
A Comparative Study of Continual, Lifelong, and Online Supervised Learning
Libraries

Logan Cummins, Brad Killen,
Somayeh Bakhtiari Ramezani,
Shahram Rahimi, Sudip Mittal

Mississippi State University
Starkville, MS

{nlc123, bmk99, sb3182}@msstate.edu,
{rahimi, mittal}@cse.msstate.edu

Maria Seale
U.S. Army Eng. Research and Dev. Center

Vicksburg, MS
maria.a.seale@erdc.dren.mil

Abstract

Machine learning has shown to be a crucial part of big
data analytics; however, it lacks when the data is con-
tinuously streaming in from the system and changing
too much from the original training data. Online learn-
ing is machine learning for streaming data that arrives
in a sequential order where the model updates after ev-
ery data point. While machine learning relies on well-
established libraries such as PyTorch and Keras, the
libraries for online learning are less well known, but
they are here to serve similar purposes of reproducibil-
ity and reducing the time from research to production.
Here, we compare different libraries for online learn-
ing research, specifically supervised learning. We com-
pare them on the axes of developmental experience and
benchmark testing as researchers. Our comparison as
developers takes maintenance, documentation, and of-
ferings of state-of-the-art algorithms into account. As
this is not necessarily free of bias, we also use bench-
marks known to online learning to gather power usage,
RAM usage, speed, and accuracy of these libraries to
get an objective view. Our findings show that Avalanche
and River, including River-torch, are among the best li-
braries in terms of performance and applicability to the
research in supervised online learning.

Introduction
Machine learning (ML) has proven itself over time to be
an important aspect to big data analytics (Athmaja, Hanu-
manthappa, and Kavitha 2017). Recently, ML has been ap-
plied to many real-time tasks such as COVID-19 model-
ing and prediction (Farooq and Bazaz 2021; Lalmuanawma,
Hussain, and Chhakchhuak 2020), prognostics of machin-
ery (Wen et al. 2022; Cummins et al. 2021; Adhikari, Rao,
and Buderath 2018), and more. Most of these applications
follow the same offline learning paradigm where a model is
trained and deployed. While successful, this aspect of offline
learning causes trouble for future use.

Offline ML assumes complete data availability (Losing,
Hammer, and Wersing 2018) which is not always true, es-
pecially with real-time data. Real-time data can shift form
quickly with a high rate of incoming data (Hammer, He, and
Martinetz 2014; Benczúr, Kocsis, and Pálovics 2018). This

Copyright © 2023 by the authors. All rights reserved.

would require possible model retraining which is inefficient
both in time and space costs (Hoi et al. 2021). One way of
overcoming these challenges is to transform into a different
paradigm, online learning.

Online learning (OL) is a sub-field of ML that includes
a family of techniques devised to learn models incremen-
tally from data as it becomes available to the network (Hoi
et al. 2021; Benczúr, Kocsis, and Pálovics 2018). The main
component shared amongst OL methods is the idea that the
models are trained with data that are received in real-time
then potentially discarded. Many techniques store little pre-
viously seen data such as Learning without Forgetting and
Replay, and some store none, which makes these networks
scalable in terms of space. OL also saves space by using
simpler architectures like Naive Bayes and Perceptron. OL
also saves in time as retraining is not needed once the data
changes form (Hoi et al. 2021). For more information on OL
as a sub-field of ML, we divert to an extensive review done
by Hoi et al. that looked at OL from all angles from algo-
rithms to applications (Hoi et al. 2021).

With all of the work in developing algorithms for OL,
the development seems to be unique to the individual re-
searcher’s style and coding preferences. This makes compar-
isons between methods more difficult as there is not a shared
framework. The field of ML has been overcoming this issue
with the developments of popular libraries like Keras (Chol-
let and others 2015) and PyTorch (Paszke et al. 2019) which
have seen wide success. Similarly, libraries have come to life
to assist the OL community. These libraries provide many
state-of-the-art algorithms as well as benchmarks to use for
comparison; however, most of these libraries are not intro-
duced to the research community and light should be shown
upon them, so they are applied more to research.

