HTN Replanning from the Middle

Yash Bansod', Sunandita Patra®*, Dana Nau'!?, Mark Roberts’
IInstitute for Systems Research and Dept. of Computer Science, Univ. of Maryland, College Park, MD, USA
3Navy Center for Applied Research in AI, Naval Research Laboratory, Washington, DC, USA
*now at JP Morgan Al Research, New York, USA
{yashb, patras, nau} @umd.edu, {mark.roberts } @nrl.navy.mil

Abstract

When an actor executes a plan, action failures and ex-
ogenous events may lead to unexpected states that re-
quire replanning from the middle of plan execution. In
Hierarchical Task Network (HTN) planning, unless the
HTN methods have been carefully written to work well
in unexpected states, replanning may either fail or pro-
duce plans that perform poorly.

To overcome this problem, we introduce IPyHOP, a
reentrant version of GTPyhop (a SHOP-like HTN plan-
ner), and Run-Lazy-Refineahead, a modification of
the Run-Lazy-Lookahead actor that utilizes IPyHOP’s
reentrant replanning capability to replan during plan ex-
ecution. In our experiments, Run-Lazy-Refineahead and
IPyHOP expend less search effort (fewer decomposi-
tions and fewer iterations), find revised plans with fewer
actions and lower total action cost, and finish execution
with fewer failures.

1 Introduction

HTN planners use descriptive models of actions tailored to
compute the next states in a state transition system effi-
ciently. In most cases' they assume a world that is closed,
static, and deterministic. However, executing the plan in
open, dynamic, and nondeterministic environments, charac-
teristic of many practical problems, generally leads to fail-
ure. The planning domain will rarely be an entirely accu-
rate model of the actor’s environment, and the execution of
the plan may fail because of (i) failure in the execution of
actions, (ii) occurrence of unexpected events, or (iii) if the
planning was solved with incorrect or partial information.

Plans are needed for deliberative acting but are not suf-
ficient for it (Pollack and Horty 1999). Many deliberative
acting approaches seek to combine the descriptive models
used by the planner with the operational models used by the
actor (Ingrand and Ghallab 2017). In contrast, others seek
to directly integrate planning and acting using operational
representations (Patra et al. 2019; Patra et al. 2020).

An early version of HTN planning was the Simple Hier-
archical Ordered Planner (SHOP) (Nau et al. 1999), and its
successors SHOP2 and SHOP3 (Nau et al. 2003; Goldman

Copyright © 2021by the authors. All rights reserved.
'There are some exceptions, e.g., (Kuter and Nau 2005; Hogg
et al. 2009; Chen and Bercher 2021).

and Kuter 2019). SHOP and its successors are written in the
LISP programming language, which has limited their adop-
tion, but they have been highly influential. Algorithm 1 gives
a version of SHOP’s pseudocode.

Python is a much more widely adopted programming
language used by roboticists, game developers, ML engi-
neers, and Al engineers. The pyhop planner (Nau 2013a;
Nau 2013b) adapts the SHOP planning algorithm so that
methods and actions are written directly in Python. GTPy-
hop (Nau et al. 2021), a recent extension to pyhop, combines
both HTN planning and hierarchical goal-network (HGN)
planning (Shivashankar et al. 2012).

One difficulty with integrating acting with HTN planning
is responding to action failures at execution time. If one tries
to replan by calling the HTN planner with the new current
state but the same task as before, unfortunate results can oc-
cur. To resolve this problem, we introduce a new hierarchi-
cal planner that allows an actor to plan from the middle of
its current state and current plan by reusing the plan and de-
composition tree to resume planning from the point of the
plan failure. Our primary contributions are:

1. We describe IPyHOP?, a planner that can respond to plan
execution failures by resuming the planning process at the
point where the failure occurred. IPyHOP’s planning al-
gorithm is based on GTPyhop (Nau et al. 2021), but with
the following key changes: it uses iteration rather than
recursion, and it preserves the hierarchy in the planning
solution and returns a solution task network rather than
a simple plan. Thus, if an unexpected problem occurs
during plan execution, the actor can call IPyHOP with a
pointer to the point in the task network where the execu-
tion failure occurred, and IPyHOP can resume planning
from that point. This way of re-entrant planning for par-
tially solved HTNs is unique to IPyHOP. An important
part of this adaptation is to maintain the history of the so-
lution tree to allow backtracking, which is necessary for
replanning during acting.

