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Abstract

Artificial Intelligence (AI) is becoming increasingly
important and pervasive in the modern world. The
widespread adoption of AI algorithms is reflected in the
extensive range of HW devices on which they can be
deployed, from high-performance computing nodes to
low-power embedded devices. Given the large set of
heterogeneous resources where AI algorithms can be
deployed, finding the most suitable device and its con-
figuration is challenging, even for experts.
We propose a data-driven approach to assist AI adopters
and developers in choosing the optimal HW resource.
Our approach is based on three key elements: i) fair
benchmarking of target AI algorithms on a set of hetero-
geneous platforms, ii) creation of ML models to learn
the behaviour of these AI algorithms, and iii) support
guidelines to help identify the best deployment option
for a given AI algorithm. We demonstrate our approach
on a specific (and relevant) use case: Deep Neural Net-
work (DNN) inference on embedded devices.
Keywords: Vertical Matchmaking, Machine Learning,
Benchmarking

Introduction
AI has made huge strides in recent years, and its influ-
ence over society appears poised to further growth in the
future (Mariani, Machado, and Nambisan 2023). However,
several challenges need to be addressed for this growth to
continue. Among the most crucial ones is the problem of
finding the most suitable hardware (HW) resources for AI
algorithms in terms of HW type, deployment configuration,
memory size, and latency (Talib et al. 2021). This problem
is referred to as vertical matching (De Filippo et al. 2022).

In this paper, we focus explicitly on a class of AI algo-
rithms whose usage has been steadily increasing in the last
several years: DNNs inference. The deployment of DNNs
for a specific problem occurs after the successful training
of a NN and can take place on a variety of HW platforms.
A significant concern for AI engineers during the deploy-
ment of AI Algorithms is maximizing the system’s perfor-
mance in terms of overall latency, quality of solution, power,
and space. Since inference operations make up most of the
DNNs’ lifetime (Canziani, Paszke, and Culurciello 2016),
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Figure 1: Schema of AI Matching Methodology

finding the most efficient HW platform to be run on is of
paramount importance.

There exist multiple deployment frameworks such as Ten-
sorFlow Lite (Farhoodfar 2019), NVIDIA TensorRT (Shafi
et al. 2021), Arm Compute Library (ArmCL) (Sun, Liu, and
Gaudiot 2017), Intel OpenVINO (Zunin 2021) that target
the optimisation of DNNs on edge devices. Each of these
usually target the specific vendor’s HW platform, limiting
the portability across different systems. In this paper, we ex-
tend the original LPDNN, an enabling framework for de-
ploying DNNs on low-power HW, by incorporating new in-
ference engines and HW platforms for fair and systematic
benchmarking. This allows for fast space exploration and a
broader understanding of AI algorithm’s behaviour across
HW platforms.

Although some of these AI platforms offer AutoML meth-
ods to accommodate users’ requirements, none offers a va-
riety of HW devices and AI Applications to choose from as
an open AI marketplace. With this work, we aim providing a
support tool to guide the user through the variety of possible
devices and help the choice of suitable deployment options.
Thus, we aim to answer the following research questions:
RQ1) how to effectively and efficiently perform benchmarks
for AI applications on a variety of devices? and RQ2) is it
possible to use data-driven insights to suggest the optimal
HW device to end users, according to their requirements?



Our main contributions are:
• Systematic and fair benchmarking on heterogeneous plat-

forms to profile AI algorithms.
• Training of ML models to learn the behaviour and require-

ment of these AI algorithms.
• Support guidelines to help identify the best deployment

option for a given AI algorithm.
The results reported in this paper can be found in https:
//github.com/Francobaldi/TinderAI.

AI Matching Methodology
Our methodology is divided into three blocks: i) automated
benchmarking, ii) ML models to learn the AI algorithms’
behaviour, and iii) support guidelines for HW matching.