This study aims to compare multiple different libraries for
continual, lifelong, online learning, and more. These differ-
ent learning approaches are similar enough that comparing
their libraries is within reason. In order to make a quanti-
tative comparison between the performance of different li-
braries, the present work looks at supervised learning. The
rest of this paper is structured as follows. The following sec-
tion provides a background that defines and discusses the
intricacies of continual, lifelong, and online learning. Next
information is provided about the different libraries in the
analysis. This is followed by the analysis criteria which is



broken down into development comparison and benchmark
comparison. Finally, results of the comparative analysis are
presented, and a discussion about the findings concludes the
article.

Background
OL consists of algorithms that generally learn from data in-
stances one at a time (Hoi et al. 2021). This important dis-
tinction of how the algorithms learn is the way that OL over-
comes some of the drawbacks of batch learning previously
mentioned. Continual learning, also known as lifelong learn-
ing, encompasses ML algorithms with the ability to learn
new knowledge overtime while retaining already learned in-
formation (Parisi et al. 2019; Parisi and Lomonaco 2020;
De Lange et al. 2022). While this approach is similar to
OL, because of the algorithms’ tendencies to learn from
batches instead of instances, it is not considered OL (Hoi
et al. 2021). An extension to continual learning called on-
line continual learning has been brought to the spotlight in
recent years with its ability to modify continual learning
mechanisms to learn strictly from data instances one at a
time. These works are descibed in more depth by Parisi and
Lomonaco (Parisi and Lomonaco 2020). The present work
considers online continual learning as one of the important
players in this field, thus this technique is included as an in-
tegral part of our research.

Incremental learning is a collection of techniques that
are suitable to learn from data streams while keeping space
and computational costs down (Yang, Gu, and Wu 2019;
Gepperth and Hammer 2016; Ade and Deshmukh 2013).
These methods can be used in both online and offline set-
tings, i.e. learning from single data points or small batches.
Incremental learning can be thought of as a branch of OL
(Hoi et al. 2021) where the key difference is the specific goal
of keeping space and computational costs small in incremen-
tal learning.

Finally, interactive learning aims to bring humans, i.e.
users or experts, into the online training process. This pro-
vides domain knowledge in the learning process, effective
communication, and continuous improvements for learning
efficacy (Hoi et al. 2021). While notable a method of OL,
this is left out of the experiment due to our experiment set
up.

All of these different types of learning perform similarly
when learning from data streams. As this is not the typical
training performance behind ML, several libraries have been
created to facilitate this task. The next section provides de-
scriptions of the most prominent libraries used in this field.
While authors are cognisant of the differences between OL
and similar methods of learning discussed above, for the
sake of simplicity, in the next section we will simply refer
to these libraries as ”Online Learning” libraries.

Online Learning Libraries
Avalanche
Avalanche is an end-to-end library for continual learning
based on PyTorch (Lomonaco et al. 2021) available on

Figure 1: Avalanche Architecture (Lomonaco et al. 2021)

Github 1 from the Continual AI organization. Avalanche pro-
vides a framework for prototyping and comparing differ-
ent continual learning techniques, including online contin-
ual learning. This approach towards creation of a platform
for continual learning has led to the adoption of design prin-
ciples of modularity, scalability, reproducibility, and more
(Lomonaco et al. 2021). Avalanche’s architecture, depicted
in Fig. 1, is broken down into 5 main components: bench-
mark, model, training, evaluation, and logging.

The Benchmarks component of Avalanche contains a
wide variety of datasets and set-ups for continual learning.
The Model component houses all of the base models that
Avalanche provides such as Convolutional Neural Networks.
The Training component contains plugins that allow cus-
tomizability to the learning strategy such as Learning with-
out Forgetting (LwF). The Evaluation module provides met-
rics to measure performance. Finally, the Logging compo-
nent provides a service to display or store training and eval-
uation information.