2. Inspired by the RAE actor in (Ghallab et al. 2016,

Chapter 3), we provide a new acting algorithm, Run-
Lazy-Refineahead, that integrates efficiently with IPy-
HOP. Run-Lazy-Refineahead calls IPyHOP to get a solu-
tion task network and executes the actions in the task net-

“https://github.com/YashBansod/[PyHOP

Algorithm 1: The planning algorithm used in SHOP,
pyhop, and the HTN-planning part of GTPyhop.

1 SHOP (state s, task-list T")
if 7" = nil then return nil
t < the first task in T’
U < the remaining tasks in T’
if ¢ is primitive and there is an operator o
that matches ¢ and is applicable in s then
s < the state produced by applying o to s
7 < SHOP(s,U)
if m = fail then return fail
returno +
else if ¢ is non-primitive and there is a method
m that is relevant for ¢ and applicable in s then
return SHOP(s, subtasks(m), U))
else return fail

RN I N7 I NV 8

e
B W N =S

work by sending them to its execution platform. If an ex-
ecution failure occurs, it gives IPyHOP a pointer to where
the failure occurred and requests replanning.

2 Background: pyhop and GTPyhop

GTPyhop (Nau et al. 2021) is a domain-independent Goal
Task Network (GTN) planning system written in Python.
GTPyhop is a progressive totally-ordered GTN planner that
combines the task- and goal-decomposition strategies used
in SHOP (Nau et al. 1999) and GDP (Shivashankar et al.
2012). It plans for a sequence of tasks and goals in the same
order that they will later be executed, using recursion for
task and goal refinement. We only use the HTN portion of
GTPyhop (Algorithm 1) in these studies and leave exten-
sions to goal networks for future work. We use the terms
refine and decompose interchangeably in this paper.
Algorithm 1’s search space is an AND/OR tree. The ini-
tial task list 7" is an AND-branch, the set of method instances
that match each task ¢ are an OR-branch, the subtasks of
each method instance are an AND-branch, and each opera-
tor instance is a leaf node. The algorithm looks for a solu-
tion tree (see Figure 1(a) for an example) that contains one
method instance at each OR branch for all of the tasks at
each AND-branch. The returned plan 7 is the sequence of
operator instances at the leaf nodes of the solution tree.

3 HTN Planning in IPyHOP

Like most HTN and HGN planners, GTPyhop has two lim-
itations that impact replanning. First, the use of recursion
prevents the code from being re-entrant. If it is necessary to
replan because of an action failure, the only alternative is
to call GTPyhop again, which can lead to incorrect results.
Second, GTPyhop returns a plan 7, but not the solution tree
that produced 7. To replan after an action failure, the planner
needs to know not only what action failed, but what tasks it
was trying to achieve at that point in the plan. This requires
a copy of the solution tree.

For example, consider Figure 1(a) which shows a notional
hierarchical plan for tasks 1, 2, and ¢3, where operator in-
stances (i.e., actions) begin with o, and where decomposition

o7's effects are ol1's
preconditions

Figure 1: HTN solution trees to illustrate the challenge of replan-
ning during plan execution. Part (a) is after initial planning, part (b)
is after the execution failure of 07, and part (c) is after backtracking
from o7.

methods begin with m. The root node represents the initial
task list, each hexagonal node shows a method instance m;
used for a task t;, and each rectangular node represents an
operator instance o;. The expected sequence of actions, the
plan, 7 = (01,02, ...,011,012) is produced using a Depth
First Search (DFS) tree traversal; note that o7 produces ef-
fects on which ol1 relies. Suppose while executing 7, o7
nondeterministically fails. Replanning for only the parent
task node of ¢4 (that is, ¢2) to resolve the failure of 07 may
not be correct because 011’s preconditions may not be satis-
fied. Instead, replanning must start by removing refinements
for all tasks executing after the failed node 07, resulting in
the network of Figure 1(b), and then backtracking from o7 to
produce Figure 1(c), from which replanning can begin. Ac-
complishing this transformation is non-trivial and requires
several extensions to HTN planning and acting.

