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Abstract 
 Children’s performance on the spoonerism task, a behavior-
al test that measures phonological processing skills, predicts 
reading abilities and related disorders. However, this rela-
tionship between phonological processing skills and dyslex-
ia has been primarily examined based on behavioral re-
sponses to the spoonerism task. As a result, there is a grow-
ing interest in developmental neuroscience to explore the 
neural origins of this relationship and its relation to reading 
difficulties. Yet, traditional electroencephalography (EEG) 
analysis methods had little success identifying informative 
neural components that depict neural differences in children 
with reading disorders during spoonerism. The current study 
explores a novel computational approach to isolate informa-
tive neural signatures elicited during the spoonerism test. 
We apply our method to EEG data obtained from a group of 
children with dyslexia and controls during the execution of 
a spoonerism task. Our findings demonstrate that our meth-
od extracts components that characterize the neural origins 
of complex cognitive phonological processes, explains dif-
ferences between children with dyslexia and controls, and 
generates novel insights into the neural underpinnings of 
dyslexia in children. 

Introduction   
Dyslexia is one of the most prevalent learning disabilities 
affecting between 5%-20% of children (Wagner et al., 
2020), and its effects often persist thought out adulthood. 
Phonological processing deficits (PD), which refer to the 
difficulty in processing the sound structure of spoken 
words, are considered one of the most prominent factors of 
dyslexia (Ramus et al., 2003). The Phonological Deficit 
Hypothesis postulates that PD is causally linked to dyslexia 
(O’Brien et al., 2002). However, this relationship between 
PDs and dyslexia has been established primarily through 
behavioral performance on language measures designed to 
probe phonological processing mechanisms in the brain 
(e.g., Phone Elision or Spoonerism tasks). What is missing 
are evidence and insights into the underlying neurophysio-
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logical origins of these presumed associations as manifest-
ed in phonological processing tests. Hence there is a grow-
ing interest in developmental neuroscience of novel com-
putational methods that can identify informative neural 
components in EEG signals that depict neural differences 
in children with dyslexia during complex phonological 
processing tests. 
 In this study, we focus on exploring the neural under-
pinnings of dyslexia during spoonerism, a behavioral test 
that measures phonological processing at the level of both 
phonological analysis and synthesis. Behavioral perfor-
mance on the spoonerism task has been shown to differen-
tiate between participants with dyslexia and controls in 
adults (Ramus et al., 2003) and children populations 
(Knoop-van Campen et al., 2018). Yet, traditional EEG 
analysis methods that explore Event-Related Potentials 
(ERP) had little success in identifying informative neural 
components elicited during spoonerism that explain the 
behavioral differences in children with dyslexia (Fella et 
al., 2022). Fella et al. (2022) attributed the lack of informa-
tive ERP components to the complexity of the spoonerism 
task. Their findings suggest that neural differences in 
spoonerism do not manifest during the stereotypical Event-
related waveforms. Thus, the authors proposed the need for 
exploring adaptive computational methods that consider 
neural activations throughout the spatiotemporal EEG re-
sponses that span beyond the typical time window of 
ERPs. 
 Machine Learning (ML) approaches have also been used 
in analyzing EEG data to understand neurocognitive pro-
cesses. These ML approaches typically seek to extract neu-
ral components by finding spatial projections (i.e., a 
weighted average across EEG sensors) of single-trial EEG 
epochs indicative of differences between conditions and 
groups. Single-trial Discriminant Analysis (Philiastides & 
Sajda, 2005), for example, was developed to define the 
neural correlates of perceptual decision-making using a 
moving-window classifier learned over the entire epoch’s 
time course. Single-trial Correlation Analysis (Christo-
forou et al., 2014) was presented to investigate the neuro-