Library for Online Learning Algorithms (LIBOL)
LIBOL is an OL library created by Hoi et al. (Hoi, Wang,
and Zhao 2014) and is publically available on Github 2. This
library contains algorithms that were popular at the time of
its publication implemented in C++ and MATLAB. The au-
thors provided a few datasets to showcase all of the different
functionalities. However, LIBOL has not been maintained
since 2014. In 2018, a user converted LIBOL into Python
3, but they only converted and did not add. This keeps the
functionality of LIBOL limited but worth including.

River
River is an ML library for data streams and incremental
learning that provides state-of-the-art learning methods, data
generators, performance metrics, and evaluators (Montiel et
al. 2021). This library, which is on Github 4, came from the
collaboration of the creators of scikit-multiflow (Montiel et
al. 2018) and creme (Halford et al. 2019). River’s architec-
ture is depicted in Fig. 2 and can be broken down into three
main sections: Dataset, Pipeline, and Metric.

The Dataset portion provides datasets and scripts needed
to create datasets. The Pipeline module contains both the

1https://github.com/ContinualAI/avalanche
2https://github.com/LIBOL/LIBOL
3https://github.com/LGuitron/LIBOL-python
4https://github.com/online-ml/river



Figure 2: River Architecture (Montiel et al. 2021)

models that River provides and the different transforms one
could apply to the dataset, such as scaling and drift detec-
tion. Finally, the Metric section provides different metrics
that measure the performance of the model.

River-torch

River-torch is an extension to River maintained on Github 5.
It provides a wrapper that allows development of a PyTorch
model to be inserted into the River pipeline. River-torch al-
lows for developers and researchers with PyTorch experi-
ence to test models that are not natively supported in the
River framework.

Vowpal Wabbit (VW)

The VW project was created by Microsoft Research and Ya-
hoo! Research and hosted on Github 6. This library focuses
on fast learning algorithms for many areas of research in-
cluding interactive learning and OL. VW aims to perform
computationally efficient learning via a number of methods
that include bounding the memory usage and formatting the
input data in a free-form manner. This project is available in
many languages such as R, Python, and Java and provides a
purely OL environment for testing datasets via scikit-learn
and their available set of algorithms.

Other Libraries

As previously stated, this study only focuses on supervised
learning approaches in OL; however, there are a number of
other libraries and functionalities that fall outside our scope.
We will provide a brief overview of these libraries.

ContinualAI has a library dedicated to continual rein-
forcement learning known as Avalanche-RL 7. Additionally,
VW has a wide range of packages for interactive and ac-
tive learning; it also supports contextual bandit learning al-
gorithms. Additionally, River has unsupervised learning ca-
pabilities.

Comparative Analysis
Development Comparison
To analyze the different libraries, we broke the compari-
son down into two methods: model development and bench-
marking. The development aspect of our comparison looks
at features that would be useful to a user. This can be por-
trayed in many different scenarios: a product developer, a
researcher looking to test the state-of-the-art algorithms and
the likes. With this perspective, we create the bases for the
development comparison: maintenance, documentation, and
state-of-the-art. For maintenance, we are looking for how
actively (i.e., date and frequency) the library is updated by
the creators. Documentation is considered as a way of in-
structing the users on how to effectively use the library in the
form of examples and comments. Finally, the state-of-the-
art offerings of libraries is rather subjective. We examined
the literature, e.g. (Hoi et al. 2021; De Lange et al. 2022;
Parisi et al. 2019; Parisi and Lomonaco 2020; Gepperth
and Hammer 2016; Losing, Hammer, and Wersing 2018;
Shahraki et al. 2022; Yang, Gu, and Wu 2019; Sahoo et al.
2017) to gauge what algorithms should be present. These
algorithms are listed in Table 1.

Benchmark Comparison
The benchmark comparison looks at the performance of the
libraries under similar scenarios. This is used as a method
of observing aspects such as power usage and memory us-
age of the libraries. We compare the runtime, memory us-
age, and power usage of the model creation and training.
We do not account for the impact of loading the dataset into
memory and testing in this analysis. We used the Python li-
braries memory-profiler 8 and pyRAPL 9 to gather informa-
tion about RAM usage and power usage respectively.