To overcome the above limitations, IPyHOP uses an it-

erative tree traversal procedure for task decomposition and
backtracking and returns the entire solution tree rather than

Algorithm 2: [IPyHOP’s HTN pseudocode.

1 IPyHOP(current state s, decomposition tree w):
2 p<—w’sroot

3 loop

4 if all tasks in w have been expanded then return w
5 u <— the first un-expanded node of w

6 if u has been visited then
7

8

9

s <+ state(u) # use the cached state
else state(u) < s # cache the current state
mark wu as visited

10 t «+ task(u)

1 if £ matches an operator o then

12 if o is applicable in s then

13 s < the state produced by applying o to s
14 mark v as expanded

15 else

16 for each method m that matches ¢

17 if m hasn’t been already tried for ¢

18 if m is applicable in s then

19 mark u as expanded

20 install m’s subtasks as children of u
21 exit the for loop

22 if u hasn’t been expanded then

23 backtrack(w, u)

24 backtrack(w, u):
25 v ¢— non-primitive task node expanded before u
26 un-expand all nodes expanded after and including v

just the solution plan. This allows IPyHOP to accept a par-
tial solution tree with a failed action marked as a backtrack-
ing point (see Figure 1(b)), so that it can search for a differ-
ent solution tree (see Figure 1(c)). IPyHOP implements both
HTN and HGN planning and replanning, but we focus only
on the HTN part of IPyHOP.

Algorithm 2 shows the IPyHOP algorithm, accepting the
current state s, and a (partial) solution tree w. At the start
of iteration (Lines 4, 5) we determine if there are any un-
expanded nodes. If all nodes are expanded, the algorithm
returns the solution tree. Otherwise, it proceeds with ex-
panding the next node. This can be naively obtained using
pre-ordered DFS on w. However, repeated pre-ordered DFS
on w to find un-expanded nodes is inefficient. We do this
more efficiently using some pointer manipulations. If the
node has been visited, then we re-use the cached state at that
node, otherwise, the current state is cached into the node
(Lines 6-8). The node can be expanded in two ways. Either
the task t corresponding to node u is a primitive task that
matches an operator o. And, applying the operator o at cur-
rent state s leads to a valid new state s (Lines 11-14). Orif ¢
is a non-primitive task and there exists a task-method m that
hasn’t already been used to decompose it into simpler tasks
(Lines 15-21). If the node u could not be expanded, then the
algorithm backtracks the decomposition (Lines 22, 23).

The backtrack procedure accepts the partial solution w
and the current node from which backtracking should pro-
ceed. It first finds the non-primitive task node v expanded
just before u. This is done by searching the descendants of
u’s parent. Then it un-expands all nodes expanded after and

Algorithm 3: Run-Lazy-Refineahead, where under-
lines indicate changes from Run-Lazy-Lookahead.

1 Run-Lazy-Refineahead(X,w):

2 s < abstraction of observed state £; f < ¢

3 loop

4 w < Refineahead(%, s, w, f)

5 if w = failure then return failure
6

7

8

9

7 <— marked primitive tasks in DFS(w)
while 7w # () and Simulate(X, s, 7) # fail do
a < pop-first-action(r); perform(a)
s <— abstration of observed state &
10 f < action that leads to failure

including v.

4 Integrating IPyHOP with an Actor

An actor is a piece of software that executes plans to com-
plete a goal or task. We integrate IPyhop into an acting en-
gine that extends the Run-Lazy-Lookahead algorithm intro-
duced by Ghallab, Nau, & Traverso (Chapter 2 2016).