logical foundations of Stimulus Presentation Modality Ef-
fects in Traumatic-Brain-Injury therapy procedures by 
training a model that maximizes the correlation between 
local EEG components and behavioral responses. A Com-
mons Spatial Pattern (CSP)-based single-trial analysis 
(Christoforou, Hatzipanayioti, and Avraamides, 2018) was 
introduced in the context of spatial cognition for the neural 
basis disambiguation of two spatial-cognitive processes, 
namely, Perspective Taking and Mental Rotation.  
 ML-based approaches extract more informative neural 
components than classic ERP analysis methods by improv-
ing the signal-to-noise ratio and optimizing the extraction 
process to focus on the most relevant brain sources rele-
vant to the task. However, despite their success, most pro-
posed ML-based analysis methods capture localized fea-
tures time-locked on a trial’s onset, confined within the 
ERP time window, and often constrained to within-
participant analysis due to the high inter-subject variability 
in EEG signals (Christoforou, Haralick, et al., 2010). As a 
result, components identified using existing ML techniques 
are frequently localized at pre-defined timestamps within 
the ERP narrow time range and do not directly generalize 
across participants. 
 More recently, Christoforou and colleagues proposed a 
framework of ML-based methods that exploit neural con-
gruency among groups of participants’ neural responses to 
isolate relevant neural components that generalize across 
the entire group and capture differences beyond the ERP 
narrow range. The framework relies on the Neural-
congruency hypothesis, which postulates that neural activi-
ty evoked during a cognitive task is more consistent (i.e., 
congruent) among participants who have mastered the task 
but less so otherwise (Christoforou and Theodorou, 2021). 
The framework has been applied in exploring the neural 
underpinnings of complex cognitive processes during read-
ing tasks, including Rapid Automatized Naming (Christo-
forou, Theodorou, & Papadopoulos, 2021), Initial Pho-
neme Elision and Final Phoneme Elision (Christoforou, 
Theodorou, & Papadopoulos, 2022a, 2022b). However, 
Neural-congruency-based components have not been ex-
amined in the context of the spoonerism test.  
  We build on the neural-congruency hypothesis to 
identify neural components in the EEG signals informative 
of differences between children with dyslexia and controls. 
In particular, we formulate maximizing the neural congru-
ency across participants as a constraint optimization prob-
lem, which allows us to introduce an additional regulariza-
tion structure on the neural components based on the spa-
tial proximity of EEG sensors. We identify a set of neural 
activations exhibiting maximal neural congruency across 
participants. We then train a classifier to identify those 
components that best capture differences between children 
with dyslexia and controls. We evaluate the utility of our 
approach on EEG data obtained from a group of children 

with dyslexia and a control group during the execution of 
the spoonerism test. We demonstrate that our method can 
generate novel insights into the neural underpinnings of 
reading disorders during complex reading tasks that eluded 
the traditional developmental neuroscience analysis meth-
od. 

Materials and Methods  

Experiment Design and EEG data collection 
Spoonerism Experiment Adaptation   
This study uses the Greek adaptation of the spoonerism test 
(Kendeou et al., 2015; Papadopoulos, Spanoudis, & 
Kendeou, 2009). This test comprises a set of 60 trials. On 
each trial, participants would first listen to a pair of words 
sequentially (i.e., target words) followed by a 2500ms 
pause. Participants had to think during this pause what 
words result after exchanging the initial phonemes/syllable 
of the two target words. As an example, when exchanging 
the initial phonemes to the target-word pair /μήλο/- /φίδι/ 
(pronounced as /mi/-/lo/ and /phi/- /di/; and translates to 
/apple/ and /snake/, respectively) results to the word pair 
/φύλο/- /μύδι/ (pronounced as /phi/-/lo/, /mi/-/di/; which 
translates to /leaf/ and / mussels/ respectively), which form 
actual words. After the pause, participants would listen to a 
second pair of words (i.e., the response words) and had to 
respond by selecting an appropriate key on the keyboard, 
whether the exchanged words are real words formed after 
swapping the initial phoneme of the target words. Half the 
trials had real words as exchanged-word pairs and half 
pseudowords. Participants had up to 2500ms to respond 
after listening to each exchange-word-pair. The trial order 
remained constant for all participants. The trial schematic 
is shown in Figure 1.  
Participants and EEG Data Collection 
 EEG data were collected from 90 participants, ages 9 
and 12, all native Greek speakers. Half the participants 
were children with dyslexia, and the other half were chron-
ological age controls (CAC). Participants were fitted with a 
64-channel EEG cap, and active electrodes were mounted 
according to the 10/20 layout. Electro gel was applied be-
tween each electrode and the scalp to keep DC offset be-
low 20mV. After preparation, participants completed the 
spoonerism test. A Biosemi Active-two EEG amplifier 
(Biosemi, Amsterdam, Netherlands) recorded the EEG data 
at a sampling rate of 256 Hz. Onset and offset timestamps 
for each stimulus were recorded via a trigger channel. The 
study was carried out per the Cyprus National Bioethics 
Committee recommendations and received approval from 
the Ministry of Education and Culture, Cyprus 
(#7.15.01.27/17). 



