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Abstract

Large pre-trained language models (LMs) such as GPT-
3 Codex are able to generate code remarkably well
given prompts of natural language text. But if we want
to use such LMs to generate code compatible with a spe-
cific API or library (e.g., an API which provides the en-
vironments in which certain rules, laws, or orders are to
be carried out), the amount of computational and data
resources required to fine-tune such models can be cost
prohibitive to most organizations. Given these practical
limitations, is it possible to utilize these massive code-
generation LMs to write code compatible with a given
API? We develop an algorithm that selects code exam-
ples using a smaller LM trained to predict which fea-
tures of an API are likely to be used in the resulting
code, which is a simpler problem than actually gener-
ating the code. The selected examples are then used to
build a prompt for the larger LM, which in turn gen-
erates the final code. We demonstrate our results on
a benchmark dataset derived from the collectible card
game “Magic: the Gathering,” and obtain state-of-the-
art results.

Introduction
The problem of how to automatically interpret language in
a way that produces a scrutable, understandable interpre-
tation is of fundamental importance for the future of AI.
It has been argued, for instance, that in order for artifi-
cially intelligent systems to properly follow human laws,
they need to be able to interpret them, which requires re-
solving the sometimes-ambiguous language that laws use.
But furthermore, the interpretation the AI chooses must be
provided in a form that stakeholders can inspect, test, and
use as precedent for future interpretations (Licato 2022a;
2022b; 2021). In other words, given text to be interpreted
by an AI, human stakeholders need to be able to inspect:
(I1) how the AI interpreted that text, and (I2) why the AI be-
lieves that interpretation is best. An emerging body of work
is exploring approaches to (I2) under the topic of interpre-
tive reasoning (Licato 2021; Sartor et al. 2014; Walton, Sar-
tor, and Macagno 2018; Licato, Marji, and Abraham 2019;
Walton, Macagno, and Sartor 2021; Araszkiewicz 2021), but
in this paper we will focus on (I1).
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One paradigm to productively study (I1) is that of auto-
matic code generation, particularly when the code is gener-
ated from law-like text. Consider, for example, collectible
card games (CCGs) such as Magic: the Gathering™(MtG).
In such games, players have a set of cards they can play,
each of which may have text describing possible effects
of those cards. Some of these effects might be simple and
unambiguous (e.g., “When this card is played, the oppos-
ing player takes 5 damage.”). But it is very common for
cards to contain language that is open-textured—i.e., lan-
guage whose full domain of applicability is underspecified,
often by design (Hart 1961; Waismann 1965; Vecht 2020).
Correctly interpreting open-textured language in CCGs can
require a deep knowledge of the game, how the card and the
language used in the text has historically been interpreted,
the ramifications of adopting one interpretation over another,
and so on. These problems parallel those faced by the auto-
matic interpretation of law (Bench-Capon and Sergot 1985;
Sanders 1991; Franklin 2012; Prakken 2017; Quandt and Li-
cato 2020); in fact, the rules and conflict resolution systems
of MtG has been described as an entire legal system in and
of itself, complete with judges who must make rulings based
on precedent, established best practices for interpretive rea-
soning, and commonsense notions of fairness (Adler 2019).
As such, the problem of how to automatically translate the
text on MtG cards (and CCGs in general) into programming
language code is a productive way to tackle the larger prob-
lem of automated reasoning about legal text, since convert-
ing the text into code forces one to make decisions about
how the text is to be interpreted.

Background
Automatic Code Generation Generating programming
code from a mixed input of natural language text and struc-
tured prompts is a difficult challenge even for state-of-
the-art language models. Previous models for code genera-
tion largely focused on syntactically matching gold-standard
code, without regard for functionality. This created a large
oversight wherein such models were not able to innova-
tively generate code that is syntactically different, but func-
tionally equivalent to the gold standard. This is particularly
salient for the generation of code from CCG card effects,
as many keywords may produce similar effects with vary-
ing magnitudes and differing game-specific keywords across
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BACKGROUND: 

Who cares? 