Algorithm 3 shows Run-Lazy-Refineahead, which modi-
fies Run-Lazy-Lookahead (changes from the prior algorithm
are underlined) by (1) in Line 1, changing the input from a
goal to a partial HTN w; (2) in Line 2, keeping a track of
failed action explicitly; (3) in Line 3, changing the loop con-
dition from the goal being entailed in the current state to an
infinite loop; (4) in Line 4, calling a planner that accepts the
partial solution w and a failed action f, which in this case
is IPyHOP; and (5) in Line 10 updating the pointer to the
action node that causes execution failure.

The main difference between this acting algorithm and
Run-Lazy-Lookahead is the use of a partial solution w and
the call to the IPyHOP planner, which can plan from the
middle of execution failure. Note that when IPyHOP is used
for replanning, it first updates the cached state in all its ex-
panded nodes to the newly provided state and then back-
tracks from the provided failure node. Here, Simulate is
the plan simulator, which may use the planner’s prediction
function v or may do a more detailed computation (e.g.,
a physics-based simulation, a Monte-Carlo simulation) that
would be too time-consuming for the planner to use.

S Experiments

We expect Run-Lazy-Refineahead to be more efficient than
Run-Lazy-Lookahead because it only replans a subset of the
task network and will not repeat action sequences for tasks
already completed. To assess this, we evaluated the perfor-
mance of Run-Lazy-Lookahead (with GTPyhop) and Run-
Lazy-Refineahead (with IPyHOP) in two HTN planning and
acting domains: RoboSub and Rescue described below. Both
execution environments are nondeterministic, which leads to
occasional failures in action executions. We evaluate perfor-
mance using two metrics. Total decompeositions measures
how many nodes were expanded during a search. Total ac-
tion cost measures the total cost of an action sequence for a
given test.

Total task decompositions Total action cost

255 diagonal - diagonal
g 300~ —-—- best_fit line e - W best_fit line
200 -
b5 » data_points - S % data_points
J{a 275 2 Jg
E L 1s0-
g sor 5
2 2
|25 - | 160 ~
g 9
5 - =
| | 140 -
o s o
2 2

=
2

150 200 250 300 120 140 160 180 200 20

mn lazy lookahead mn lazy lookahead

Figure 2: RoboSub decompositions (left) and action cost (right).

5.1 Results: RoboSub Domain

The Robosub Domain (Bansod 2021) is derived from the
RoboSub 2019 competition, where an autonomous underwa-
ter vehicle performs various compulsory and optional tasks
autonomously to score points in the competition. We wrote a
planning domain for the refinement of these tasks that con-
sists of seventeen primitive task operators and twenty-one
task refinement methods for refining ten non-primitive tasks.

For this evaluation, we fixed the initial location of the
robot and a few other constraints. However, we varied the
location of various objects in the planning problem and sam-
pled 1000 random starting states. For each of the 1000 start-
ing states, we perform deliberative acting using Run-Lazy-
Lookahead and Run-Lazy-Refineahead 11 times and col-
lect the performance data. Since the value of a metric for
a given test case varies across experiments due to the non-
determinism of the execution environment, taking the mean
across experiments gives us a more reliable estimate of that
metric for a given test case.

Figure 2 shows scatterplots for two metrics on the mean
data. Run-Lazy-Refineahead generally decomposes fewer
nodes (left) and produces executions with substantially
lower total action cost (right). It also produced execution
runs with similar final rewards (not shown due to limited
space). These results suggest that Run-Lazy-Refineahead is
a better algorithm than Run-Lazy-Lookahead because it is
more efficient at producing lower-cost plans that achieve a
similar final reward.

5.2 Results: Rescue Domain

The Rescue Domain is derived from (Patra et al. 2021),
where a team of autonomous agents (comprised of UAVs,
and UGVs) collaboratively survey and rescue victims from
a map after a calamity. We wrote a planning domain for the
refinement of these tasks that consists of twenty primitive
task operators and twenty-four task refinement methods for
refining ten non-primitive tasks.

