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Abstract

Modeling complex data, e.g., time series as well as
network-based data, is a prominent area of research. In
this paper, we focus on a combination of both, analyzing
network-based spatial sensor data which is attributed
with high frequency time series information. We apply
a symbolic representation and an attention-based local
abstraction approach, to enhance interpretability on the
respective complex high frequency time series data. For
this, we aim at identifying informative measurements
captured by the respective nodes of the sensor network.
To do so, we demonstrate the efficacy of the Symbolic
Fourier Approximation (SFA) and the attention-based
symbolic abstraction method to localize relevant node
sensor-information, by using a transformer architecture
as an encoder for a graph neural network. In our exper-
iments, we compare two seismological datasets to their
previous state-of-the-art model, demonstrating the ad-
vantages and benefits of our presented approach.

Introduction

The analysis of complex sensor network data is typically
rather challenging, e.g., due to high dimensionality, large
volumes of data, high frequency information attributed to
the network nodes, etc. (Tubaishat and Madria 2003). Here,
standard modeling techniques are often facing severe limita-
tions, considerably restricting our ability to draw meaningful
insights from the data. To address these challenges, special-
ized modeling techniques that can effectively handle com-
plex data in a structured and interpretable way are required.
We tackle this outline issue in two different steps:

1. To model a spatial sensor network, where the nodes are
attributed with high frequency time series data, we exploit
and adapt a graph neural network (GNN) based approach
introduced by Bloemheuvel et al. (2022).

2. By introducing an attention-based Transformer encoder
(Vaswani et al. 2017) into the model, we enable the use
of a symbolic abstraction technique to draw insight from
the data. In particular, it enables us to find informative
nodes, thus essentially reducing complexity and potential
cognitive load for human interpretation.
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In our presented approach, we therefore combine the
modeling power of graphs with an interpretable abstraction
method to identify informative nodes embedded into an ex-
trinsic regression task (Tan et al. 2021). While there are ex-
isting methods for identifying important nodes in networks
and graphs, respectively, e. g., by Ying et al. (2019) and Bal-
dassarre and Azizpour (2019), such techniques are not opti-
mized for regression tasks, even less so in our domain which
combines graphs with complex high-frequency time series
data. In general, time series encode information in a redun-
dant, continuous, numeric and non-intuitive way, making
them hard to grasp for humans (Rojat et al. 2021), empha-
sizing the need for suitable explanation methods. Further-
more, they introduce rather challenging properties for neural
networks (Shen, Wei, and Wang 2022). Thus, we introduce
SFA as a symbolic representation into our approach, with the
goal of enhancing its interpretability — while maintaining the
overall performance.

We demonstrate the efficacy of these methods on two seis-
mic datasets (Michelini et al. 2016), i.e., on spatial sensor
networks attributed with high frequency time series data.
Our contributions are summarized as follows:

1. We present an attention-based approach for identifying
informative nodes in an attributed spatial sensor networks,
enhanced by symbolic representations.

2. We evaluate the proposed approach in the context of a
GNN-based extrinsic regression task. In our experimenta-
tion, we compare the proposed method in various instan-
tiations to the state-of-the-art baseline, demonstrating the
efficacy of the presented approach. Furthermore, we dis-
cuss insights and implications w.r.t. its interpretability.

The rest of the paper is structured as follows: We first in-
troduce some background notions as well as related work
on symbolic time series embeddings, the Transformer archi-
tecture — corresponding to our attention-based abstraction
method — as well as GNNs and discuss the issue of explain-
ability. After that, we briefly summarize properties and char-
acteristics of the applied datasets in the evaluation. Next,
we present our proposed approach, combining the SFA, lo-
cal attention-based symbolic abstraction as well as the ap-
plied GNN models. Then, we present and discuss the results
of our experimental evaluation, before we conclude with a
summary and discuss interesting options for future work.



Related Work and Background

Below, we summarize foundational notions and related work
on symbolic time series embeddings, Transformers as well
as explainability in the context of GNNs and time series.