• Laws, rules of engagement, mission-specific 
orders, and commands are all 
communicated using language that is at 
least partially open-textured. Current state-
of-the-art AI, however, can make 
catastrophic errors in correctly interpreting 
open-textured language. 

• This is a problem if we want our robots to 
be able to follow laws, orders, and other 
rules.

Code Generation from Card Effects in 
Collectible Card Games

Code Generation from Card 
Effects in Collectible Card Games

METHODS:

• We drew from the XMage corpus, which 
maps textual card effects to Java code in a 
real API.

• We then parsed through the code to 
identify a list of API-specific functions, 
enumerated types, etc. that would need to 
be known by a programmer learning to use 
the API.

• Created a corpus consisting of triples (T,k,p) 
where T is a textual card effect, k is an API 
keyword, and p is whether the code 
implementation of T uses k.

• Trained RoBERTa and other language 
models on this corpus.

RESULTS:

• The dataset we created has train, dev, and 
test set sizes of roughly 470K, 26K, and 26K
respectively. It is class-balanced so that 
random baselines will be at 50%.

• We have also produced an implementation 
of a popular war-simulation board game in 
the gaming platform Ludii, and are currently 
implementing a new system for the input 
and usage of CCG-like cards

• We are currently experimenting with 
hyperparameters to train language models 
on our dataset (starting with RoBERTa).
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INTRODUCTION: An effective way to resolve ambiguity in natural-language 
rules, laws, or orders is to translate it into code in a programming language. 
Large pre-trained language models (LMs) such as GPT-3 Codex are able to
generate code remarkably well given prompts which contain a mix of code 
examples and natural language text. But how can we utilize such LMs to 
generate code compatible with a given API or library, especially since fine-
tuning them requires hardware capability that is inaccessible to most?

We have devised an approach that uses prompt-based learning, in which a 
smaller LM (RoBERTa) is trained to answer the following question: Given a 
text description T of an effect from a collectible card game, and an API we 
want to utilize to write C (a code implementation of T), which API calls and 
functions is C likely to use? This model can then be used to collect relevant 
examples of those API calls being used, and populate a prompt to GPT-3 
Codex accordingly.

RESULTS: We have created a class-balanced 
benchmark dataset for training API call 
predictors, with a training set of >470K items, 
and test and dev sets each containing >26K 
items. Each item is a triplet:
(T, k, p), where:
T = a textual effect description
k = an XMage API function or other useful 

keyword
p = {0,1}, whether the code implementation of 

T utilizes k.

Our dataset will be made publicly available. We 
are currently training language models to set 
baselines for this dataset.

PROCEDURE: We used the XMage corpus (an 
open-sourced implementation of Magic: The 
Gathering) and extracted keywords from the 
Java code that were API-specific. We then 
created a training corpus, and trained RoBERTa-
Large, to serve as our API Call Predictor.   

Figure 1: How can we teach a massive pre-trained code generator (such as GPT-3 Codex) to use a specific API or library, 
without having the resources to fine-tune it? Our process fine-tunes a smaller language model to predict which API calls 
might be used, and then select example code snippets based on its predictions. Those code snippets are then placed into a 
few-shot prompt that the code generator uses to write code.

Bird Attack

Bird; Monster; Earth

Search your card deck for two 
cards of type bird. Deploy them 
on the battlefield; they can all 
attack as soon as they are 
deployed. 

Card effect (T): Textual 
description of this card’s 
effects when played

Relevant
API Call

Predictor 

API Call Predictor: 
Given T, this 
predicts which API 
functions, 
keywords, and other 
features the code 
implementation of T 
is likely to use. 
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Text-to-code 
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Example 
selector
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Code 
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GPT-3 
Codex)

Code 
Implementation 
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Aves Knight

Bird; Hero; Air

Do nothing for two turns. 
At the end of your two 

turns, destroy all 
opponent’s cards.