For this evaluation, we fixed the initial location of the
robots, the amount of medicine they carry, and a few other
constraints. However, we varied the location of obstacles,
injured humans, and demolished locations. Similar to Ro-
boSub, we generated 1000 starting states for the execution
and performed 11 runs of each point. One distinguishing de-

Total task decompositions Total action cost

120 -

0 - diagonal - diagonal
- || best_fit_line - - best_fit_line
L 100 |
S 0 % data_points 2 S % data_points
ﬁé 180 - ﬁé
D 107 La
o o
S 140 - >y 60 -
N N
=] X =]
10 e R ol
5 T R R R R Ei <7 5 “
100 B S Mo S XX
X o RRERKKT TR XK X
RS 3 x
80 - x % 20 - X
75 100 125 150 175 200 25 20 40 60 80 100 120

mn lazy lookahead

mn lazy lookahead

Figure 3: Rescue decompositions (left) and action cost (right).

tail of the Rescue domain is that the agent cannot skip tasks
during planning or execution. This can result in unrecover-
able planning failures. Of the 1000 problems in considera-
tion, 39 were unsolvable using our domain definition. Of the
remaining 961 problems, Run-Lazy-Refineahead failed for
29 problems, whereas Run-Lazy-Lookahead failed for 493
problems. Already, it is clear that Run-Lazy-Refineahead
failed substantially fewer times.

Figure 3 shows the results for this domain on cases where
at least one algorithm succeeded on every problem, which
occurred for 459 of the 1000 starting points. Similar to the
results on RoboSub, Run-Lazy-Refineahead expanded fewer
nodes (left) and produces executions that result in substan-
tially lower action costs (right).

5.3 Discussion

We can comfortably state that Run-Lazy-Refineahead is bet-
ter than Run-Lazy-Lookahead for deliberative HTN acting.

There is also a hidden burden associated with using the
Run-Lazy-Lookahead algorithm not portrayed by our ex-
periments. Authoring the domain for use in the Run-Lazy-
Lookahead algorithm requires accounting for numerous sce-
narios where failures would lead to repeated tasks, getting
stuck in infinite task loops, getting stuck in non-recoverable
states, et cetera. These problems can be addressed by clever
definitions of task methods and flags in the state. However, it
might not be possible to eliminate these undesirable behav-
iors. In more modest domain model definitions like ours, this
problem is not as pronounced. However, as the domain mod-
els get more and more comprehensive, this problem quickly
worsens. In Run-Lazy-Refineahead, however, the planner al-
ways resumes after backtracking on the node that caused the
failure. Thus, repetition of tasks and other unexpected be-
haviors are minimized.

For our experiments, every effort was made to make delib-
erative HTN acting using Run-Lazy-Lookahead as efficient
as possible. Optimizing the performance of the Run-Lazy-
Lookahead algorithm was our prime focus. The task meth-
ods, operators, and state definition were designed primar-
ily for use in the Run-Lazy-Lookahead algorithm. Then the
same domain model definition and state definition were used
for the Run-Lazy-Refineahead algorithm. This reuse of do-
main definition leads to the planner performing many unnec-

essary constraint checks during task refinement required for
Run-Lazy-Lookahead but not for Run-Lazy-Refineahead.
The domain authoring for use in Run-Lazy-Refineahead
is much more straightforward and concise. If the domain
model definition was primarily designed for Run-Lazy-
Refineahead, the results would considerably shift in its fa-
vor. The metrics would remain the same for Run-Lazy-
Refineahead but significantly worsen for the Run-Lazy-
Lookahead. However, even though the calculated metrics
would remain the same, the second execution would be com-
putationally faster than the first since simpler domain model
definitions are being used for the task refinement process.

