective is to identify the possible interaction between LEC
and CCR8, we replace their names with PROT1 and PROT2,
and use PROT0 in place of CCR1. Similarly, when identify-
ing the possible interaction between CCR1 and CCR8, they
are replaced with PROT1 and PROT2 and LEC is replaced
with PROT0. Interactions between protein pairs can be ei-
ther positive or negative. For the above example, when the
considered proteins are CCR1 and LEC or CCR8 and LEC,
the nature of their interactions is positive in each case. How-
ever, when the considered protein pair is CCR1 and CCR8,
the PPI is negative since no interaction is present between
them. Thus the example sentence presents three possible in-
teractions, resulting in three variants (3C2) of the sentence in
the modified corpus: two with positive interactions, and one
with a negative interaction. Using generic names to repre-
sent protein names enhances the data by allowing for multi-
ple samples of these generic names, as opposed to only a few
samples for each individual protein name. Table 1 provides
an overview of the demographic characteristics of the five
modified corpora applying this above-mentioned approach.
We have utilized the Stanford dependency and constituency
parser to parse sentences in each corpus (Manning et al.
2014).

Experimental Setup
Next, turning to the details of the model, it uses an initial
learning rate of 0.1. If the validation accuracy decreases
from the previous iteration, the learning rate is reduced
by 80% in each iteration. We set the batch size to 10.

Table 1: Statistics of the modified corpora

Corpus Original Positive Negative
Sentences Interactions Interactions

AIMED 1,995 1,000 4,834
BioInfer 1,100 2,534 7,132

IEPA 486 335 482
HPRD50 145 163 270

LLL 77 164 166

The tree-transformer models use six PCNN layers and six
branches of attention layer, and employ 341-dimension and
300-dimension kernels in two CNN layers with dropout 0.1
in the second layer only. For the H-GAT unit, six attention
heads are utilized. The model hyper-parameters are trained
by the ‘Adagrad’ (Lydia and Francis 2019) optimizer. The fi-
nal sentence representation of each individual unit as well as
the model is a 512-dimensional vector. The model is fed with
Bio-RoBERTa word embeddings. For the tree-transformers,
these embeddings are not further updated. But, for the H-
GAT unit, with the sentence-to-word update step, word em-
beddings are updated once each epoch. We have also experi-
mented with PubMed-BERT (Gu et al. 2020), however, bet-
ter performance is acquired when Bio-RoBERTa word em-
beddings are used. We have utilized StratifiedK-Fold from
the scikit-learn package to perform 10-fold cross-validation
in the model evaluation process. For each fold, the training
was done on the training set and the test was done on a sep-
arate test set.

All of the experiments are performed on Linux Ubuntu
22.04 LTE with 16GB memory and Nvidia 1070Ti 8GB
graphics memory. For implementing the model, we have
used PyTorch 1.7.1. In this environment, the model took 8
hours each for training on the BioInfer and AIMed corpora.

Performance Analysis
Table 2 displays how our proposed model performs on the
five benchmark corpora, along with the published results of
several sequential, tree-structured, and graph-based models
for comparison. For performance evaluation, we have used
the F1-score. With the AIMED corpus, we have achieved
91.23% F1-score, which is a 2.96 percentage point (p.p.)
performance boost compared to the current state of the art
(Fei et al. 2021). The second dataset that has been used
to evaluate the model is BioInfer. It has the highest num-
ber of annotated interactions compared to the other four
datasets. In this dataset the sentences are notably longer
and encompass a greater number of protein names men-
tioned within a single sentence. On this corpus, our model
has achieved a F1-score of 96.97% which is 0.76 p.p. and
0.96 p.p. higher than Fei et al. (2021) and Singha Roy and
Mercer (2022), respectively. The three remaining corpora
(IEPA, HPRD50, and LLL) come with comparably smaller
number of samples. Even for these corpora with very few
samples our model has outperformed the current state of the
art model (Fei et al. 2021) for the PPI task. Compared to
Singha Roy and Mercer (2022), which is the best perform-
ing tree-structured model for the PPI extraction task, our



Table 2: Performance evaluation of the models by means of F1-score (in %). The sequential, tree-structured, and graph-based
models are tagged with †, ‡, and ∗, accordingly. The performance metric of our model is presented in bold.