Stick Figure Man

Villain; Lazy

Stick figure m an has zero 
attack points, and dies 

im m ediately upon being 
played. Deploy a bird card.

def avesKnight_cardEffect(P):
disable_player(P, 2)
for c in P.opponent.hand():

destroy(c)

def stickFigure_cardEffect(P):
#this card has no effect
setAttack(this, 0)
setHealth(this, 0)
deployCard(

getCard(bird_cardType))
return

def avesKnight_cardEffect(P):
“””Do nothing for two turns.
Then, destroy every card
in opponent’s hand.”””
searchDeck(features.BIRD)
disable_player(P, 2)
for c in P.opponent.hand():

destroy(c)

def stickFigure_cardEffect(P):
“””Stick figure man has no
attack points, and dies
immediately upon being 
played. Deploy a bird 
card.”””
setAttack(this, 0)
setHealth(this, 0)
deployCard(

getCard(bird_cardType))
return

…

def birdAttack_cardEffect(P):
“””Search your card deck for
two cards of type bird.
Deploy them on the 
battlefield; they can all
attack as soon as they are
deployed.”””

Prompt leaves off where we want code generation to begin. Prompt sizes 
are limited, so the code examples provided must be chosen carefully.

birds = searchDeck(
bird_cardType)

for b in birds:
deployCard(b.id)

return

Automated code 
testing, evaluations, 

etc.

Figure 1: Our process fine-tunes a smaller language model to predict which API calls might be used, and then select example
code snippets based on its predictions. Those code snippets are then placed into a few-shot prompt that the code generator uses
to write code.

CCGs may produce the equivalent or near-equivalent in-
game effects. Evaluation metrics such as CodeBLEU (Ren
et al. 2020) attempt to address the functionality problem by
weighting the BLEU score for assessing multiple “transla-
tions” along with the syntactic abstract syntax tree match,
but this still prefers predictions that are formatted similarly
to the gold standard and underperforms human judgment on
choosing effective code (Evtikhiev et al. 2022). The chal-
lenge of generating code for card effects in CCGs is further
exacerbated due to fact that many cards may contain “flavor
text,” e.g., text that describes how the character represented
in a card relates to the larger mythology of the game, but
does not modify the card’s effects in any way.

Ling et al. used latent predictor networks to automati-
cally generate code for MtG and Blizzard Entertainment’s
Hearthstone (Grad 2017) cards (Ling et al. 2016). Their
method was able to identify common effects and generate
code for cards in the test set, which were then evaluated for
their similarity to others in the train set. However, the model
was unable to generalize natural language terms outside the
scope of game-specific keywords and, therefore, produced
high inaccuracies when presented with card effects it had
not previously seen. Further, they did not address functional
correctness, as generated code that was functionally equiv-
alent but syntactically different from correct code may have
been marked as incorrect.

Many current models have focused on addressing the
functionality concern (Zhong, Yu, and Klein 2020; Ra-
jkumar, Li, and Bahdanau 2022). The CodeGen-Test
model (Zhong et al. 2022) implements a code testing step
in the model training and backpropagates the results of the
tested code along with the syntactic similarity metrics. The
model was found to outperform the existing state-of-the-art
models in similarity as measured by BLEU, which performs
poorly in differentiating code, and Rouge-L, which is bet-
ter at emulating human judgment (Evtikhiev et al. 2022).

Furthermore, it also significantly outperformed those same
models in functional correctness.

With the massive growth of large language models (LMs),
even the process of fine-tuning has become computationally
expensive to the point of infeasibility for many tasks. How-
ever, methods to teach these models to perform specific tasks
are still necessary. The emergence of massive generative lan-
guage models like GPT-3 (Brown et al. 2020) has led to an
increased interest in the use of prompt engineering, whereby
the researcher focuses on how to structure the prompts that
are given to the LMs to generate their outputs, rather than
on fine-tuning the LM. Prompts can also be fine-tuned by
feeding them into language models and adjusting the prompt
based on the output received.