6 Related Work

HTN and HGN planning. One of the first HTN planners
was NOAH (Sacerdoti 1975). Numerous HTN planners have
been developed since then. Some of the best-known ones
are Nonlin (Tate 1977), SIPE and SIPE-2 (Wilkins 1990),
O-Plan (Currie and Tate 1991) and O-Plan2 (Tate et al.
1994), UMCP (Erol 1996), SHOP, SHOP2, and SHOP3
(Nau et al. 1999; Nau et al. 2003; Goldman and Kuter 2019),
and SIADEX (Castillo et al. 2005). Among other applica-
tions, HTN planning is widely used in the gaming industry
(Neufeld et al. 2017). Some HTN planners, e.g., Simple Hi-
erarchical Planning Engine (SHPE) (Menif et al. 2014) are
specifically designed for Al planning in video games.

HGN planners, e.g., GDP and GoDeL (Shivashankar et
al. 2012; Shivashankar et al. 2013), are like HTN planners
except that they decompose goals instead of tasks. The task-
and-goal decomposition strategy used in GTPyhop and IPy-
HOP combines aspects of SHOP and GDP.

Planning and acting. In the CIRCA system (Musliner et
al. 2008), the current plan is executed repeatedly in a loop
while the planner synthesizes a new plan (which the au-
thors say can take a significant amount of time), and the
new plan is not installed until planning has been finished.
The Run-Lookahead and Run-Lazy-Lookahead in (Ghallab
et al. 2016, Chapter 2) use a somewhat similar strategy. Each
time Run-Lookahead calls its planner, it performs only the
first action of the returned plan, then calls the planner again.
Run-Lazy-Lookahead executes each plan as far as possible,
calling the planner again only when the plan ends or a plan
simulator says that the plan will no longer work properly.

BDI Architectures. BDI (Belief-Desire-Intention) architec-
tures (De Silva and Padgham 2005; Bauters et al. 2014;
Yao et al. 2021; Sardina et al. 2006) have some similarity to
our work, but BDI systems are mostly reactive. They differ
from us with respect to their primitives as well as their meth-
ods or plan-rules. In general, BDI systems will not replan,
but they will select and execute an untried method when fail-
ure occurs. Some BDI approaches, e.g., (Yao et al. 2021) can
also replan, but their agent model is non-hierarchical.

7 Summary and Future work
We presented new algorithms for integrated HTN plan-
ning and acting. We introduced IPyHOP, an iterative tree
traversal-based HTN planning algorithm written in Python

that provides extensive control over its task network re-
finement. We also introduced Run-Lazy-Refineahead, a re-
peated planning and acting algorithm specially designed for
deliberative HTN acting. Run-Lazy-Refineahead uses the hi-
erarchical nature of the refined task network generated by
HTN planners like IPyHOP to develop smaller and smaller
task refinement problems as the execution proceeds. The
improvement can be beneficial in deliberative HTN acting
in fast-moving dynamic worlds like in games or robotics
scenarios. We showed experimentally that it performs bet-
ter for deliberative HTN acting than Run-Lazy-Lookahead.
We hope that the large community of roboticists and game
developers who program their systems in Python adopt IPy-
HOP, and Run-Lazy-Refineahead for HTN planning, and in-
tegrated planning and acting.

In some aspects, the integration of HTN planning and act-
ing using Run-Lazy-Refineahead that we proposed here can
be interpreted as a simple HTN planner guided acting. Some
algorithms directly integrate a planner’s descriptive model
into a hierarchical actor to select refinement methods, while
others directly integrate planners that plan using operational
representations with the actor RAE e.g., (Patra et al. 2019;
Patra et al. 2020). Combining a hierarchical planner and an
actor using this strategy leads to much more efficient and
tighter integration. We believe a similar form of integration
is also possible for HTN planners and HTN actors. An HTN
planner like IPyHOP could be directly integrated with an
HTN actor like RAE-lite, where the HTN actor would de-
cide on the method it uses for task refinement based on the
recommendation of the HTN planner.

For hierarchical acting and planning, there are two main
ways to represent an objective: tasks and goals. A task is an
activity to be accomplished by an actor, while a goal is a fi-
nal state that should be reached. Depending on a domain’s
properties and requirements, users can choose between task-
based and goal-based approaches. Since IPyHOP is based on
GTPyhop (Nau ef al. 2021), it supports both HTN and HGN
planning. However, we have not made any use of HGN plan-
ning in this paper. For future work, we intend to do exper-
imental evaluations of Run-Lazy-Refineahead versus Run-
Lazy-Lookahead on HGN versions of our test domains.