In order to maintain consistency, control of the data source
and formatting, we used datasets that are native to the
Avalanche library. The data was then transformed to the for-
mats necessary for the other libraries outside of the analysis.
The workstation used for the testing had 125 GB of RAM,
an 80 core Intel®Xeon Gold 6230 CPU, and was running
Ubuntu 20.04.5 LTS.

Firstly, we use the Split MNIST dataset (Deng 2012)
which is made up of 60,000 28x28 handwritten digits in 10
classes, and comprises of 50,000 training images and 10,000
test images. The second dataset is the CIFAR-10 dataset
(Krizhevsky, Hinton, and others 2009) which consists of
60,000 32x32 color images in 10 classes, with 6,000 images
per class. There are 50,000 training images and 10,000 test
images. Finally, we used the Caltech-UCSD Birds-200-2011
(CUB-200-2011) dataset (Wah et al. 2011), which our ver-
sion that was used for this work consists of 100 categories
of birds and 5,864 128x128 images.

Due to the differences in the available architectures be-
tween the libraries, we kept the architectures similar where

5https://github.com/online-ml/river-torch
6https://github.com/VowpalWabbit/vowpal wabbit
7https://github.com/ContinualAI/avalanche-rl
8https://github.com/pythonprofilers/memory profiler
9https://github.com/powerapi-ng/pyRAPL



Table 1: State of the Art Algorithms From the Literature
Algorithm River Avalanche LIBOL VW
SVM (Yang, Gu, and Wu 2019; Losing, Hammer, and Wersing 2018) Yes No No No
Naive Bayes (Yang, Gu, and Wu 2019; Losing, Hammer, and Wersing 2018) Yes Yes No No
RF (Yang, Gu, and Wu 2019; Losing, Hammer, and Wersing 2018) Yes No No No
Neural Networks (Yang, Gu, and Wu 2019; Sahoo et al. 2017) Yes Yes Yes Yes
ART (Gepperth and Hammer 2016) No No No No
RBF (Gepperth and Hammer 2016) Yes No No No
ELM (Gepperth and Hammer 2016) No No No No
Ensemble (Gepperth and Hammer 2016; Parisi et al. 2019) Yes No No No
LVQ (Gepperth and Hammer 2016; Losing, Hammer, and Wersing 2018) No No No No
KNN Classifier (Gepperth and Hammer 2016) Yes No No No
Hoeffding Tree (Shahraki et al. 2022) Yes No No No
Very Fast Decision Tree (Shahraki et al. 2022) Yes No No No
Hoeffding Adaptive Tree (Shahraki et al. 2022) Yes No No No
Extremely Fast Decision Tree (Shahraki et al. 2022) Yes No No No
LASVM (Losing, Hammer, and Wersing 2018) No No No No
SGD (Losing, Hammer, and Wersing 2018) Yes Yes Yes Yes
Learn++ (Losing, Hammer, and Wersing 2018) No No No No
LWF (Parisi et al. 2019; Parisi and Lomonaco 2020; De Lange et al. 2022) No Yes No No
EWC (Parisi et al. 2019; De Lange et al. 2022) No Yes No No
AR1 (Parisi et al. 2019; Parisi and Lomonaco 2020) No Yes No No
Dynamic Architectures (Parisi et al. 2019) Yes Yes No Yes
GWR (Parisi et al. 2019; Parisi and Lomonaco 2020) No No No No
CWR (Parisi and Lomonaco 2020) No Yes No No
CWR+ (Parisi and Lomonaco 2020) No No No No
Replay (Parisi and Lomonaco 2020) No Yes No No
SI (Parisi and Lomonaco 2020; De Lange et al. 2022) No Yes No No
ICARL (Parisi and Lomonaco 2020; De Lange et al. 2022) No Yes No No
GEM (De Lange et al. 2022) No Yes No No
VCL (De Lange et al. 2022) No No No No
EBLL (De Lange et al. 2022) No No No No
MAS (De Lange et al. 2022) No Yes No No
IMM (De Lange et al. 2022) No No No No
PackNet (De Lange et al. 2022) No No No No
HAT (De Lange et al. 2022) No No No No
Perceptron (Hoi et al. 2021) Yes Yes Yes No
Winnow (Hoi et al. 2021) No No No No
PA (Hoi et al. 2021; Lu, Zhao, and Hoi 2016) Yes No Yes Yes
OGD (Hoi et al. 2021) No No Yes Yes
Cost Sensitive (Hoi et al. 2021) No No No Yes
Truncated GD (Hoi et al. 2021) Yes No No No