OpenAI’s GPT-3 Codex (Chen et al. 2021) was trained
on code from Github and performed at state-of-the-art levels
in code generation tasks. Codex produced significantly im-
proved results on HumanEval for measuring functional cor-
rectness, compared to GPT-3 and GPT-J. Subsequent mod-
els which use prompting to build on top of Codex and gen-
erate SQL code have shown further improvements in flu-
ency (Scholak, Schucher, and Bahdanau 2021; Poesia et al.
2022) and adequacy (Rajkumar, Li, and Bahdanau 2022;
Trummer 2022). Codex is able to take, as its input prompt,
code examples or human-understandable text describing
code to be written.

Presumably, we can use the prompt to tell Codex to write
the code implementation of a card in a CCG, given the text
written on the card. The prompt can be quite large: the size
of the prompt plus the maximum output size is roughly 8,000
tokens (each token is roughly 3 characters). But even this
prompt size is not large enough to teach Codex how to use
the massive XMage API. And fine-tuning Codex is simply
not plausible for multiple reasons: GPT-3 is not publicly re-
leased, and even if it were, it requires massive computational
capabilities far beyond that of most organizations (includ-



ing most research Universities). In this paper, we propose a
prompt engineering method for breaking this impasse with-
out resorting to fine-tuning GPT-3.

Prior Work in the Intersection of AI and CCGs Given
their intricate natural language effects and expansive action
spaces, CCGs present a number of interesting AI research
questions. Deckbuilding, for example, is the problem of de-
termining which cards to place in a player’s deck, given a
much larger set of possible cards. CCGs typically require
players to build their own card decks, either through itera-
tive drafting of specified options or synergistically from the
space of cards that the player personally owns, and then ran-
domly draw cards from their deck to engage in spellcasting
and combat. This creates a massive branching set that sim-
ple heuristic methods are unable to efficiently span, made
more complex when the problem is made adversarial—
i.e., how might a deck optimally be chosen to maximize
a given player’s strengths or capitalize on an opponent’s
weaknesses? Prior AI-based research into deckbuilding has
shown that, although complex heuristics can outperform ran-
dom guessing in ranking cards against one another (Ward
et al. 2021), evolutionary algorithms (Garcı́a-Sánchez et
al. 2018; Kowalski and Miernik 2020; Zhang et al. 2022)
currently produce the most efficient and significant perfor-
mance increases.

Actually creating an AI to play a CCG presents another
set of unique challenges, e.g.: choosing a play style, identi-
fying patterns in the opponent’s actions, and scaling based
on difficulty (Hoover et al. 2020). Furthermore, current
best-known methods of approaching these challenges vary
widely based on the game; simple tree searches have shown
large improvements in AI performance on LoCM (Klasiński,
Meller, and Witkowski 2020; Miernik and Kowalski 2022),
but more complex games like Hearthstone require neural
networks (Grad 2017) to assist player performance. Some
CCGs, such as Hearthstone and Legends of Code and Magic
(LoCM) (Kowalski and Miernik 2018), have been designed
to play in an entirely digital form (thus reducing some of the
logistics required to develop an AI), but these have signifi-
cantly smaller spaces of card effects when compared to older
physical card games such as MtG and Yu-Gi-Oh!. Attempts
have been made to digitize MtG via the open-source XMage
client, but XMage implementation is large and not straight-
forward to automate: every single card type has at least one
Java class, every possible effect has at least one function call,
etc. Despite these complexities, since the benchmark dataset
established by (Ling et al. 2016) uses XMage as its imple-
mentation, and this is the only existing benchmark dataset
for MtG code generation, we will use it as our target as well
for this paper’s work.