Symbolic Time Series Embeddings

Recently, multiple new word2vec-like (Mikolov et al. 2013)
embeddings emerged, e.g., cf. Nalmpantis and Vrakas
(2019); Kim, Hong, and Cha (2020); Yue et al. (2022); Ye
and Ma (2022); Tabassum, Menon, and Jastrzebska (2022).
However, most of those representations are suboptimal in
terms of interpretability (Schwenke and Atzmueller 2023),
due to the less accessible nature of time series data and their
mapped representation, compared to words and word em-
beddings. Therefore, we aim to use more symbolic embed-
ding approaches, like Symbolic Aggregate approXimation
(SAX) (Lin et al. 2003) or Symbolic Fourier Approxima-
tion (SFA) (Schifer and Hogqvist 2012). SAX, in particular,
has been successfully applied as a symbolic embedding for
deep learning (Lavangnananda and Sawasdimongkol 2012;
Schwenke and Atzmueller 2021c; 2021b; Criado-Ramon,
Ruiz, and Pegalajar 2022; Tabassum, Menon, and Jastrzeb-
ska 2022), via a more human related representation, cf. Atz-
mueller et al. (2017); Ramirez, Wimmer, and Atzmueller
(2019). However, it is rather limited to the context of trend-
based data. As shown by Schwenke and Atzmueller (2023),
SFA can be quite helpful, in principle, to improve the inter-
pretability and even performance on frequency-based data.

Transformer Architecture

The Transformer architecture (Vaswani et al. 2017) with
its Multi-Head Attention (MHA) mechanism is a recently
emerged neural network architecture which provides the ba-
sis for multiple state-of-the-art applications; focusing mostly
on Natural Language Processing (NLP) (Vaswani et al.
2017) and Computer Vision (CV) (Dosovitskiy et al. 2020).
Lately, Transformers were successfully adapted to time se-
ries tasks (Lim et al. 2019; Li et al. 2019; Wen et al. 2022),
for example, also addressing some challenges of time series
data, like reducing the memory bottleneck easily reached by
time series data (Tay et al. 2020). Transformers are espe-
cially interesting for time series data due to their ability to
handle long-term dependencies (Li et al. 2019), while also
being able to act as data encoder, e. g., the original encoder-
decoder application. Additionally, the introduction of atten-
tion with the MHA enables further explainable methods (Vig
2019; Skrlj et al. 2020; Schwenke and Atzmueller 2021c;
2021b). Here, we utilize the Transformer architecture as a
foundation of our attention-based abstraction approach.

Explainability: GNNs and Time Series

In general, graphs enable the modeling of complex rela-
tionships between variables, observations, and objects, in
the context of complex systems (Strogatz 2001; Albert and
Barabési 2002; Kipf and Welling 2017; Li et al. 2017,
Jozinovi¢ et al. 2020; Bloemheuvel et al. 2022). Various DL
methods exist to operate on such graph-structured data, gen-
erally called Graph Neural Networks (GNNs). GNNs can

preserve the graph structure and capture the complex rela-
tional information between nodes, including attributes such
as edge and node features. One of the most popular tech-
niques is given by Graph Convolutional Neural Networks
(GCNs) (Kipf and Welling 2017), while recently Graph At-
tention Networks (Velickovi¢ et al. 2018) have also emerged.

Interpretability and explainability of GNNs are impor-
tant facets, cf. Yuan et al. (2022); Li et al. (2022). One of
the central questions involves the identification of a set of
nodes or sub-graphs which are more important regarding a
specific class: In this paper, we tackle this using attention
on symbolic time series representations on a GNN model.
However, most of these techniques are designed for node or
graph-classification tasks. Whereas our task is a multivari-
ate extrinsic regression tasks where the main focus lies on
the node attributes, i. e., processing the whole graph struc-
ture using fewer nodal information. Additionally, attention-
based methods are still quite sparsely researched on graphs
(Holzinger et al. 2021; Yuan et al. 2022), which further mo-
tivates the application of our proposed abstraction approach.

