
A Hierarchical Goal-Biased Curriculum for Training Reinforcement Learning

Sunandita Patra1,*, Mark Cavolowsky1, Onur Kulaksizoglu1, Ruoxi Li1,
Laura M. Hiatt3, Mark Roberts3, Dana Nau1,2

1Dept. of Computer Science and 2Institute for Systems Research, Univ. of Maryland, College Park, MD, USA
3Navy Center for Applied Research in AI, Naval Research Laboratory, Washington, DC, USA

*now at JP Morgan AI Research, New York, USA
1{patras, markcav, kulaksor, rli12314, nau}@umd.edu 2{first.last}@nrl.navy.mil

Abstract

Hierarchy and curricula are two techniques commonly used
to improve training for Reinforcement Learning (RL) agents.
Yet few works have examined how to leverage hierarchical
planning to generate a curriculum for training RL Options.
We formalize a goal skill that extends an RL Option with
state-based conditions that must hold during training and exe-
cution. We then define a Goal-Skill Network that integrates a
Hierarchical Goal Network, a variant of hierarchical planning,
with goal skills as the leaves of the network. An automatically
generated plan for a Goal-Skill Network correctly orders goal
skills such that (1) it is a Goal-Biased Curriculum for training
the goal skills, and (2) it can be executed to achieve top-level
goals. In a set of six distinct gridworld environments using
up to ten goal skills, we demonstrate that these contributions
train nearly perfect policies significantly faster than learning a
whole policy from scratch.

1 Introduction
We study the problem of how to guide the training of Rein-
forcement Learned skills using a variant of Hierarchical Goal
Networks. Using goals to focus learning has been studied
in a variety of contexts (Ram and Leake 1995; Hawes 2011;
Aha 2018). Recent work has shown that one of the benefits
of these approaches is that they allow planning to guide the
learning so that it is more focused even when reward signals
are sparse (Illanes et al. 2020), a situation in which Rein-
forcement Learning (RL) alone can struggle. Yet no work we
are aware of has examined how to link recent hierarchical
planning approaches with RL policies.

Hierarchical Goal Networks (HGNs) (Shivashankar 2015)
leverage the best of standard planning techniques (e.g., land-
mark heuristics, heuristic search) and Hierarchical Task Net-
works. An HGN consists of a set of partially ordered goal
nodes that can be decomposed into subgoals or actions via
methods. Similar to Hierarchical Task Networks (HTNs), the
methods provide a substantial speed up for planning; in stud-
ies, speedups of 2-8 times were common (Shivashankar et
al. 2013). However, HGNs can operate without decomposi-
tion methods and, in the absence of such methods, HGNs
can simply “fall back” to calling a classical planner. Further,
because the networks consist of goals (i.e., state descriptors

Copyright © 2021by the authors. All rights reserved.

rather than just task labels), HGNs can leverage advances in
classical planning heuristics (Shivashankar et al. 2016).

In this paper, we synthesize a variant of the Hierarchical
Goal Network with the approach of Illanes et al. (2020). The
contributions of the paper include: (1) formalizing a goal
skill that generalizes the RL Option (Sutton, Precup, and
Singh 1999) and links information about a goal from the
goal network with an RL policy, (2) defining a Hierarchical
Goal-Skill Network (GSN) that decomposes top-level goals
into subgoals and goal skills, (3) developing a Goal-Biased
Curriculum that leverages a hierarchical planning system
called GTPyhop, provides an intrinsic reward structure, and
trains the goal skills using the GSN, (4) showing in six grid-
world environments that the Goal-Biased Curriculum trains
goal skills to near perfection significantly faster than it takes
to learn a poorly-performing monolithic policy without the
GSN, and (5) demonstrating an integrated actor that plans
and executes a trained GSN is able to achieve goals. Our
study shows that combining HGNs with RL policy learn-
ing leverages the strengths of each approach: (1) providing
HGNs with the robust acting that RL policies can provide
and (2) effectively training these RL policies in difficult or
reward-sparse environments. Though the results are limited
to gridworld domains, we believe they show promise and our
future work will generalize this approach to other domains.