Our Contribution To summarize the background litera-
ture: automatic generation of code from card text is a diffi-
cult problem to solve, in part because the APIs used to im-
plement CCGs often have too many features to learn without
fine-tuning. However, fine-tuning state-of-the-art code gen-
erating language models is not computationally feasible to

most. We therefore propose the following solution: we will
instead fine-tune a smaller LM (RoBERTa-Large) not to di-
rectly write the code to implement a card’s text, but to pre-
dict which API features the code is likely to use (Stage 1).
These predictions are then used to select examples of pre-
viously written code to build a prompt for the larger LM
(GPT-3 Codex). The intuition behind this is that the larger
LM simply needs examples of how to use the API features
it is likely to use. The LM then writes the code (Stage 2).
The full pipeline is pictured in Figure 1. To our knowledge,
we are the first to propose such an approach, and we report
results on the Card2Code XMage benchmark (Ling et al.
2016) beyond existing state-of-the-art.

Stage 1: Predicting API Identifiers
The goal of Stage 1 is to train a classifier to predict, given
the text of a card, which API-specific features the code im-
plementation of that text in the API is likely to use. Let us
define interface symbols (ISes) as the set of symbols that
are specific to a given API: class names, enumerated types,
function names, etc. For the remainder of this paper, we will
be referring to the ISes of the XMage API, which was writ-
ten in Java. The set of ISes does not include strings, literals,
or language-specific keywords (class, if, else, etc.).
If our classifier were able to determine which ISes would
be needed, we could select example code to include in the
prompt that demonstrates how to use the ISes properly.

Dataset construction. Using the code as part of the
XMage training set, we extracted a list of ISes, resulting in
2,712 unique symbols. Note that this large number of unique
symbols is so large, that fully teaching an LM how to use
the API cannot be reasonably done without significant fine-
tuning, which—for state-of-the-art code generation models
like GPT-3 Codex—is computationally infeasible for most
organizations. Given our list of ISes, we constructed a IS
dataset consisting of triplets (T, k, p), where:

• T is the text of some card in the XMage training set

• k is an IS

• p ∈ {0, 1} is 1 if the code implementation of T contains
k, 0 otherwise

For each (T, k, p) where p = 1, we randomly selected a
k′ such that (T, k′, 0) could be inserted into the dataset,
thus keeping the dataset balanced. The resulting dataset was
divided into a training set with over 303K items, and dev
and test sets each with over 16K items. We then trained
RoBERTa-Large on the dataset to predict p given (T, k), and
achieved over 90% accuracy. The trained model could then
be used to predict which keywords appear in the text imple-
mentation for any given text T by giving it (T, k) as input for
all k and predicting the set of words k for which the model
returned a value of 1.

Baselines. In order to evaluate whether our trained model
was able to predict ISes better than random models, we cre-
ated multiple baselines. The hyperparameters in the base-



Figure 2: Example of a prompt we construct and give to
GPT-3, with relevant example text/code pairs followed by
the text for the code to be generated.

lines that follow were chosen through grid search, and for
space we only report values that are of interest:

• Pure Random (PR): For each IS, we include that IS with
p% probability (p ∈ {10, 50, 90}).

• Random by Frequency (RF): We analyze the XMage
training set, and determine the document frequency of
each IS (the percentage of code examples in which the
IS appears). For each IS, its document frequency is then
multiplied by λ ∈ {3, 5, 10}, and the resulting value is

Jaccard Similarity Average F1

PR (p = 10%) 0.49% 0.97%
PR (p = 50%) 0.54% 1.06%
PR (p = 90%) 0.53% 1.05%

RF (λ = 3) 3.21% 6.05%
RF (λ = 5) 3.68% 6.89%
RF (λ = 10) 3.53% 6.64%

SS 0.56% 1.11%
RoBERTa-Large 18.78% 28.13%

Table 1: Results of Training a Classifier to Predict ISes

the probability with which we include the IS. The param-
eter size of λ = 5 was chosen as it made the average
number of ISes per text input almost the same as that of
RoBERTa-Large.