Due to the complex nature of time series data, explain-
able artificial intelligence (XAI) on time series data is chal-
lenging. Nonetheless, many methods and models already
exist to cope for interpretability, where a few were sum-
marized by Rojat et al. (2021) and Theissler et al. (2022).
With the recent rise of Transformer models on time series
data (Wen et al. 2022), the need for corresponding attention-
based XAI methods arises. This is even more important be-
cause attention-based methods from other domains seem not
to work well on time series data (Ismail et al. 2020). Re-
cently, e. g., Schwenke and Atzmueller (2021c) introduced
an attention-based local abstraction method for time series
data. In this paper, we adapted this method to our sen-
sor graph context, including high-frequency time series as-
signed to the respective nodes of the network as attributes.
Thus, in contrast to the methods described above, we tackle
both a graph structure and complex attributed information
given by high-frequency time series data.

Datasets

Our analysis is performed in the context of a multivariate ex-
trinsic regression task (Tan et al. 2021) using two datasets of
the Italian national seismic network (Michelini et al. 2016).
Graphs can be regarded as a rather suitable modeling method
for the analysis of seismic data, due to seismic measure-
ments containing sensors that are geographically grounded
and contain a large amount of data. Each sensor in a seis-
mic network measures seismic waves in three dimensions:
up-down, north-south and east-west. Regarding our applied
datasets, the first dataset is the so-called CI dataset, consist-
ing of 915 earthquakes recorded by 39 stations. This net-
work is densely populated by seismic stations, and all earth-
quakes are originating from a small region (Michelini et al.
2016). The second dataset, called the CW dataset, consists
of 266 earthquakes (also recorded by 39 stations), but cov-
ers a larger land area (Michelini et al. 2016). In addition, the
earthquakes are also more scattered. Therefore, both datasets
in combination provide distinct scenarios, providing a nice
general overview for evaluation.
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Figure 1: Dataset task overview from Bloemheuvel et al. (2022). The FEMA station already measured the earthquake in the
initial 10 seconds, but further away stations have not. By taking this initial n seconds, the goal is to predict 5 different intensity

measurements of the earthquake at each station.

The task in both datasets is to only take an initial 10 sec-
onds of the input data of an incoming earthquake from mul-
tiple stations, in order to predict the future maximum in-
tensity measurements of all stations; including stations far-
away from the earthquakes’ epicenter, where the accelera-
tion waveforms did not reach yet. The 10-second window
makes sure that only nearby stations have had the opportu-
nity to actually measure the earthquake. The procedure is
visually explained in Figure 1. The regression target values
are external parameters of the input, which do not necessar-
ily depend on recent values, but rather on the whole length
of the time series (Tan et al. 2021). A total of 5 target param-
eters for each station are predicted, namely peak ground ac-
celeration (PGA), peak ground velocity (PGV) and spectral
acceleration (SA) at 0.3s, 1s and 3s periods, cf. Jozinovié et
al. (2020). The average mean squared error (MSE) was used
to evaluate the results of all models. To compare the overall
performance of all models, the MSE of all target values is
averaged into one error score.

For both datasets, an 80%-20% train-test split was used.
The shuffled train set was further split using a five-fold
cross-validation. The train-test split is repeated 5 times to
guarantee stable results, since the results depend on the dis-
tribution of larger earthquakes in the validation and test sets.

Method

Below, we present our approach integrating symbolic ab-
straction with graph modeling, which we evaluate in differ-
ent instantiations. Figure 3 exemplifies the applied process.

Symbolic Fourier Approximation

Using the Discrete Fourier Transformation (DFT) (Wino-
grad 1978), time series data can be decomposed into base
functions with different frequencies and amplitudes. It is a
typical method for time series pre-processing and approxi-
mation (Nalmpantis and Vrakas 2020). To further abstract