Automated benchmarking framework
The performance of AI applications (compiled AI algo-
rithms for deployment) is usually given by the vendors on
limited benchmark problems and HW platforms, providing
little understanding for a potential Adopter about the general
behavior of an AI application on different systems. Thus, the
availability of an automated benchmarking framework, i.e.,
Benchmark as a Service, decreases the barriers for Adopters
to benchmark their AI solutions and study the feasibility of a
given real-world problem. In this work, we extend the origi-
nal LPDNN as our automated benchmarking framework in-
corporating new inference engines and HW platforms.

LPDNN: Deep Learning Inference Framework
LPDNN (de Prado et al. 2018; 2020) is an enabling
framework for deploying DNNs on low-power HW. It
comprises a full flow for developing DNN models for edge
devices, providing support for various platforms, AI model’s
catalog, optimization, compression, and benchmarking tools
to ensure efficient and portable implementations. LPDNN
offers a set of AI applications for AI tasks for image, audio,
and signal processing that can be deployed and optimized
across heterogeneous platforms, including CPUs, GPUs,
FPGAs, and NPUs, allowing performance portability across
a wide span of HW platforms.

Deployment on heterogeneous embedded devices Dur-
ing the deployment of an AI model on multiple HW plat-
forms many different problems may arise. For example,
third-party dependency issues, lack of support or accelera-
tion for specific NN layers, and impractically large inference
times. LPDNN addresses these challenges by featuring a
compact C++ core minimizing dependencies on third-party
libraries. Only needed dependencies are incorporated when
required by the target platform. Furthermore, LPDNN in-
cludes cross-compilation and tailored tools to support many
of heterogeneous HW platforms. LPDNN provides:
• Developer Platform Environments (DPEs) that include

OS images, drivers, and cross-compilation tools
• Dockerized environments that increase the reliability and

portability of AI applications
• Optimisation tools and computing libraries that serve to

accelerate inference of DL models on embedded devices

Benchmarking LPDNN provides a benchmarking layer
to analyze the execution of AI Applications on HW plat-
forms. LPDNN integrates i) an analysis of static metrics
during the offline compilation of the AI Applications and,
ii) the on-device metrics during the execution of the AI Ap-
plications. Static metrics are typically GFLOPs, number of
parameters and disk size of the model. Some of the dy-
namic parameters are latency, consumed CPU/GPU memory
and power consumption. The totality of the metrics is repre-
sented in the Bonseyes Benchmark documentation1. More-
over, LPDNN’s capability of supporting the integration of
3rd-party self-contained inference engines to perform DNN
inference allows different SW vendors to be benchmarked
and fairly compared across several systems with the same
benchmarking code. This makes LPDNN a powerful tool for
space exploration for AI Adopters.

ML predictor
In this section, we describe the ML approach adopted to pro-
duce a pool of predictive models to answer the following
question: given an AI task (task ), a DNN (dnn) designed
for such task , and an HW platform (hw ) supporting such
dnn , what is the average computational demand required by
dnn , running on hw , in processing an instance of task?

Features & Targets We frame the above question as
a supervised regression problem: we estimate the infer-
ence performance (inference) for any combination C =
(task , dnn, hw). We measure the performance with 8 dif-
ferent metrics, each one used as a ”target” for our regression
task. For target T the label of C is denoted as yTC ∈ R. We
encode C as an input vector of 11 features, that condense
the relevant pieces of information to estimate the DNN be-
haviour at inference time. The resulting input space is de-
noted by F , and the feature vector of C by xC ∈ F . Table 1
reports the composition of our feature space and target set.

Features Targets

task dnn hw inference

AI TASK MODEL PLATFORM TIME
VERSION ENGINE POWER

INPUT TILE PROCESSOR CPU LOAD
#PARAMS GPU LOAD
STORAGE CPU MEMORY MEAN
GFLOP GPU MEMORY MEAN

PRECISION CPU MEMORY PEAK
GPU MEMORY PEAK

Table 1: The adopted features and targets.