• Simple Similarity (SS): To examine the possibility that
RoBERTa-Large is simply learning to select ISes that
have similarities to words in the original card text, this
SS model predicts an IS if is either a strict substring of, or
has as a substring, a word in the card text.

Results. Because the number of ISes that actually appear
in each card’s code is very low compared to the number
of possible ISes (roughly 45 versus 2,712), any model that
predicts that no ISes should be included would be given a
high accuracy, meaning it is not a useful measure here. We
instead report two measures: Jaccard similarity and Aver-
age F1 score (F1 score for each instance, averaged over all
instances). Results are listed in Table 1. Although there is
room for improvement, our RoBERTa-Large model clearly
outperforms all comparisons.

In order to determine whether RoBERTa-Large is sim-
ply learning to predict ISes that appear frequently, we com-
pared the set of ISes predicted by RoBERTa-Large and RF
(λ = 5). The average number of ISes predicted by these
models were 159.3 and 136.6, respectively (compare this to
the correct number of ISes which was on average 44.97), but
the average about of ISes predicted by both models was only
16.45. This suggests that RoBERTa-Large is using a differ-
ent heuristic to select ISes than simply IS frequency, and
perhaps that a hybrid approach leveraging both approaches
may yield improvements.

Stage 2: Generating Code from Predicted
Identifiers

Prompt Construction. Given a model that can predict
which ISes will be used in the generated code, our next step
is to actually generate that code. We use GPT-3 Codex (Chen
et al. 2021), which allows a total of 8,000 tokens for both the
input prompt and the returned tokens (for reference, each to-
ken is roughly 3.1 characters on average). Since the largest
code examples from the XMage training set were around
1500 tokens, we allocated 6500 tokens to construct a prompt
that provides sufficient examples to teach Codex how to use
the predicted ISes.



Given a card text T , and predicted ISes IS, we must now
select code snippets ci, where each ci consists of a Java
comment stating the original card text that this code im-
plements, and the Java code implementation itself (depart-
ing from the original work in (Ling et al. 2016), we rewrite
card properties in a more human-friendly format, and restore
line breaks into the Java code, in order to better match the
human-readable comments in the corpus Codex was trained
on). All ci come directly from the XMage training set, which
contains roughly 120K items. Furthermore, all of the ci con-
catenated must have a total length of 6500 tokens or less.
Our task can then be framed as an instance of the weighted
set cover problem, as we must select a set of ci where the
weight w(ci) of each item is the number of tokens of ci, and
the value v(c1 ∪ ...∪ cn) is the number of k ∈ (c1 ∪ ...∪ cn)
that are also in IS.

Although the weighted set cover problem is known to be
NP-hard, approximation algorithms exist. We use the greedy
algorithm by (Chvatal 1979), which returns a set cover of
weight at most

∑m
i=1 1/m times the minimum weight of the

optimal cover, where m is the largest set size (in our case,
the ci with the largest number of tokens). To summarize the
greedy algorithm: suppose at any iteration we have a current
prompt P , consisting of the concatenation of ci we have al-
ready chosen to include. We calculate the scores of each ci
as:

w(ci)

v(P ∪ ci)− v(P )
if w(P ∪ ci) < 6500, else ∞

We then select the ci whose score is smallest and concate-
nate it to P . If all scores are ∞ then we terminate. Finally, a
comment is appended to P containing the text that we want
GPT-3 to write the code for (see example prompt in Figure
2).

Baselines. In Stage 1, the Random by Frequency (RF)
baseline with λ = 5 performed second-best to RoBERTa-
Large, and the Simple Similarity (SS) baseline was the next
best performer out of those using non-RF strategies. We
therefore select those two baseline models to compare with
RoBERTa-Large. We also use a Random Codelet (RC) base-
line, which doesn’t use ICs at all, and instead just randomly
selects code examples from the training set until the token
limit is reached. Finally, for the purposes of comparison, we
introduce an Oracle baseline which doesn’t try to predict
the ISes which will appear, but actually uses the correct ISes
from the XMage dev and test sets. The inclusion of the ora-
cle is done so that we can understand how well our approach
can perform if we improve the IS model from Stage 1.