EEG Preprocessing 
The EEG data were first re-referenced to the average chan-
nel. Then, the continuous EEG signals were preprocessed 
by applying a high-pass filter at 0.5Hz to remove DC 
drifts, followed by 50Hz and 100 Hz notch filters to mini-
mize power-line noise interference in the signals. After 
processing the continuous signals, EEG data were epoched. 
As this study focuses on exploring the neural activity fol-
lowing the onset of all four stimuli (i.e., two target words 
and two response words), we generated four epoch sets 
(one for each stimulus type). Each epoch spanned -200ms 
before the stimulus onset until the completion of the stimu-
lus articulation. Next, baseline activity (-200ms to 0ms) 
was removed, and each epoch was normalized by dividing 
each channel by the standard deviation across time. All 
pre-processing and analysis were implemented using cus-
tom Python code. 
EEG Dataset generation to analyze  
EEG pre-processing resulted in four datasets of epoched 
EEG data, one for each stimulus type, as follows: 
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where c denotes the stimulus type of the dataset (i.e., first-
target-word [c=1], second-target-word [c=2], first-
response-word [c=3], and second-response-word [c=4]); 𝑿𝒊 
is the concatenation (along the time-dimension) of all EEG 
epoched trials of participant i and stimulus type c; D=64 
denotes the number of EEG channels; T the number of time 
samples of all single-trial epochs; and N the number of 
participants.  

Regularized Neural-Congruency Framework 
The proposed Regularized Neural Congruency Framework 
(RNCF) formulates an optimization problem for extracting 

and selecting the most relevant EEG components that cap-
ture neural activity differential among children with dys-
lexia and controls. The subsections below introduce the 
framework, and Figure 1 shows a schematic of the overall 
approach.  
Regularized Neural-Congruency Components  
For the extraction of the Neural-congruency components, 
we consider a subset of participants 𝒮 = {𝑠), 𝑠*, . . , 𝑠+} 
thatbelong to the CAC group, where 𝑠$ ∈ ℤ,denotes the 
index of the i-th participants in set 𝒮 relative to the order-
ing of the dataset of EEG epochs 𝒟("). We define Neural-
congruency components as the set of spatial projection 
vectors 𝒘 ∈	ℝ%that maximizes the following expression: 
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where 𝑹$3	 =

)
'
𝑿$𝑿3' ∈ ℝ%×%  is the cross-covariance ma-

trix between epochs of i-th and j-th participant, and 𝑲 ∈
ℝ%×% is a Matérn	kernel	function,	defined	as:	
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where	 Γ(. )	 is	 the	 gamma	 function,	 Β(. )	 is	 a	 modified	
Bessel	 function,	 𝑙	is	 the	 length-scale parameter of the 
kernel, 𝜈 is a scalar kernel parameter that controls the 
smoothness of the resulting function, and 𝑑67 is propor-
tional to the physical distance between sensor-u and sen-
sor-v on the EEG cap montage. The Matérn kernel enforc-
es a structure on the sensors’ covariance matrix based on 
the physical proximity of the sensors and serves as a 
smoothness regularization on the parameter space. 
 Rewriting the optimization in equation (1) in terms 
of its Lagrangian, taking its derivative for vector 𝒘 and 
setting it to zero, we arrive at the following solutions: 	
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Therefore,	the	optimal	solutions	of	equation	(1)	are	the	
eigenvectors of the generalized eigenvalue problem of 
equation (2), where		𝒘𝒌 is the k-th eigenvector of the ma-

(see eq. 1 and eq 2)

For all par2cipants s, (see eq. 3)
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Figure 1:Schematic of the EEG pre-processing and the Regular-
ized Neural-Congruency Framework.	



trix D𝑹(𝒘) +𝑲H9𝟏	𝑹(𝒃) and defines the neural components 
that exhibit the k-th strongest correlation in neural activity 
among participants in the 𝒮 group, its corresponding ei-
genvalue  𝜆> quantifies the strength of that component’s 
correlation. We note that equation (2) has D solutions 
{𝒘#!,, 𝒘##,… ,𝒘#$,} corresponding to the D eigenvectors 
of the matrix, and those solutions are ordered from highest 
to lowest correlation strong according to their eigenvalues. 
We refer to these D vector solutions as the Regularized 
Neural-congruency components.  
Neural-congruency Scores  
Given the set of optimal neural-congruency components 
{𝒘j),, 𝒘j*,… ,𝒘j%,}, we calculate a feature vector 𝒖(𝑠) ∈
	ℝ%	 of neural congruency scores for each new participant  
𝑠 ∉ 	𝒮 (i.e., not in the original set of participants used to 
calculate the neural-congruency components) as follows: 
 

𝒖(𝑠) = [𝑢)(𝑠), 𝑢*(𝑠), … , 𝑢%(𝑠)]'						(3) 
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The kth neural congruency score 𝑢>(𝑠)	measures the aver-
age correlation strength between the neural activity origi-
nating from the source associated with the kth neural con-
gruency component of participants s to the same source of 
all participants in the set 𝒮. Intuitively, the more similar the 
neural activity of participant s is to that of the group of 
participants 𝒮 is, the higher the neural congruency score 
associated with that neural-congruency component.   