and reduce the data load, Schifer and Hogqvist (2012) in-
troduced the Symbolic Fourier Approximation (SFA) which
discretizes the Fourier coefficients into symbols using inter-
vals and approximates the original sample with only a sub-
set of Fourier coefficients, i.e., reducing noise from higher
frequencies (Schifer and Hogqvist 2012; Nalmpantis and
Vrakas 2020). With this approach, we can avoid using win-
dowing while building an informative and more accessible
data structure, i.e., trained models are smaller and faster,
while performing possible better on high frequent data,
cf. Schwenke and Atzmueller (2023). An example process
can be seen in Figure 2. SFA has three important parameters:
the number of intervals/symbols, number of Fourier coeffi-
cients and the interval building strategy. Schwenke and Atz-
mueller (2023) showed that a uniform interval distribution
works nearly always best on time series data. The smaller
the other two parameters, the simpler the data is. For our
models, we explored and selected a fixed set of well per-
forming values for better comparison.
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Figure 2: Example pipeline for SFA, based on and adapted
from Schifer and Hogqvist (2012).



Local Attention-based Symbolic Abstraction

In our application case, we aim to reduce the number of sen-
sors providing information in our sensor network of seis-
mic stations while aiming to keep the overall performance.
In the general graph modeling approach, we thus want to
identify more informative nodes (corresponding to the sta-
tions). Schwenke and Atzmueller (2021c¢) introduced a local
attention-based abstraction method, with the goal to locally
simplify time series data using a human-in-the-loop to pro-
mote interpretability; thus, this is quite suitable for our ap-
proach. For the sake of readability, we refer to this method
as Local Attention-based Symbolic Abstraction (LASA).

In the original method, the abstraction process is done in
the time dimension of the respective time series, such that
only specific time points or time intervals are considered in
the abstraction. This then targets the abstraction of trend in-
formation. However, this approach struggles to maintain fre-
quency based information, as we have in our current case.
Thus, to apply LASA, we first replace SAX with SFA to
enable symbolification on the frequency based data, while
reducing the model load with a smaller input sequence. By
restructuring the data format w.r.t. the nodal information
(node, attributes), the abstraction process can be applied
on the nodes rather than the measurement dimension to re-
duce attributed information of the nodes, cf. Figure 3. It is
important to note, that LASA has not been tested on Graph-
like structures before, e. g., for extracting informative node
information to simplify the graph; nor has it been applied
when a Transformer acts as an encoder of another model.

We train and validate our model afterwards with the
mapped symbolic data — to [-1,1] w.r.t. the vocabulary rela-
tions, as suggested by Schwenke and Atzmueller (2021¢c) —
to ensure that our selected parameters still capture the task
information. Afterwards, we aggregate all attention matrices
from the Transformer into a vector, by reducing the dimen-
sions using the maximum operation. We refer to Schwenke
and Atzmueller (2021a) for a detailed discussion about this
aggregation process. Afterwards, locally for each sample, all
vector entries below a certain threshold get masked; com-
pared to Schwenke and Atzmueller (2021¢) we use only one
threshold due to the graph structured data. By re-training the
model with the masked values, we verify that the informa-
tion needed for the task is still included. In a human-in-the-
loop approach, this threshold can now be fine-tuned to cope
for a suited performance-to-data-reduction ratio. Figure 3 vi-
sualizes an example abstraction process.
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Figure 3: Local Attention-based Symbolic Abstraction pro-
cess on graphs, i. e., keeping the SFA coefficient supplement
information on high attended nodes (green).
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Figure 4: Overview of our proposed TISER-TGCN model.

Models

We compare three models to analyze the effect of the
SFA and the Transformer encoder. As a first baseline we
use the original CNN model from Jozinovi¢ et al. (2020),
which is the previous version of the state-of-the-art TISER-
GCN model (our second baseline) from Bloemheuvel et al.
(2022); which includes an GCN to preprocess the graph
structure. As the third option, we propose the novel TISER-
TGCN model: it replaces the CNN layer from TISER-GCN
with a Transformer encoder to process the measured time
series information per station, as shown in Figure 4. Com-
pared to the normal Transformer encoder, we removed the
positional encoding due to the graph-like data structure with
no sequential relation. It is important to note, that due to
the memory limitations of the Transformer, TISER-TGCN
could only be run when applying the SFA transformation.
Figure 4 depicts our architecture. First, we apply SFA to (1)
extract meaningful frequency data, (2) abstract the inputs to
discrete symbolic values to enhance interpretability, while
enabling the application of LASA and (3) reduce the input
size and thus the model size. The mapped data gets after-
wards reshaped to match the transformer input. We concate-
nate the symbolified sensor data into one sequence to do so.
The data is then fed into two Transformer encoder layers.
The encoded data afterwards flows into a GCN, which also



gets the graph structure and node metadata as additional in-
put. At the end, the five outputs are generated via a flattened
dropout in combination with some Dense layers. Each model
is trained for up to 200 epochs, with 15 epochs patience. The
CNN models uses the RMSprop optimizer and the TISER-
TGCN uses the Adam optimizer with warm-up steps.