The prompts from our four models are then given to GPT-
3 Codex, and the generated code is compared to the cor-
rect code using four metrics: Chr-F score, a comparison
of n-gram overlap which was recently recommended for
use in comparing code after an analysis of similar methods
(Evtikhiev et al. 2022); BLEU, typically used for comparing
text similarity in language translation; CodeBLEU (Ren et
al. 2020), which is an extension of BLEU score designed to
compare code; and accuracy, which is true only if the gener-
ated code exactly matches the reference code.

chr-F CodeBLEU BLEU Accuracy
RF (λ = 5) 73.0 0.658 0.641 2.7%

SS 72.1 0.650 0.632 2.6%
RC 74.3 0.673 0.651 4.1%

RoBERTa-Large 79.7 0.725 0.715 5.3%
Oracle 86.4 0.792 0.789 9.2%

Table 2: Generated code compared to gold-standard code.
The “oracle” baseline draws the ISes directly from the gold-
standard code, and is included to show the upper limit of
what can be achieved with perfect IS prediction.

Results. Comparison of our RoBERTa-Large approach
and baselines is in Table 2. Our approach outperforms all
others (recall that Oracle knows in advance which ISes are
correct, and is included as an upper limit), but not by a large
amount. Perhaps the most informative of these four metrics
is the CodeBLEU metric, as it is the only one that specifi-
cally takes into account code-specific syntactic features (the
others rely on n-gram overlap or exact character match).
Our results compare favorably to those reported by the best-
performing models in (Ling et al. 2016), which were 0.614
(BLEU score) and 4.8% (Accuracy), but it is important to
note that their results were reported on the dataset’s test set,
whereas ours was on its validation set (as the reported work
is still considered preliminary and we wish to save the test
set for future work comparing multiple code generation and
prompting methods).1

Some cards contain effects that have only a single word
(e.g., “Haste.”), whereas others have lengthy descriptions
with complex conditionals. To study the effect of this dif-
ference, Figure 3 shows the scores of each code gener-
ation model when broken down based on the number of
words in the original card text. Although we only show
these breakdowns for codebleu and accuracy for space rea-
sons, the overall pattern is repeated across all four mea-
sures: our RoBERTa-Large model slightly outperforms or
matches all other models except for Oracle, but the advan-
tage RoBERTa-Large has over the other models disappears
with larger text sizes. For card text with more than 102
words, not a single model is able to achieve full accuracy,
showing that existing approaches are still quite limited.

Conclusion and Future Work
Our approach outperforms other comparisons, and elicits
state-of-the-art performance from the large GPT-3 Codex
LM, without requiring Codex to be fine-tuned. However, it
is clear that there is much room for improvement. We sus-
pect this can be achieved with more sophisticated dataset
and training design, which we hope to carry out in next
steps of this work. For example: it is our suspicion that
whereas the keyword similarity-based classifier errs on the
side of predicting fewer keywords (more false negatives),
the RoBERTa-based classifier errs on the side of predicting

1Although it was our intention to report results on the test set as
well, access to GPT-3 Codex was discontinued. However, we have
no reason to believe that the general results reported here on the
validation set would differ substantially.



Figure 3: The discrepancy between non-oracle code gener-
ation models we tested vanishes as the word length of the
original card text increases.

more keywords than needed (more false positives). It may
be the case that the ideal classifier is some intelligent com-
bination of the two.

In the pipeline we introduce in this paper, we use the
prompt given to Codex to provide examples of how to write
code utilizing the predicted ISes. However, instead of pro-
viding examples for use, would it be more effective to use
the prompt as a way of explicitly providing instructions on
how to use those ISes? At present, the XMage code base
doesn’t have sufficient documentation for each possible IS
to make this a reasonable possibility, but this may be another
productive avenue for future work.