possible. Below are descriptions of the architectures used in
the experiment. For brevity, the input sizes change between
datasets to accommodate for the dimensionality of the in-
puts, and the output sizes are the amount of classes in the
dataset.

Avalanche Architecture The Avalanche architecture used
in this work is composed of an MLP architecture with 256
nodes in the hidden layer. In order to use Avalanche’s fea-
tures, the LwF was used to tackle catastrophic forgetting.
While this would go against the OL mentality of minimiz-
ing disk usage, this is one method that continual learning
can offer to online continual learning. The network is also
trained in an online manner where it only receives one input
datum at a time.

LIBOL Architecture The LIBOL architecture utilizes
their native MLP with uniform update. The information
about the hidden layers is not stated in the source code. Since

this architecture is desgined for multiclass classification, the
output layer adapts to the different number of classes. Just as
all LIBOL algorithms, this one is trained in an online setting
by nature of the library.

River Architecture Our architecture for River consists of
a MLP combined with River’s OneVSRest (OVR) classifier.
This allows growth in the architecture as it comes across
more classes. This is one way for OL to allow higher ac-
curacy as the network changes to maintain an accurate per-
formance.

River-torch Architecture Because River-torch allows for
PyTorch models, the architecture is most similar to the
Avalanche architecture. The Avalanche MLP architecture
was copied over to River-torch. This allowed for the same
architecture to be trained through River as opposed to
Avalanche.



Table 2: Experimental Results
Dataset Library Accuracy Runtime (s) RAM Usage (MiB) Power Usage (J)
Split MNIST Avalanche 95.09% 409.9269 3284.1 62097.158

LIBOL 86.27% 21.12 0.1 2444.786
River 90.23% 161.0113 0.7 19279.709

River-torch 95.51% 323.7411 15.3 37254.4664
VW 90.22% 5.7848 11.5 684.8273

CIFAR10 Avalanche 36.71% 369.6757 2030.0 250662.586
LIBOL 17.22% 102.5437 0.8 14454.985
River 15.10% 546.5383 0.8 66258.0617

River-torch 35.25% 800.6992 15.4 94745.7943
VW 19.13% 23.0954 11.4 2779.7661

CUB-200-2011 Avalanche 1.19% 91.13 1656.4 12797.333
LIBOL 3.56% 277.6035 0.8 262552.5097
River 1.05% 3323.0912 108.4 390255.9768

River-torch 1.05% 1060.7573 138.4 229119.0817
VW 1.04% 16.4296 8.7 2001.0211

VW Architecture The VW architecture is the most dis-
similar of the lot as VW does not natively support MLP.
However, its architecture is more similar to River’s architec-
ture. It is a OneAgainstAll (OAA) classifier where multiple
simple classifiers are used to learn individual classes, and
these outputs are combined to determine which class the da-
tum belongs.

Results and Discussion
In this section, we present the results of our development
and benchmark comparisons. The benchmark comparison
results are summarized in Table 2. The best performances
of each category for each dataset are presented in bold font
face.

Development Comparison
As developmental experiences differ between developers,
this is a description of our unique experiences. While these
are anecdotal, we believe valuable knowledge can come
from the experience of others, so we choose to share our
experience while trying to maintain a level of objectivity.

Maintenance Avalanche, River, and River-torch are cur-
rently in development; meaning they are all prior to version
1.0 releases. These are all being updated very regularly with
multiple additions happening within a month. VW is on ver-
sion 9.6.0 as of writing, and it sees regular updates as well.
This library has existed for much longer, so it is more pol-
ished than the others. Finally, LIBOL has not seen an update
in many years. We feel it is safe to say that no updates will
be coming to the LIBOL library anytime in the near future
which limits its usability in our perspective.