2 The Goal-Biased Curriculum
Our ultimate aim is to integrate a policy into a goal network
that we can then use to develop a training curriculum. We ac-
complish this by: extending the RL Options framework into
goal skills (defined in Section 2.1), integrating goal skills
into a Goal Skill Network that extends Hierarchical Goal Net-
works (defined in Section 2.2), and using the Goal Skill Net-
work for the Goal-Biased Curriculum (defined in Section 3).
Background material is integrated with the discussion.
Running Example. Our study uses the Minimalistic Grid-
world (MiniGrid) simulator (Chevalier-Boisvert et al., 2018).
Figure 1 (left) shows our variant of the Keycorridor Task
from Minigrid, where an agent (red triangle) must move an
item (yellow) to the top-left corner, with six variants differing
in whether the agent must simply find the object, as in Env
1 and 4, pass through unlocked doors, as in Env 2 and 5, or
unlock a door by using a key, as in Env 3 and 6.



Figure 1: Left: The six Minigrid environments (Env) we evaluate. Right: The Goal Skill Network we use in the study. The double
bordered goals skills are used in the curricula for Env 1, 2, 4, 5. All goal skills are used for Env 3 and 6.

Background: RL Options. We consider the problem of
learning a set of policies for achieving subgoals for a Markov
Decision Process (MDP). An MDP is a tuple MDP =
(S,A, T,R, γ), where S is the set of states, A is the set of
actions, T : S × A → S is the transition function, R is the
reward function, and γ is the discount rate. A solution to the
MDP is a policy π : S → A that maps each state to an action.

An option (Sutton, Precup, and Singh 1999) over an MDP
is a tuple o = (π, INIT, TERM), where the policy π can begin
executing when the INIT ⊂ S is valid and terminates its
execution when TERM ⊂ S is true. An option is a way to
define multiple policies for an MDP that can span more than
a single action. They are often called temporally extended
actions, macro actions, or skills.

2.1 Goal Skills
We define goals as a symbolic representation of state or states
the actor can achieve. Figure 1 (right) shows several kinds of
goals the agent may need such as having a key or being in
a room. We will describe the specific representation we use
below. To link a policy to a goal, we define a goal skill:
Definition 1. A goal skill gπ = (head, ǧ, π̌,C) is a tuple
where head includes the name and parameters of the goal
skill, ǧ contains the goal information the skill is meant to
achieve, π̌ is a micro-policy for this goal skill, and C is a
non-empty set of conditions that should be satisfied while
executing π̌.
For example, a goal skill to unlock a door would be:

head: unlock(door)
ǧ: unlocked(door)
C: start+during:have(key), end:unlocked(door)
π̌: unlock-door

Similar to an option, learning π̌ still occurs in the full state
and action space of the MDP. However, a goal-specific reward
is used instead of R. Including the name and parameters
allows more than instantiation of a goal skill to exist in the
same goal network. Goal parameters allow a goal skill to be
used over a variety of similar objects.

We partition C into {Cstart,Cduring,Cend}. Cstart declares a
function over states that declares whether the skill can start;

it aligns with an option’s INIT. Cend defines a function over
states that designate the desire outcome of the goal skill;
it aligns with an option’s TERM set but for the end of the
duration. Cduring declares the invariants of skill execution; it
also aligns with an option’s TERM but for specific invariants
that, when violated, should cause failure. Together, these
conditions provide clarity about when to start, continue, or
terminate a goal skill. Those familiar with temporal planning
will recognize C as similar to the conditions of a temporal
action, which define constraints over the feasible trajectories
of an action during execution. Our study in Section 4 uses a
small set of C, and extending the implementation to include
richer conditions is an area for planned future work.

2.2 The Goal Skill Network (G S N)
To generate hierarchical plans, we adapt the Hierarchical
Goal Network (HGN) by Shivashankar et al. (2013), which
allows for a direct correspondence between the states of the
MDP and the goals to be decomposed1.
Background: A Hierarchical Goal Network is a pair
hgn = (G,≺), where G is a set of nodes representing goals,
each g ∈ G is a goal a predicate statement of ground literals
in disjunctive normal form, and ≺ is a partial order over G.
Nodes in the network are distinguished by whether they are
compound or primitive. Compound nodes are not directly ex-
ecutable and require further decomposition. Primitive nodes
(i.e., actions) describe what needs to be accomplished and
can be executed by a controller.