Finally, the measures used to assess the quality of code
generation are quite limited. Chr-F and BLEU do not use
code-specific features, and even CodeBLEU has its limita-
tions (Evtikhiev et al. 2022). On the other hand, the “accu-
racy” measure requires an exact match and does not properly
evaluate alternate ways to write code that achieves the same
effect. Using CCGs such as Magic: the Gathering offers a
unique way to assess the quality of generated code, since

the vast majority of possible card effects can be measured
in terms of observable differences on the game state. Future
work can take full advantage of this in order to better assess
the quality of code generation.

Acknowledgments
This research was supported in part by the Air Force Re-
search Laboratory Information Directorate, through the Air
Force Office of Scientific Research Summer Faculty Fel-
lowship Program®, Contract Numbers FA8750-15-3-6003,
FA9550-15-0001 and FA9550-20-F-0005.

References
Adler, A. 2019. Keeping the law of magic: The gathering.
Escapist Magazine.
Araszkiewicz, M. 2021. Critical questions to argumenta-
tion schemes in statutory interpretation. Journal of Applied
Logics - IfCoLog Journal of Logics and Their Applications
8(1).
Bench-Capon, T. J. M., and Sergot, M. J. 1985. Towards a
rule-based representation of open texture in law. In Walter,
C., ed., Computer Power and Legal Language: The Use of
Computational Linguistics, Artificial Intelligence, and Ex-
pert Systems in the Law.
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language models
are few-shot learners.
Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; de Oliveira Pinto,
H. P.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brock-
man, G.; Ray, A.; Puri, R.; Krueger, G.; Petrov, M.; Khlaaf,
H.; Sastry, G.; Mishkin, P.; Chan, B.; Gray, S.; Ryder, N.;
Pavlov, M.; Power, A.; Kaiser, L.; Bavarian, M.; Winter, C.;
Tillet, P.; Such, F. P.; Cummings, D.; Plappert, M.; Chantzis,
F.; Barnes, E.; Herbert-Voss, A.; Guss, W. H.; Nichol, A.;
Paino, A.; Tezak, N.; Tang, J.; Babuschkin, I.; Balaji, S.;
Jain, S.; Saunders, W.; Hesse, C.; Carr, A. N.; Leike, J.;
Achiam, J.; Misra, V.; Morikawa, E.; Radford, A.; Knight,
M.; Brundage, M.; Murati, M.; Mayer, K.; Welinder, P.; Mc-
Grew, B.; Amodei, D.; McCandlish, S.; Sutskever, I.; and
Zaremba, W. 2021. Evaluating large language models
trained on code.
Chvatal, V. 1979. A greedy heuristic for the set-covering
problem. Mathematics of Operations Research 4(3):233–
235.
Evtikhiev, M.; Bogomolov, E.; Sokolov, Y.; and Bryksin, T.
2022. Out of the bleu: how should we assess quality of the
code generation models?
Franklin, J. 2012. Discussion paper: How Much of Com-
monsense and Legal Reasoning is Formalizable? A Review
of Conceptual Obstacles. Law, Probability and Risk 11(2-
3):225–245.



Garcı́a-Sánchez, P.; Tonda, A.; Mora, A. M.; Squillero, G.;
and Merelo, J. J. 2018. Automated playtesting in collectible
card games using evolutionary algorithms: A case study in
hearthstone. Knowledge-Based Systems 153:133–146.
Grad, L. 2017. Helping AI to play hearthstone using neu-
ral networks. In Ganzha, M.; Maciaszek, L.; and Paprzycki,
M., eds., Proceedings of the Federated Conference on Com-
puter Science and Information Systems, 131–134. Institute
of Electrical and Electronic Engineers.
Hart, H. 1961. The Concept of Law. Clarendon Press.
Hoover, A. K.; Togelius, J.; Lee, S.; and de Mesentier Silva,
F. 2020. The many AI challenges of hearthstone. KI -
Künstliche Intelligenz (Artificial Intelligence) 34:33–43.
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