Acknowledgments.

This work has been supported for UMD in part by ONR
grant N000142012257 and NRL grants N0017320P0399 and
NO00173191G001. MR thanks ONR and NRL for funding this re-
search. The information in this paper does not necessarily reflect
the position or policy of the funders, and no official endorsement
should be inferred. *

3Disclaimer This paper was prepared for informational purposes in part by the Artificial In-
telligence Research group of JPMorgan Chase & Co. and its affiliates (“JP Morgan™), and is not a
product of the Research Department of JP Morgan. JP Morgan makes no representation and warranty
whatsoever and disclaims all liability, for the completeness, accuracy or reliability of the information
contained herein. This document is not intended as investment research or investment advice, or a
recommendation, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of participating in
any transaction, and shall not constitute a solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would be unlawful.

References

[Bansod 2021] Yash Bansod. Refinement acting vs. simple
execution guided by hierarchical planning. Master’s thesis,
University of Maryland, 2021.

[Bauters ef al. 2014] Kim Bauters, Weiru Liu, Jun Hong,
Carles Sierra, and Lluis Godo. Can(plan)+: Extending the
operational semantics of the BDI architecture to deal with
uncertain information. In UAI, 2014.

[Qastillo et al. 2005] Luis Castillo, Juan Fdez-Olivares,
Oscar Garcia-Pérez, and Francisco Palao. Temporal en-
hancements of an HTN planner. In Conf. Spanish Assoc. for
Artificial Intelligence, pages 429-438, 2005.

[Chen and Bercher 2021] Dillon Chen and Pascal Bercher.
Fully observable nondeterministic htn planning — formalisa-
tion and complexity results. In ICAPS, pages 74—84, 2021.

[Currie and Tate 1991] Ken Currie and Austin Tate. O-
Plan: the open planning architecture. Artificial intelligence,
52(1):49-86, 1991.

[De Silva and Padgham 2005] Lavindra De Silva and Lin
Padgham. Planning on demand in BDI systems. In ICAPS
(Poster), 2005.

[Erol 1996] Kutluhan Erol. Hierarchical task network plan-
ning: formalization, analysis, and implementation. PhD the-
sis, University of Maryland, 1996.

[Ghallab et al. 2016] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning and Acting. Cambridge Uni-
versity Press, 2016.

[Goldman and Kuter 2019] Robert P Goldman and Ugur
Kuter. Hierarchical task network planning in common lisp:
the case of SHOP3. In Proc. European Lisp Symp., pages
73-80, 2019.

[Hogg et al. 2009] C. Hogg, U. Kuter, and H. Mufioz-Avila.
Learning hierarchical task networks for nondeterministic
planning domains. In ZJCAI, pages 1708-1714, 2009.

[Ingrand and Ghallab 2017] Félix Ingrand and Malik Ghal-
lab. Deliberation for autonomous robots: a survey. Artificial
Intelligence, 247:10-44, 2017.

[Kuter and Nau 2005] Ugur Kuter and Dana Nau. Using
domain-configurable search control for probabilistic plan-
ning. In AAAI, pages 1169-1174, July 2005.

[Menif et al. 2014] Alexandre Menif, Eric J acopin, and Tris-
tan Cazenave. SHPE: HTN planning for video games. In
Wksp. on Computer Games, pages 119-132. Springer, 2014.

[Musliner et al. 2008] David Musliner, Michael J.S. Pelican,
Robert .P. Goldman, Kurt D. Kresbach, and Edmund H. Dur-
fee. The evolution of CIRCA, a theory-based Al architec-
ture with real-time performance guarantees. In AAAI Spring
Symp.: Emotion, Personality, and Social Behavior, 2008.

[Nau et al. 1999] Dana Nau, Yue Cao, Amnon Lotem, and
Hector Munoz-Avila. SHOP: Simple hierarchical ordered
planner. In Proc. 16th IJCAI, pages 968-973, 1999.