Methods allow a domain designer to write domain-specific
decompositions for goals. A method m decomposes a non-
primitive goal g by inserting its subgoals into hgn and
ordering them to occur before g. A method is a tuple
(head, g, pre,mhgn), where head is the method’s name and
parameter list, g is the goal that m is relevant for achieving,
pre is the preconditions that determine whether m is appli-
cable in the current state, and mhgn is the goal network to

1The Hierarchical Task Network (HTN) formalism would be
much more complicated because HTN methods are not required to
refer to actual states of the world, only actions must do that.



be used to achieve g. Shivashankar et al. (2013) showed that
methods substantially improve search.
A Goal Skill Network links a goal network with skills. Let
G be a set of goal nodes where a goal is described in state-
variable representation from (Ghallab, Nau, and Traverso
2016). Further, let Ǧ = G ∪ GΠ be a set of goal nodes that is
a union of the G and the set of goal skills GΠ.
Definition 2. A Goal Skill Network gsn = (Ǧ,≺) is a tuple
where Ǧ = G∪GΠ is a set of goal nodes and goal skills, and
≺ describes a partial order over Ǧ.
We will refer to this class of Goal-Skill Networks as G S Ns
and specific network instances as a gsn.

Similar to the Hierarchical Goal Network, methods de-
compose nodes in G. However, instead of reaching primitive
goals that can unify with actions, the G S N decomposes prim-
itive goals into goal skills, as shown in Figure 1 (right). The
main benefit of the G S N is the goal ordering it provides. The
G S N ordering is used to provide a curriculum for learning
goal skills, and it is used as a plan during execution.

2.3 The Goal-Biased Curriculum
The Goal Biased Curriculum uses a plan produced by GT-
Pyhop2 (Nau et al. 2021), which extends the Pyhop HTN
planner (Nau 2013a; 2013b) with the ability to do goal de-
composition in a manner similar to GDP (Shivashankar et
al. 2012). GTPyhop’s planning algorithm recursively de-
composes a goal or task using whichever methods are both
relevant and applicable.

GTPyhop generates an ordered sequence of actions
〈a1, a2, . . . , an〉. This sequence of actions corresponds to
a sequence of goal skills, plan = 〈g1

π, g
2
π, . . . , g

n
π〉. This plan

guides the learning of goal skills and the acting algorithm.
Each goal skill has a corresponding policy that is learned
using an offline procedure called TrainGSN. The actor exe-
cutes the learned policies via its execution platform.

3 Using the Goal-Biased Curriculum
This curriculum for training the goal skills is biased by the
ordering of the methods that were used to refine it. For this
study, the plan is a totally-ordered sequence of goal skills. In
future work we will extend the curriculum to include partial
orders and more sophisticated plans. The curriculum also
includes the training procedure and the reward structure.

The TrainGSN algorithm, shown in Algorithm 1, uses the
plan to train goal skills. Lines 1-3 initialize data structures
and obtain the plan. Each goal skill in the plan is trained
sequentially (Line 4). Before training, the set of initiation
states is copied from the last goal skill’s termination set
(Line 5). Until the algorithm converges (Line 6), training
proceeds as a standard actor-critic architecture by collecting
the experiences storing them in a replay buffer (Line 7) and
updating the policy for each iteration (Line 8). If the episode
is finished (Line 9), the current terminal state is saved into
the termination set (Line 10), which will be used for the next
goal skill at Line 5, and the environment is reset to a new
state sampled from the initiation set of gπ (Line 11). Training

2https://github.com/dananau/GTPyhop

Algorithm 1: TrainGSN
Input: env - the environment, gsn - GSN to be trained.

1 begin
2 gsn′ ← gsn; g ← gsn′.root(); sinit ← env.sinit

3 plan← GTPyhop (g, gsn′, sinit)
4 for gπ ∈ plan do
5 gπ.initiation set := ŜTERM(pred(gπ))
6 while not converged(gπ) do
7 exp← CollectExperience(env, gπ)
8 train(gπ , exp)
9 if env.done then

10 ŜTERM(gπ).add(env.state)
11 env.reset(Sample(gπ .initiation set))
12 return gsn′ # trained GSN

of a gπ ends when converged(gπ) returns True, which is
determined by the performance of the policy during training.