Methods AIMed BioInfer IEPA HPRD50 LLL Avg.
Chang et al. (2016) † 60.6 69.4 71.4 71.5 80.6 70.7
Hsieh et al. (2017) † 76.9 87.2 76.31 80.51 78.3 79.84
Zhang et al. (2018) † 56.4 61.3 75.1 63.4 76.5 66.54
Yadav et al. (2020) † 77.33 76.33 - - - 76.83

Tai, Socher, and Manning (2015) ‡ 80.6 88.1 76.4 82.0 84.8 82.38
Ahmed et al. (2019) ‡ 81.6 89.1 78.5 81.3 84.2 82.94

Singha Roy and Mercer (2022) ‡ 88.15 96.01 83.24 88.94 92.18 89.70
Fei et al. (2021) ∗ 88.27 96.21 83.90 89.57 92.86 90.16
Proposed Model 91.23 96.97 87.28 93.11 93.52 92.02

Table 3: Cross-corpus experimental results by means of F1-score (in %). The training corpora are represented by the rows,
while the testing data is presented in the columns. Rows marked with † are the results from Ahmed et al. (2019).

AIMed BioInfer IEPA HPRD50 LLL
AIMED † - 47.0 38.6 41.5 34.6
BioInfer † 50.8 - 40.8 45.5 33.5
AIMED - 55.1 42.7 46.2 39.5
BioInfer 56.7 - 44.0 50.3 40.8

model has gained 4.04 p.p., 4.17 p.p., and 1.34 p.p. higher
F1-scores for the IEPA, HPRD50, and LLL corpora, accord-
ingly. In comparison to the work of Fei et al. (2021), for
these three corpora, in the order given above, the perfor-
mance boosts for our model are 3.38 p.p., 3.54 p.p., and
0.66 p.p. On average, over these five corpora, our model
has achieved 92.02% F1-score which is 1.86 p.p. higher than
what is reported in Fei et al. (2021).

Further to these performance numbers, it is noteworthy
that if we discard the H-GAT module, our proposed model
is almost identical to the model presented in the work of
Singha Roy and Mercer (2022). Comparing the F1-scores of
these two models in Table 2, we can see that the sentence-
to-word and word-to-sentence update processes are key to
the improvement seen in the performance of our new model.
This enhanced performance, we believe, is because when the
H-GAT module is being employed, the sentence representa-
tions generated by the tree-transformers, and thus the newly
generated word representations by the sentence-to-word up-
date step, provide a more enriched semantics for the task
which in turn help to produce (due to the word-to-sentence
process) a better sentence representation for the following
classifier. Our belief is further supported by noting that the
max-pooling layer, having replaced a sentence feature con-
catenation layer in a previous version of our model, results
in a 0.5-1.8 p.p. performance boost compared to the previous
version (previous model’s numbers not shown).

Cross-Corpus Performance Analysis
In addition, we have performed a cross-corpus assessment,
motivated by Van Landeghem et al. (2008), which aims
to address a critical inquiry regarding the effective extrac-
tion of protein-protein interactions in practical applications
– “which corpus is most suitable for the training of a specific
model in real-world scenarios?”. Table 3 shows the results

achieved by our model for the cross-corpus evaluation. The
training data is represented by the rows, and the test data is
represented by the columns. In this study, we utilized AIMed
and BioInfer exclusively as the training datasets while disre-
garding the smaller ones. This is because training on small
and simple corpora and testing on larger, more intricate
datasets serves no practical purpose (Peng and Lu 2017;
Ahmed et al. 2019). The results show a noticeable decline
in performance across all corpora due to the lack of con-
sistency between the distribution of the training and testing
data. The acquired results support the basic principle of ma-
chine learning, which states that training and test sets should
have identical distributions. Notably, our proposed model
trained on BioInfer outperforms the same model trained on
AIMed, likely due to the former’s larger size. The results
also show that, for our model, if it is used in real life sce-
narios, BioInfer should be the suggested corpus for model
training. Furthermore, these transfer learning results show a
performance boost compared with Ahmed et al. (2019).

Conclusion and Future Work
In this paper, we have proposed a supervised Protein-protein
interaction extractor model which has the ability to obtain
the word level dependencies, phrasal information, and bet-
ter semantics by means of utilizing dependency and con-
stituency tree-transformers and a heterogeneous graph neu-
ral network. Our model has shown significant performance
improvements on all five benchmark corpora.

Despite the progress made in this work, there is still room
for further improvement. The sentence-to-word and word-
to-sentence node update step can be applied directly over
the tree-transformers to see how they perform. Additional
analysis of the results can be conducted by examining the
AUC and ROC curves.
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