Component Selection and Classification. 
 We aim to evaluate the degree to which the extract-
ed neural congruency components and their correspond-
ing neural-congruency scores capture differential neural 
activity among children with dyslexia to control (i.e., DYS 
vs. CAC) and further identify those components most in-
formative of the differences. For that, we formulate a clas-
sification problem with neural-congruency scores of each 
participant as features and the group’s assignment (i.e., 
DYS vs. CAC) as the dependent variable. We use a LAS-
SO Logistic Regression with non-negativity constraints on 
the parameters as a classifier. This classier model results in 
a sparse set of non-zero weights. The generalization per-
formance of the classifier indicates the degree to which 
neural-congruency components capture neural activity that 
characterizes the behavior differences between DYS and 
CAC; further, the sparseness of the weights allows us to 
identify which neural-congruency components carry the 
most information. 
Spatial Profile of Neural-congruency Components  
Given the set of extracted Neural-congruency components 
(i.e., {𝒘j),, 𝒘j*,… ,𝒘j%,} ), their topographical profile can be 
calculated as the forward model.  
 

𝒂𝒌 =		
𝑹𝒘	𝒘j𝒌
𝒘j𝒌𝐓𝑹𝒘𝒘j𝒌

 

 
These are known as the forward model that captures the 
covariance in each sensor of the cortical source activity 
encoded by each extracted neural-congruency component 
and typically visualized as scalp maps.  
Model learning, Generalization and Statistical Analysis  
The model parameters- i.e., the extracted neural-
congruency components and the classifier weights- are 
trained using a leave-one-participant-out cross-validation 
procedure to avoid training bias. The generalization per-
formance of the classifier is calculated as the area under 
the Receivers Operator Characteristic curve (AUC) on the 

Figure 2: Shows the ROC curves and AUC scores based on the selected LASSO-weighted Neural-congruency components for all four 
conditions. The gray area denotes the ROC curve under the null hypothesis (i.e., neural-congruency scores between DYS and CAC) 



cross-validated scores. The statistical significance levels 
over AUC scores are established using a permutation test 
(10,000 repetitions). Finally, the coefficients of the lasso 
classifier were inspected to identify components that likely 
carry predictive information between the groups. 

Neural-Congruency Component on Spoonerism 
For our analysis of the spoonerism EEG data, we employ 
the Regularized Neural-Congruency Framework separately 
on each of the four stimuli (i.e., First Target word, Second 
Target word, First Response word, and Second Response 
word). The spoonerism test requires participants to activate 
a complex set of cognitive processes that differ among the 
processing of the four stimulus types. For example, pro-
cessing the target words elicits phonological analysis pro-
cesses (i.e., phonological recording and segmentation) that 
reflect the participant’s ability to remember the word heard 
and break it into its constituent phonemes. In contrast, the 
processing of the response words engages phonological 
synthesis processes that reflect the ability of participants to 
blend isolated phonemes to form whole words. Therefore, 
in our analysis of the spoonerism EEG data, we first aim to 
determine whether (a) the extracted neural-congruency 
components capture neural activations relevant to phono-
logical processes that differentiate children with dyslexia 
and controls and (b) explore whether phonological synthe-
sis or phonological analysis processes better explain these 
differences. 

Results  
 In our analysis, we first explored the predictive capacity 
of Neural-congruency components extracted from neural 
activity elicited in response to the articulation of the two 
target words in the spoonerism experiment. All neural-
congruency Components and their corresponding neural 
congruency scores were calculated separately for each of 
the two words. A separate classifier was also trained on 
each of the two word-condition. Parameter estimation was 
performed using a leave-one-participant-out to avoid train-
ing bias. The cross-validation accuracy of the model 
trained on the first target word was AUC= 0.85 (p < .001), 
while the model trained on the second target word was 
AUC= 0.87 (p < .001); both were statistically significant. 
Classifier weights identified a subject of components with 
non-zero weights.  
 Similarly, we explored the predictive capacity of the 
Neural-congruency components extracted from neural ac-
tivity elicited in response to the articulation of the two re-
sponse words in the spoonerism experiment. Same as in the 
case of the target-word condition, the model was applied to 
each word stimulus separately. The cross-validation accu-
racy of the model trained on the first response word was 

AUC= 0.70 (p < .001), while the model trained on the sec-
ond response word was AUC= 0.84 (p < .001).  