Documentation The documentation seems to be of equal
quality as the maintenance of the libraries. As the most de-
veloped library, VW has a very in-depth documentation on
their wiki page that goes over all of the functionalities in
great detail. As the youngest library, River-torch has very
little documentation, but when combined with River’s docu-
mentation, they have a decent portal for documentation and
examples. Some functionality was in the descriptions, but it

just seems to not be finished at the time. Avalanche is on the
same level of documentation as River. It mostly is complete,
but there is some functionality unexplained in the documen-
tation. Finally, LIBOL’s documentation is simple, elegant,
and straight to the point. It provides everything one needs to
run their models.

State-of-the-Art When looking at state-of-the-art offers
from the libraries, Table 1 summarizes the findings from the
literature in comparison to the offerings of the libraries. Ta-
ble 3 defines the abbreviations used in Table 1.

In regards to incremental learning, River, and by exten-
sion River-torch, includes most of the state-of-the-art algo-
rithms. Some of the other algorithms, such as Learn++, are
in the works as discovered through the discussion boards, so
this library is only going to grow to continue supporting the
new algorithms. Regarding continual learning, Avalanche
also supports a majority of the desired algorithms. This li-
brary follows similarly to River where the discussions show
that algorithms that are not currently implemented, such as
PackNET and HAT, are in the works. Finally for OL specific
algorithms, those found in (Hoi et al. 2021), no one library
seems to support many algorithms, but there are not many al-
gorithms to support. VW supports the most specifically OL
algorithms. Avalanche is leaning towards support for online
continual learning, so some of these algorithms may show
up in the future. River has also made efforts in implement-
ing purely OL algorithms, so it follows a similar story.

Benchmark Comparison
As previously stated, Table 2 shows the results of our
benchmark analysis, where the higher accuracy is better.
Lower runtime, RAM usage, and power usage are also
better. Finally, RAM usage is measured in Mebibytes as
the output of the memory-profiler library is Mebibytes.
Mebibytes are slightly larger, roughly 1.049 times the size,
than Megabytes. Therefore, they can be thought of as simi-
lar.

Split MNIST Overall, each library performed well in ac-
curacy where River-torch and Avalanche performed the best



at roughly 95% accuracy. These are both using the same
code for the architectures, so we can say the PyTorch im-
plementation brings noticeably better performance than the
non-PyTorch implementations. VW brings efficient compu-
tation with the fastest runtimes and least power usage. As
this one was not using a MLP, the most efficient library us-
ing a MLP was LIBOL with second best runtime and power
usage and the best RAM usage.

CIFAR10 All-in-all the performance accuracies of each
library are not good in this dataset with these setups.
Avalanche performs slightly better than River-torch with
36.71% accuracy while the others perform in the 15% to
20% accuracy range. Just like for Split MNIST, VW per-
formed the fastest while using the least amount of power.
The second best is still LIBOL. RAM usage actually saw
a tie between LIBOL and River which was the second best
performing in this category for Split MNIST.

CUB-200-2011 None of these libraries perform well on
this dataset with these setups. The only library that performs
better than random chance is LIBOL with a 3.56% accu-
racy. VW has the best performance runtime and power us-
age which is followed by Avalanche. Similar to the other
datasets, LIBOL manages to keep its RAM usage very low.

Discussion

These architectures were not optimized for optimal perfor-
mance, rather they were optimized for similarity of the prob-
lem setup as to offer some insights of the inner workings of
the different libraries for OL. With this, we want to bring up
the differences in performances in relation to the problem
setups.

The Split MNIST and CIFAR10 datasets are exactly the
same in number of data instances and classifications. The
differences are slightly more features in CIFAR10 and col-
ored images in CIFAR10. These features have shown to be
detrimental to the performance of the architectures. It min-
imally affected RAM usage, but power and runtime were
greatly impacted. These measurements were generally in-
creased by 2- to 7-folds.