An important step of this process is when TrainGSN
stores the states that meet the initiation and termination con-
ditions of each goal skill. These sets of starting and ending
points serve two purposes. First, they sample the initiation
(INIT) and termination conditions (TERM) of the managed
Options Framework. Second, they provide a natural start-
ing point for each successive goal skill in the Goal-Biased
Curriculum.

For a plan, let the termination set of a goal skill be defined
as STERM(gπ) := {s ∈ S|Cgπend(s)} and let ŜTERM(gπ) be a
sampled set from STERM(gπ). In a plan, a goal skill may oc-
cur multiple times each with distinct predecessor goal skills.
Let pred(gπ) = {g′π ∈ GΠ|name(g′π) = name(gπ)} be the
collected set of predecessors for all goal skills with the same
name. Before training each goal skill, the algorithm queries
the goal predecessors from the plan and concatenates the
termination sets of the predecessors to build the initiation set
of the current goal skill.

Another important distinction of the Goal-Biased Curricu-
lum is the reward structure. RL algorithms usually receive
reward from the environment, but TrainGSN generates a
standard reward for each goal skill based on the conditions C.
The reward can be application dependent, so we describe for
each study how the reward structure was created for each goal
skill. However, this kind of intrinsic reward sets the stage for
allowing the actor to direct its own learning.

4 Experimental Evaluation
To demonstrate the ability to plan, learn, and execute in
gridworld environments using goal skill networks, we im-
plemented and tested our approach on six experimental do-
mains built using the MiniGrid simulator (Chevalier-Boisvert,
Willems, and Pal 2018).
Domains. For all the domains, the goal is to retrieve a ball
from inside a room and deliver it to a pre-defined location
(Figure 1, left). Our actor (red triangle) must deliver the
yellow ball to the top-left corner. To accomplish this in Env
1 and 4, the actor must navigate to the ball, pick it up, move
it to the top-left corner and deposit the ball. In Env 2 and 5,
the actor can only reach the ball by passing a door. In Env 3



Figure 2: Learning Curves for up to ten goal skills in six environments. We learn the skills by following a goal-biased curriculum
outlined in Algorithm 1.

and 6, the actor must search for the key and unlock the door
before entering the room. Since the actor can carry only one
object at a time, it must set the key aside before picking up
a ball. The actor, key, ball and doors are placed in random
locations. Env 4, 5, and 6 have larger grids than 1, 2 and 3.

The domains are fully-observable, with the actor able to
observe the contents, properties, and status of each element
in the grid. The action space is discrete, with 3 navigation
actions (turn left, turn right, and move straight) and 3 interac-
tion actions (pick up, put down, and use object).

4.1 Training Goal Skills
To solve our domains, we used the hierarchy in Figure 1
(right) with the goal skills: searchKey, pickupKey, findDoor,
unlockDoor, dropKey, returnToDoor, passDoor, pickupObj,
goToDropoff, and putDown. We trained each of Deliver’s
goal skills on a 2.3-GHz, 2-core Intel Core i5-8750H pro-
cessor. We trained for a total of 1.5× 106 time steps across
all 10 goal skills. One timestep corresponds to one action
taken by our actor. We reward the actor as follows: Goal Skill
Achieved = +1, Goal Skill Failed = -1, Step Reward = -0.01.

Goal skill training ordering was determined through
TrainGSN, the G S N , and GTPyhop. Figure 1 (right, all
goal skills with a double border using in-order traversal)
shows the curriculum for Env 1, 2, 4 and 5, which is findDoor,
passDoor, pickupObj, goToDropoff, and putDown. Figure 1
(right, all goal skills using in-order traversal) shows the cur-
riculum for Env 3 and 6, which is searchKey, pickupKey,
findDoor, unlockDoor, dropKey, returnToDoor, passDoor,
pickupObj, goToDropoff, and putDown.

The agent learns goal skills by approximating the optimal
policy using a Deep RL network. Our implementation is
based on the RL Starter Files (Willems 2021) and PyTorch

(Paszke et al. 2017). The policy implementation is an Actor-
Critic architecture (Sutton and Barto 2018), and the network
is trained using PPO (Schulman et al. 2017). The Neural
Network (NN) uses three convolutional layers to extract a
latent representation of the environment. From this latent
representation, we calculate the policy output and the value
approximation in two separate fully-connected heads.