Then, for each target T , our task is to build a model MT :
F → R, which approximates the inference performance of
any given combination C, that is, MT (xC) ≈ yTC .

Data Preprocessing The data from the benchmarking
framework has to be transformed to make it suitable for
training an ML model. First, irrelevant information is fil-
tered out. Then, feature transformation routines i) encode the

1https://gitlab.com/bonseyes/bonseyes-benchmarks



categorical features 2 in a one-hot fashion, and ii) re-scale
the numerical features 3 within the range [0, 1] to normal-
ize their magnitudes across the dataset. We split our dataset
by adopting an 80%-20% stratified random split based on
AI TASK: for each task, 80% of the corresponding observa-
tions are randomly assigned to the train set, the remaining
20% are used in the test set.

We consider many different ML models grouped into 3
classes (in order of increasing complexity): linear models,
tree-based models, and NNs. The first class consists of three
linear regressors, respectively fitted through an ordinary
Least Squares (LS), a Ridge (RIDGE), and a Support Vector
Regression method with linear kernel (SVR). The second
class includes Decision Trees (DT-n) and Random Forests
(RF-n), where n denotes the maximum depth at which the
tree is grown during training for DTs, and the number of
individual predictors within the ensemble for RFs. Finally,
the last class consists of NNs of different architectures (NN-
n1 · n2 ·. . .·nd), where ni and d denote the size of the i-th
layer (assuming that the input layer is indexed by 0), and the
depth of the network, respectively.

Support Guidelines
Based on the benchmarking results and the data-driven ML
models built on top of these, this third step aims at match-
ing target AI applications with the HW platforms, by sug-
gesting the set of most suitable HW architectures (and their
configuration parameters). The proposed matching depends
on the users’ requirements, ranging from required maximum
inference time, deployment constraints4, to available finan-
cial budget. The matching process is guided by the trained
ML models that encode the knowledge extracted from the
benchmarking results. This knowledge is used to predict the
targets of a given DNN and rank/identify the best deploy-
ment option capable of providing the desired performance
(e.g., in terms of budget consumption) under the constraints
imposed by the available HW resources.

Experimental Results
In this section, we report the experimental evaluation results
of our approach. First, we describe the benchmark results
from LPDNN across multiple platforms. Then, we assess the
ML models’ performance to learn the behaviour of DNN
inference on different HW devices. Finally, we provide a real
use-case example where an Adopter SME chooses a model
following the support guidelines.

Benchmarking Results
This section describes how LPDNN has been employed to
produce a benchmark dataset for multiple AI Applications
across different SW configurations and HW devices.

2AI TASK, MODEL, VERSION, PRECISION, PLATFORM,
ENGINE, PROCESSOR

3INPUT TILE, #PARAMS, STORAGE, GFLOP
4For instance, if the DNN must be used on low-power embed-

ded system, computational constraints are to be assumed

Experimental Setup We employed a set of pre-trained
networks (AI Applications) for various tasks such as Face
Landmarks Detection, Bodypose Estimation, Age and Gen-
der Estimation, Emotion Classification, Eye Gaze Detection,
Headpose Estimation, and more general research tasks like
Imagenet, Coco for Image Classification and Object Detec-
tion. LPDNN supports the integration of 3rd-party libraries
or self-contained inference engines to execute DNNs with
multiple deployment configurations. In this work, we have
benchmarked the previous AI Applications with the follow-
ing inference engines on the following HW platforms:

HW platforms Inference Engines

Raspberry Pi 3b+ LNE
Raspberry Pi 4b TensorRT

NVIDIA Jetson Nano ONNX runtime
NVIDIA Jetson Xavier NCNN

Intel NUC
iMX8m Nano
STM32 MP1

Table 2: LPDNN’s inference engines and HW platforms.

Benchmarking dataset The execution of AI applications
across all inference engines and configurations on the HW
platforms produced a benchmark dataset of just under 3000
rows. Each experiment accounts for a different AI Applica-
tion, SW, or HW configuration. Each benchmark consisted
of the deployment and execution of the AI application over
20 runs with a previous warm-up run.