To compare the effect of our model modifications, we
calculate for all baseline models (1) the proposed original
configuration, (2) a modified parameter set (abbreviated as
ModParams) we optimized for the TISER-TGCN model and
(3) the models with SFA as input (including ModParams, de-
noted as SFA) to highlight the effect of SFA between TISER-
TGCN and the other models. The new parameter set Mod-
Params was necessary, due to the reduced input size, which
made the previous kernel size not applicable on the SFA
models. For our model parameters, in the context of our im-
plementation', we refer to Figure 4.

To evaluate the LASA method, we train three LASA mod-
els with the thresholds t0.5, t1.0 and t1.4. For e. g., t0.5 this
means we take the average of all attention values divided
by 0.5. Those thresholds can be fine-tuned in a human-in-
the-loop process for optimizing the reduction-performance
ratio. Here, for a comprehensive overview on the threshold
effects, we considered a broad range of the thresholds.

Results

This section presents our results. First, we analyze the per-
formance of our presented approach, after that we discuss
the impact on identifying informative nodes in our applied
sensor network context.

Performance

In Table 1, we compare the MSE performance of the mod-
els for the CI and CW dataset on a 10-second window.
We can see that the TISER-GCN SFA and TISER-TGCN
model (which both use the SFA) clearly outperform the pre-
vious state-of-the-art TISER-GCN model on both datasets,
thus showing the effect of the SFA. Interesting are also the
TISER-TGCN LASA results, especially with the t1.0 thresh-
old, which — for the LASA models — performed best on both
datasets. For the CI dataset, the performance decreases for
each threshold, even if we only reduce 50% of the data; indi-
cating that close stations enhance the information pool e. g.,
by ensuring measurements. On the other hand, for the CW
dataset LASA improves the results, indicating that distant
stations provide more noise than benefits for the regression.

By comparing the results for smaller time windows, see
Figures 6 and 7, we can see that SFA outperforms the base-
line at each time window; even providing a more stable
linear loss in performance, while the baseline seems more
exponential. This shows that the SFA can successfully ap-
proximate the crucial regression information, while remov-
ing noise and represent the data in a small fixed sequence
regardless of the initial data length. Due to this smaller input
size, we could also decrease the prediction time of the test
set to 0.33s for TISER-GCN and 0.58s for TISER-TGCN,
compared to 1.15s of the TISER-GCN.

Thttps://github.com/lschwenke/GraphNodeAttention

Table 1: MSE (best performing in bold, second best in under-
score) of all models for both datasets with a window length
of 10s, and the reduction amount for the LASA technique.

Model Average Reduction

CI Network

TISER-GCN Original
TISER-GCN ModParams
TISER-GCN SFA

0.2007 £ 0.0273
0.2098 =+ 0.0269
0.1722 £ 0.0076

CNN Original 0.2543 £ 0.0317
CNN ModParams 0.2809 =+ 0.0285
CNN SFA 0.4840 £ 0.0415
TISER-TGCN 0.1728 + 0.0134

TISER-TGCN LASA t0.5  0.2013 £0.0184  95.24% =+ 01.18%
TISER-TGCN LASA t1.0  0.1885 £ 0.0204  91.09% =+ 00.80%
TISER-TGCN LASA t1.4  0.1909 £ 0.0217  52.72% =+ 18.45%
TISER-TGCN LASA? 0.1941 £ 0.0155  94.42% =+ 03.25%