Another finding is that the PyTorch based libraries, i.e.
Avalanche and River-torch, have an interesting performance
trajectory compared to the others. Avalanche shows to be the
slowest and most power hungry library until the very high
dimensional dataset (CUB-200-2011). River-torch shows to
be in the upper rankings in runtime and power usage, but
once it is tested with the CUB-200-2011, it has increased at
a slower rate than the non-Pytorch libraries.

The final item to address is the consistent high RAM us-
age of Avalanche. One possible reasoning is how Avalanche
loads the data. While not certain, there could be a data load-
ing process in the training function. If this is true, the other
libraries had the data loaded into the code explicitly while
Avalanche might have a generator or pointer to the data. This
would have to be tested explicitly, but this is an after thought
to the analysis.

Table 3: Nomenclature for Table 1
Abbreviation Meaning
SVM Support Vector Machine
RF Random Forest
ART Adaptive Resonance Theory
RBF Radial Basis Function
ELM Extreme Learning Machine
LVQ Learning Vector Quantization
KNN Classifier K-Nearest Neighbors Classifier
LASVM Online Approximate SVM
SGD Stochastic Gradient Descent
LWF Learning without Forgetting
AR1 Architect & Regularize
EWC Elastic Weight Consolidation
GWR Grow When Required
CWR Copy Weight with Reinit
CWR+ CWR + Mean-shift and Zero Initialization
SI Synaptic Intelligence
ICARL Incremental Classifier & Representation Learning
GEM Gradient Episodic Memory
VCL Variational Continual Learning
EBLL Encoder Based Lifelong Learning
MAS Memory Aware Synapses
IMM Incremental Moment Matching
HAT Hard Attention to the Task
PA Passive Aggressive Network
OGD Online Gradient Descent

Conclusion

Machine learning (ML) is an important field in big data ana-
lytics. As the field moves towards streaming data for training
and analysis, we too must move our focus towards different
approaches, namely online learning (OL). ML has popular
libraries such as PyTorch and Keras, but OL libraries have
yet to peak in popularity. We have provided two analyses of
different OL libraries: a development comparison where we
look at the developmental process and a benchmark com-
parison where we compare the performance of the libraries
on three different datasets. Any of the libraries can be used,
but we believe that the Avalanche, River, and River-torch are
the future as they are continuously growing for online super-
vised learning.

Acknowledgement

This work by Mississippi State University was financially
supported by the U.S. Department of Defense (DoD) High
Performance Computing Modernization Program, through
the US Army Engineering Research and Develop Center
(ERDC) Contract #W912HZ21C0014. The views and con-
clusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the
U.S. Army ERDC or the U.S. DoD.

This paper and the research behind it would not have been
possible without the exceptional support by the Predictive
Analytics and Technology Integration (PATENT) Labora-
tory at Mississippi State University.