For a detailed description of the inference engines, HW
platforms, benchmarking process and collected dataset us-
ing LPDNN, refer to the open-source repository5.

ML Predictor Results
Linear and tree-based models are trained with Scikit-Learn,
while NNs with Keras, and evaluated through the Mean Ab-
solute Percentage Error (MAPE). However, since MAPE
is undefined for predictions close to zero (as for our tar-
gets), we adopt a slightly modified version of this met-
ric: given a predictive model M and a test set of ob-
servations T , we compute the MAPE of M over T as
1

|T |
∑

(x,y)∈T APE (y,M(x)), where APE is defined as
|y−M(x)|

|y| if y ̸= 0, otherwise as y. To guarantee unbiased
results, we always train and test our models exclusively on
the train and test set, respectively. Moreover, to mitigate the
impact of the randomness occurring in most of the adopted
algorithms, we repeat any training/testing procedure for 3
different random seeds, after that we aggregate the results.

Table 3 reports the evaluation results. The tree-based
models achieve the best results across all the targets, ex-
cept for CPU MEMORY PEAK, on which the NNs perform
slightly better. This reveals that our learning problem is too
complex to be addressed by a linear regressor. On the other
side, our dataset is not large enough to properly train data-
hungry NNs. However, since large datasets are very costly
tree-based models might be more suited to our end.

5https://gitlab.com/bonseyes/bonseyes-benchmarks/-
/blob/master/README.md



MODEL TIME POWER
LOAD MEM. MEAN MEM. PEAK

CPU GPU CPU GPU CPU GPU

LS 25.09 0.13 0.13 4.17 0.28 0.90 0.50 0.17
SVR 1.42 0.06 0.12 0.77 0.22 0.38 0.32 0.15
RIDGE 24.17 0.13 0.13 4.14 0.27 0.91 0.49 0.16

DT-5 5.36 0.02 0.05 0.18 0.14 0.05 0.24 0.05
DT-10 0.51 0.01 0.03 0.12 0.06 0.04 0.13 0.04
DT-15 0.21 0.01 0.03 0.10 0.06 0.04 0.14 0.04
DT-20 0.20 0.01 0.03 0.11 0.06 0.04 0.14 0.04
DT-25 0.20 0.01 0.03 0.11 0.06 0.04 0.14 0.04
DT-30 0.19 0.01 0.03 0.11 0.06 0.04 0.14 0.04
RF-10 0.24 0.01 0.02 0.11 0.05 0.04 0.13 0.04
RF-25 0.24 0.01 0.02 0.11 0.05 0.04 0.13 0.04
RF-50 0.23 0.01 0.02 0.11 0.05 0.04 0.13 0.04
RF-100 0.22 0.01 0.02 0.11 0.05 0.04 0.13 0.04
RF-150 0.23 0.01 0.02 0.11 0.05 0.04 0.13 0.04
RF-200 0.23 0.01 0.02 0.11 0.05 0.04 0.13 0.04
RF-300 0.23 0.01 0.02 0.11 0.05 0.04 0.13 0.04

NN-5 0.72 0.43 0.19 0.17 0.31 0.50 0.21 0.27
NN-10 0.69 0.27 0.13 0.17 0.20 0.40 0.15 0.13
NN-20 0.67 0.32 0.11 0.18 0.17 0.44 0.14 0.16
NN-5·5 0.68 0.50 0.13 0.17 0.22 0.54 0.15 0.43
NN-10·5 0.64 0.39 0.10 0.17 0.14 0.50 0.13 0.22
NN-10·10 0.60 0.38 0.10 0.17 0.13 0.48 0.12 0.18
NN-20·10 0.55 0.23 0.06 0.17 0.11 0.38 0.11 0.11
NN-20·10·5 0.49 0.31 0.04 0.17 0.08 0.43 0.10 0.13
NN-10·10·5·5 0.50 0.49 0.07 0.17 0.12 0.53 0.11 0.37
NN-20·10·10·5 0.44 0.37 0.06 0.17 0.09 0.47 0.10 0.29
NN-20·20·20·20 0.38 0.43 0.04 0.17 0.07 0.49 0.10 0.34

Table 3: Models performance across all targets.