CW Network

0.2929 £ 0.0523
0.3184 £ 0.0664
0.2597 £ 0.0338

TISER-GCN Original
TISER-GCN ModParams
TISER-GCN SFA

CNN Original 0.3514 4 0.0488
CNN ModParams 0.4305 £ 0.0544
CNN SFA 0.6617 £ 0.0535
TISER-TGCN 0.2685 + 0.0219

TISER-TGCN LASA t0.5  0.2629 £ 0.0554  94.29% =+ 01.59%
TISER-TGCN LASA t1.0  0.2332 £ 0.0329  92.01% =+ 01.56%
TISER-TGCN LASA t1.4  0.2421 £0.0290  74.17% £ 17.68%
TISER-TGCN LASA? 0.2556 £ 0.0483  95.01% =+ 01.96%

With smaller windows, most of the time the TISER-GCN
SFA model outperformed even the TISER-TGCN clearly.
We further observe that the LASA 1.0 model approximates
the original model, for both datasets. This could however
also be due to a suboptimal threshold, which is not always
simple to fine-tune due to the sometimes noisy attention val-
ues (Schwenke and Atzmueller 2021c¢). In our experimen-
tation, we only tested three thresholds as an approximation,
where overall t1.0 performed best.

Analysis on Identifying Informative Nodes

While the Transformer encoder model TISER-TGCN per-
formed very similar to the TISER-GCN SFA on the 10s win-
dow, the attention mechanism in the Transformer allows us
to apply LASA. Table 1 also shows the performance and
reduction of the data for three different thresholds. The re-
ductions of >90% shows that with only 1-5 stations, we
can already quite well predict most samples; i.e., LASA
can act as an abstraction method on graphs, even when the
Transformer is only an encoder. The LASA-selected stations
were typically close to the epicenters of the earthquakes,
with sometimes an additional more distant station (maybe
to reduce noise over distance). Figure 5 emphasizes this by
showing how often each station (blue) is selected. Especially
in the CI network, where most earthquakes are clustered in
the center (orange), it is easy to see that mostly the very
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close stations are selected over LASA. We observe, that
due to the redundant information inside the data, multiple
valid reductions exist and our results depend heavily on the
trained model. As an alternative test, we also successfully
reduced less important Fourier coefficients, by changing the
first sample dimension. However, in this setting the overall

results were significantly worse, which is why we do not re-
port them directly. As a further addition, we tested to apply
LASA twice; first on the coefficient dimension (t1.4) and af-
terwards on the stations (t1.0). Using this double reduction,
we reduce information in two dimensions and can even bet-
ter pinpoint informative features. In contrast to just reducing
the coefficients, we received comparable results, as can be
seen at LASA? in Table 1.

In summary, using LASA we can explore the data and find
more informative stations over a human-in-the-loop. This
process can give insight into the model’s decision w.r.t in-
terpretability. Here we showed that the model mostly detects
nodes closer to the epicenter to be more informative, which
matches the human intuition. Seismologists could e. g., use
our abstraction approach to find an informative set/range of
stations inside a larger area to reduce noise and computation
time, cf. CW network. In addition, they could also identify
defective stations with noisy or unreliable data indicating
that more stations are needed for a reliable application.

Conclusion and Future Work

In this paper, we presented an approach combining the mod-
eling power of graphs with an abstraction method to iden-
tify informative nodes embedded into an extrinsic regres-
sion task. By adapting an attention-based abstraction method
to our context, we demonstrated how to improve local in-
terpretability by focusing on the more informative nodes.
Hereby, the graph provided structural spatial information on
the measured information, enabling meaningful predictions
on the whole graph. In our seismic application, the relevant
information mostly focused on stations close to the epicen-
ter, leading even to a noise reduction effect on the scattered
network. Also, by introducing a symbolic representation into
the models, we could increase the interpretability, speed and
performance of the TISER-GCN, while enabling our Trans-
former model. This indicates the importance of such data
representations. In future work, a comparison to other Graph
XAI methods (Yuan et al. 2022; Li et al. 2022), as well
as higher-order pattern structures (Interdonato et al. 2019;
Atzmueller et al. 2019) could be considered.
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