Discussion  
 Despite the well-known association of the spoonerism 
test to phonological processing deficits and its use as a 
screening tool for dyslexia, little is known about the neuro-
physiological origins of the cognitive mechanisms engaged 
during the actual spoonerism test that explain this link. We 
set out to investigate the neurophysiological underpinnings 
of the relationship between phonological impairments and 
dyslexia, as those arise in the spoonerism test. We pro-
posed the regularized neural-congruency analysis frame-
work to identify EEG components that capture neural ac-
tivity during spoonerism differentially among children with 
dyslexia and controls. We demonstrated the predictive ca-
pacity of the extracted components on EEG data we col-
lected while a group of children (half with dyslexia) per-
formed the spoonerism test. Our findings generate novel 
insights into the neural underpinnings of spoonerism’s re-
lation to dyslexia that eluted the traditional analysis meth-
od of developmental neuroscience. We highlight some of 
the key findings below.  
 A central finding of this study is evidence suggesting 
that the proposed neural-congruency components extracted 
by our method on EEG data during spoonerism perfor-
mance capture cortical neural activations associated with 
phonological processes and characterize dyslexia. Fur-
thermore, the classification model operating on the result-
ing neural congruency scores achieves high accuracy in 
differentiating between DYS and CAC while processing 
either of the four stimuli conditions. Even more, these find-
ings are observed when traditional analysis methods ex-
ploring ERP components fail to identify neural differences 
between similar groups (Fella et al., 2022). Therefore, our 
results indicate that the neural-congruency components 
extracted by our method carry information about the dif-
ferential neural activity among the two groups and have 
added value to the search for neurophysiological group 
differences that are meaningful. Moreover, these resulting 
components are novel and capture neural activations that 
have eluted the current analysis methods employed in de-
velopmental neuroscience on spoonerism.    
 Further, the neural components extracted by our pro-
posed method generate novel insights into the neural un-
derpinnings of phonological processes and dyslexia. Neu-
ral components extracted on the first and second response-
word conditions differentiate between the two groups with 
accuracy AUC=0.70 (p < .001) and AUC=0.85 (p < .001). 
The processing of the response words in spoonerism is 
associated with cognitive processes of phonological syn-
thesis (the ability to blend isolated phonemes to form 



whole words) (Papadopoulos et al., 2012). This fact sug-
gests that the informative neural-congruency components 
that capture cognitive differences are associated with pho-
nological synthesis processes. Moreover, the difference in 
classification accuracy between the two-word stimuli signi-
fies that phonological synthesis processes are more active-
ly engaged during the articulation of the second response 
word (i.e. when participants have all the information need-
ed to evaluate the phoneme reversal result). Neural com-
ponents extracted on the first and second target-word con-
dition differentiate between the two groups with accuracy 
AUC= 0.85 and AUC=0.87, both statistically significant (p 
< .001). The pronunciation of the target words in spooner-
ism engages phonological analysis processes (i.e., the abil-
ity to break whole words into their constituent phonemes). 
This fact suggests that the neural-congruency components, 
extracted during the target-word pronunciation, capture 
differential cognitive processes associated with phonologi-
cal recording and segmentation processes. Together, these 
results indicate that differences between DYS and CAC 
appear in both phonological synthesis and phonological 
analysis processes at the neural level. 
 In summary, we proposed a new approach for extracting 
informative neural-congruency components from EEG 
signals that enforce a regularization structure on the pa-
rameters based on the spatial proximity of EEG sensors. 
We apply our method to EEG data of children with dyslex-
ia and controls obtained during the spoonerism test. We 
demonstrated that our approach identifies novel neural 
components during spoonerism that current developmental 
neuroscience studies fail to detect. These components cap-
ture cortical neural activations associated with both phono-
logical analysis and phonological synthesis processes and 
characterize neural differences in children with dyslexia 
and generate novel insights into the neural underpinnings 
of dyslexia. Notably, our approach could be applied to 
study the neural underpinnings of a broader class of devel-
opmental disorders (Papadopoulos, 2023) previously over-
looked by developmental neuroscience research. 
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