DTs and RFs provide excellent results on more than half
of the considered targets, with an average error that remains
under 5% MAPE on CPU MEMORY MEAN and 4% on both
GPU MEMORY MEAN and GPU MEMORY PEAK with an as-
tonishing result of 2% and 1% MAPE on CPU LOAD and
POWER, respectively. On the other side, DTs and RFs are
not able to achieve the same performance on GPU LOAD and
CPU MEM PEAK, on which the error rises up to 10% and
13% MAPE, respectively. The most critical target, however,
is represented by TIME, where we are only able to achieve
a not very satisfactory 19% error. Motivated by this, in the
following section we investigate further the most promising
tree-based models: DT-20, DT-25, DT-30, RF-50, RF-100,
RF-150 (i.e., 3 DTs and 3 RFs), on the target TIME.

Task Reduction The following experiment is motivated
by the fact that, across our dataset, the distribution of tasks
(i.e., of AI TASK) is not uniform, i.e., some tasks are sub-
stantially under-represented when compared against others.
These tasks might jeopardize the accuracy of the predic-
tions, given that our models need more data to learn prop-
erly. Hence, now we progressively reduce the variability in
our data by removing some tasks from the train/test sets.
More precisely, for the considered target, we compare the
following 4 cases: 1) task-generic, trained/tested on all rep-
resented tasks (11); 2) reduced-task-generic, trained/tested
only on abundantly represented tasks (6), precisely the
ones described by more than 100 observations; 3) task-
specific, trained/tested only on the second most repre-
sented task (face-landmarks-detection); 4) task-
specific, trained/tested only on the most represented task
(bodypose-estimation).

Figure 2 shows that, overall, the task reduction approach
positively impacts our models’ performance. DTs models
trained on task-specific subset outperform their task-generic
counterparts by roughly 20% (relative increase). Moreover,

DT20 DT25 DT30 RF50 RF100 RF150

0.1

0.2

0.3

0.4

0.5
task-generic
reduced-task-generic
face-landmarks-detection
bodypose-estimation

Figure 2: MAPE performance (Y-axis) of the task-reduced
cases of the tree-based models in predicting TIME.

an even more pronounced error decrease can be observed
between the task-generic RFs and those specifically dedi-
cated to face-landmarks-detection, for which we
achieve a relative improvement of 30%.

Support Guidelines

In this section, we provide a real use-case example to find
the best AI algorithm - HW platform match. Image a Small-
Medium Enterprise (SME) expert in developing object de-
tection algorithms for camera security systems. The com-
pany has an object detection DNN but it needs help in de-
ploying it on different HW platforms for various clients. The
inference time for the DNN varies greatly depending on the
device and configuration, making it difficult to provide ac-
curate performance guarantees to its clients.

The predictive ML models presented above allows the
company to predict the performance of its DNN on different
devices before deploying it. Based on the client’s require-
ments, e.g., accuracy, min latency, and budget, the best de-
ployment configuration and platform for their object detec-
tion algorithm are identified and selected. This allows the
company to provide accurate performance guarantees and
confidently deploy its DNN on various HW platforms.

Conclusion

We addressed the problem of finding the most suitable
matching between HW platforms and SW deployment con-
figurations to maximize AI applications’ performance at in-
ference time. We tested our approach on a widespread sce-
nario, the deployment of DNNs on various HW devices.

We proposed a 3-stage sequential methodology for AI de-
ployment optimization. First, different SW-HW configura-
tions are benchmarked. Then, we used the benchmark data
to train ML models that could predict the performance of
DNNs on specific HW platforms, which are finally used to
suggest most suited resources.
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