4.2 Results
Figure 2 shows the learning curves for our goal skills in
all of our six domains. We observe that learning the goal
skills, pickupKey, dropKey, unlockDoor, and putDown are
relatively easy. This is expected because the solution consists
of just one action if the preconditions are satisfied. TrainGSN
is able to learn them within 50K training timesteps. The
searchKey goal skill is the most difficult goal skill to learn for
our actor, and it takes about 500K timesteps. We attribute this
to searchKey being the goal skill with the highest variability
and longest solution length. The findDoor, returnToDoor,
passDoor, pickupObj, and goToDropoff skills are non-trivial
and have relatively short solution lengths, which enables them
to converge to maximum reward in less than 150K timesteps.

To demonstrate the efficacy of the trained policies, we
tested the TrainGSN implementation against a single mono-
lithic policy trained on the top-level deliver goal. After a
total of 107 timesteps, the policy generated a worst-possible
rewards (in the range [-12, -9]) for all six environments, indi-
cating that the monolithic policy was unable to learn an effec-
tive policy. This shows that GTPyhop-derived curriculum is
an effective method for improving training convergence and
sample efficiency.

We tested the trained goal skills achieve the higher-level
goals in the G S N . This includes the top-level goal used to



train the G S N (deliver) and every compound goal of our
domains: deliver, getNear, hasKey, goToRoom, and transport.
The results are summarized in Table 1. For each goal, we ran
our tests 25 times for statistical significance. We gave each
test case a maximum of 500 timesteps to succeed, and the
inability to succeed within this limit counts as failure.

The goal skills always succeed in achieving the desired
state (i.e., its Cend condition) 100% of the time. The Average
Reward and Average Timesteps columns in Table 1 show
the tradeoff of how many steps the agent must do and its
maximum reward. This is because the step penalty reduces
how well an agent could do. For example, goToDropOff
skill completes in 20 steps, on average, which means a total
penalty of 0.01 ∗ 20 = 0.20. So the best the agent could do
is a reward of 0.80, which is reflected in the average reward.
Generally, the sum, Average Reward + step penalty * Average
Timesteps provides a sense of how well the agent is learning.
As can be seen, the sum is very close to 1, suggesting the
agent is learning well.

Limitations. There are several limitations we will address
in future work. The study we performed relies on a hand-
coded GSN. There are several approaches from the literature
for learning hierarchies similar to the GSN, so we plan to
explore this in future work. The problem we study is based
on a discrete gridworld; we plan to examine the extent to
which this technique might apply to harder RL problems, for
example, robotics. Finally, the GSN provided by GTPyhop
did not change during execution. As a proof of concept, this
is sufficient, but future work needs to examine how to adapt
these approaches to replanning approaches.

5 Related Work
To our knowledge, no other approaches have integrated RL
with HGN planning to learn an actor’s goal-skills. However,
there are several works that relate hierarchy, planning, and
reinforcement learning in different combinations, and there
are many works that relate to the curriculum learning.
Hierarchy in reinforcement learning. Introducing hier-
archy to RL has the potential to accelerate learning be-
cause hierarchical agents can decompose problems into
smaller subproblems, or, in other words, learn at multiple
levels of abstraction (Levy et al. 2019; Dietterich 1998;
Barto and Mahadevan 2003; Jong and Stone 2008). The op-
tions framework (Sutton, Precup, and Singh 1999) provides
methods for learning and planning using high-level actions,
or options, in a Semi-Markov Decision Process (SMDP).

Potentially, options that select other options as macro-
actions in their policies can give rise to a hierarchical struc-
ture with arbitrary levels, but most work assumes a fixed
2-layer hierarchy in practice (e.g., Chakravorty et al., 2020);
very few works allow a 3-layer hierarchy (e.g., Levy et al.,
2019). Our work does not presume the number of layers in
the hierarchy.