[Nau ez al. 2003] D. Nau, T. Au, O. Ilghami, U. Kuter,
J. Murdock, D. Wu, and F. Yaman. SHOP2: An HTN plan-
ning system. JAIR, 20:379-404, 2003.

[Nau et al. 2021] Dana Nau, Sunandita Patra, Mak Roberts,
Yash Bansod, and Ruoxi Li. GTPyhop: A hierarchical
goal+task planner implemented in Python. In ICAPS Wksp.
on Hierarchical Planning (HPlan), 2021.

[Nau 2013a] Dana Nau. Game applications of HTN planning
with state variables. In ICAPS Wksp. on Planning in Games,
2013.

[Nau 2013b] Dana Nau. Pyhop, version 1.2.2: A simple HTN
planning system written in Python. Bitbucket, 2013.

[Neufeld er al. 2017] Xenija Neufeld, Sanaz Mostaghim,
Dario L Sancho-Pradel, and Sandy Brand. Building a plan-
ner: A survey of planning systems used in commercial video
games. IEEE Transactions on Games, 11(2):91-108, 2017.

[Patra et al. 2019] Sunandita Patra, Malik Ghallab, Dana
Nau, and Paolo Traverso. Acting and planning using op-
erational models. In AAAI pages 7691-7698, 2019.

[Patra et al. 2020] Sunandita Patra, James Mason, Amit Ku-
mar, Malik Ghallab, Paolo Traverso, and Dana Nau. Inte-
grating acting, planning, and learning in hierarchical opera-
tional models. In ICAPS, pages 478-487, 2020.

[Patra et al. 2021] Sunandita Patra, James Mason, Malik
Ghallab, Dana Nau, and Paolo Traverso. Deliberative acting,

planning and learning with hierarchical operational models.
Artificial Intelligence, 299:103523, 2021.

[Pollack and Horty 1999] Martha E Pollack and John F
Horty. There’s more to life than making plans: plan man-
agement in dynamic, multiagent environments. Al Maga-
zine, 20(4):71-71, 1999.

[Sacerdoti 1975] E. Sacerdoti. The nonlinear nature of plans.
In IJCAI, pages 206-214, 1975.

[Sardina et al. 2006] Sebastian Sardina, Lavindra De Silva,
and Lin Padgham. Hierarchical planning in BDI agent pro-
gramming languages: A formal approach. In Proc. 5th AA-
MAS, pages 1001-1008, 2006.

[Shivashankar et al. 2012] Vikas Shivashankar, Ugur Kuter,
Dana Nau, and Ron Alford. A hierarchical goal-based for-
malism and algorithm for single-agent planning. In AAMAS,
pages 981-988, 2012.

[Shivashankar et al. 2013] Vikas Shivashankar, Ron Alford,
Ugur Kuter, and Dana Nau. The GoDeL planning system: A
more perfect union of domain-independent and hierarchical
planning. pages 2380-2386, 2013.

[Tate et al. 1994] Austin Tate, Brian Drabble, and Richard
Kirby. O-Plan2: an open architecture for command, plan-
ning and control. In Monte Zweben and Mark S. Fox, edi-
tors, Intelligent Scheduling. Morgan Kaufmann, 1994.

[Tate 1977] Austin Tate. Generating project networks. In
Proc. 5th 1JCAI, pages 888-893, 1977.

[Wilkins 1990] D. Wilkins. Can Al planners solve practical
problems? Computational intelligence, 6(4):232-246, 1990.

[Yao et al. 2021] Yuan Yao, Natasha Alechina, Brian Logan,
and John Thangarajah. Intention progression using quanti-

tative summary information. In Proc. 20th AAMAS, pages
1416-1424, 2021.

	Introduction
	Background: pyhop and GTPyhop
	HTN Planning in IPyHOP
	Integrating IPyHOP with an Actor
	Experiments
	Results: RoboSub Domain
	Results: Rescue Domain
	Discussion

	Related Work
	Summary and Future work