References
Ade, R. R., and Deshmukh, P. R. 2013. Methods for in-
cremental learning: a survey. International Journal of Data
Mining & Knowledge Management Process 3(4):119.
Adhikari, P.; Rao, H. G.; and Buderath, M. 2018. Machine
learning based data driven diagnostics & prognostics frame-
work for aircraft predictive maintenance. In 10th Interna-
tional Symposium on NDT in Aerospace Dresden, Germany.
Athmaja, S.; Hanumanthappa, M.; and Kavitha, V. 2017. A
survey of machine learning algorithms for big data analytics.
In 2017 International conference on innovations in informa-
tion, embedded and communication systems (ICIIECS), 1–4.
IEEE.
Benczúr, A. A.; Kocsis, L.; and Pálovics, R. 2018. On-
line machine learning in big data streams. arXiv preprint
arXiv:1802.05872.
Chollet, F., et al. 2015. Keras.
Cummins, L.; Killen, B.; Thomas, K.; Barrett, P.; Rahimi, S.;
and Seale, M. 2021. Deep learning approaches to remaining
useful life prediction: A survey. In 2021 IEEE Symposium
Series on Computational Intelligence (SSCI), 1–9.
De Lange, M.; Aljundi, R.; Masana, M.; Parisot, S.; Jia, X.;
Leonardis, A.; Slabaugh, G.; and Tuytelaars, T. 2022. A con-
tinual learning survey: Defying forgetting in classification
tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44(7):3366–
3385.
Deng, L. 2012. The mnist database of handwritten digit im-
ages for machine learning research. IEEE Signal Processing
Magazine 29(6):141–142.
Farooq, J., and Bazaz, M. A. 2021. A deep learning algo-
rithm for modeling and forecasting of covid-19 in five worst
affected states of india. Alexandria Engineering Journal
60(1):587–596.
Gepperth, and Hammer. 2016. Incremental learning algo-
rithms and applications. European symposium on artificial.
Halford, M.; Bolmier, G.; Sourty, R.; Vaysse, R.; and Zoui-
tine, A. 2019. creme, a python library for online machine
learning.
Hammer, B.; He, H.; and Martinetz, T. 2014. Learning and
modeling big data. In ESANN, 343–352. Citeseer.
Hoi, S. C. H.; Sahoo, D.; Lu, J.; and Zhao, P. 2021. On-
line learning: A comprehensive survey. Neurocomputing
459:249–289.
Hoi, S. C. H.; Wang, J.; and Zhao, P. 2014. LIBOL: A
library for online learning algorithms. J. Mach. Learn. Res.
15(1):495.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
Lalmuanawma, S.; Hussain, J.; and Chhakchhuak, L. 2020.
Applications of machine learning and artificial intelligence
for covid-19 (sars-cov-2) pandemic: A review. Chaos, Soli-
tons & Fractals 139:110059.
Lomonaco; Pellegrini; Cossu; and others. 2021. Avalanche:
an end-to-end library for continual learning. Proc. Estonian
Acad. Sci. Biol. Ecol.

Losing, V.; Hammer, B.; and Wersing, H. 2018. Incremental
on-line learning: A review and comparison of state of the art
algorithms. Neurocomputing 275:1261–1274.
Lu, J.; Zhao, P.; and Hoi, S. C. H. 2016. Online passive-
aggressive active learning. Mach. Learn.
Montiel; Read; Bifet; and Abdessalem. 2018. Scikit-
multiflow: A multi-output streaming framework. J. Mach.
Learn. Res.
Montiel, J.; Halford, M.; Mastelini, S. M.; Bolmier, G.;
Sourty, R.; Vaysse, R.; Zouitine, A.; Gomes, H. M.; Read,
J.; Abdessalem, T.; et al. 2021. River: machine learning for
streaming data in python. The Journal of Machine Learning
Research 22(1):4945–4952.
Parisi, G. I., and Lomonaco, V. 2020. Online continual
learning on sequences. In Oneto, L.; Navarin, N.; Sperduti,
A.; and Anguita, D., eds., Recent Trends in Learning From
Data: Tutorials from the INNS Big Data and Deep Learn-
ing Conference (INNSBDDL2019). Cham: Springer Interna-
tional Publishing. 197–221.
Parisi, G. I.; Kemker, R.; Part, J. L.; Kanan, C.; and Wermter,
S. 2019. Continual lifelong learning with neural networks:
A review. Neural Netw. 113:54–71.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information pro-
cessing systems 32.
Sahoo, D.; Pham, Q.; Lu, J.; and Hoi, S. C. H. 2017. On-
line deep learning: Learning deep neural networks on the fly.
arXiv preprint arXiv:1711.03705.
Shahraki, A.; Abbasi, M.; Taherkordi, A.; and Jurcut, A. D.
2022. A comparative study on online machine learning tech-
niques for network traffic streams analysis. Computer Net-
works 207:108836.
Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie,
S. 2011. The caltech-ucsd birds-200-2011 dataset. Technical
Report CNS-TR-2011-001, California Institute of Technol-
ogy.
Wen, Y.; Rahman, M. F.; Xu, H.; and Tseng, T.-L. B. 2022.
Recent advances and trends of predictive maintenance from
data-driven machine prognostics perspective. Measurement
187:110276.
Yang, Q.; Gu, Y.; and Wu, D. 2019. Survey of incremental
learning. In 2019 Chinese Control And Decision Conference
(CCDC), 399–404.