Andreas, Klein, and Levine (2016) proposed a two level hi-
erarchy, where each subpolicy is trained with a different neu-
ral network. They test their algorithm in a similar grid-based
RL environment where it performs better than monolithic,
single-network approaches. This approach mainly differs

Goal Env/ Plan Test Reward Timesteps
Domain Length x̄ σ x̄ σ

pickupKey 3,6 1 0.99 0.01 1 1
putDown all 1 0.99 0.01 1 1
pickupObj all 1 0.99 0.01 2 1
unlockDoor 3,6 1 0.99 0.01 2 1
passDoor all 1 0.97 0.01 3 1
returnToDoor 3,6 1 0.97 0.01 4 1
dropKey 3,6 1 0.97 0.01 4 1
findDoor all 1 0.93 0.03 8 3
searchKey 3,6 1 0.86 0.11 15 11
goToDropOff all 1 0.79 1.21 20 110
getNear 1,2,4,5 2 0.89 0.02 11 2
goToRoom 1,2,4,5 2 0.88 0.03 12 3
hasKey 3,6 2 0.84 0.09 16 9
transport all 2 0.77 1.49 22 135
goToRoom 3,6 5 0.80 0.06 21 6
deliver 1,2,4,5 5 0.67 1.05 33 96
getNear 3,6 7 0.62 0.15 39 15
deliver 3,6 10 0.30 1.45 69 130

Table 1: Results of testing goal execution using a combination
of GTPyhop and learned goal skills in six domains. 100%
of the goals are successfully achieved. The difficulty level of
a goal is directly related to the length of the plan.

from ours in the structure and the level of hierarchies. Addi-
tionally, their subpolicies are not trained by explicit terminal
goal states, instead their subpolicies try to learn the termina-
tion states on their own. In contrast to this we provide explicit
termination states for each goal skill during training.

Universal Value Function Approximator (UVFA) is a pop-
ular baseline method for training neural networks with mul-
tiple goals (Schaul et al. 2015). UVFA method learns RL
policies by training two separate neural networks for goal
and environment embeddings. This method has some down-
sides when the rewards are sparse in the environment. Levy et
al. (2019) mitigates this problem using a data augmentation
technique called hindsight experience replay (Andrychowicz
et al. 2017). While all these approaches try to solve the multi-
goal RL problem, their approaches don’t include hierarchy
of goals and planning associated with them.

Konidaris et al. (2012) proposed a technique that seg-
ments a demonstration trajectory into a chain of component
skills, where each skill is an abstracted goal. Chains from
multiple demonstration trajectories are then merged into a
skill tree. This work was extended to arbitrary goals by Bag-
garia et al. (2021), who created Deep Skill Graphs. Future
work will explore how to combine the goal-skill network
with the skill graph or skill trees.
Planning and Reinforcement learning. Illanes et al. (2020,
2019) implemented a hierarchical RL framework with sym-
bolic planning, which achieves sample efficiency for training
and is relatively easy to specify high-level goals. The plan-
ning representation uses an options-like framework with a
two level hierarchy, unlike our more flexible goal networks.
Additionally, in their approach, users specify the high-level
predicates and actions; in ours, users specify the refinement
of the goals and low-level achievement functions.



Curriculum Learning. Curriculum learning is a well-known
technique in RL. Bengio et al. (2009) show using curriculum
learning reduces training times and makes networks more
resilient to overfitting. Curriculum learning framework trains
the network with the easiest samples at the beginning and then
with increasingly harder samples as the network converges.
The Goal-Biased Curriculum uses the goals to partition and
order the skills that need to be learned. In future work, we
plan to explore ways to extend the use of this curriculum.

6 Final Remarks
We presented an adaptation of Hierarchical Goal Networks,
called hierarchical Goal-Skill Networks, where the leaves
of the hierarchical goal-skill network are called goal skills.
Every goal skill has a corresponding MDP and policy. Our
TrainGSN algorithm learns the optimal policies for every
goal skill. We used a hierarchical goal planner, GTPyhop, to
guide TrainGSN with the training order of the goal skills.
Our experiments show that the resulting curriculum is an ef-
fective way to learn and execute the policies in six gridworld
environments. Currently, the policies are arbitrarily initial-
ized for each new goal skill, but we hope to explore transfer
learning to speed the convergence of subsequent goal skill
training across environments.

Acknowledgments. This work has been supported for UMD
in part by ONR grant N000142012257 and NRL grants
N0017320P0399 and N00173191G001. MR thanks ONR and NRL
for funding this research. The information in this paper does not nec-
essarily reflect the position or policy of the funders, and no official
endorsement should be inferred. 3

References
Aha, D. W. 2018. Goal reasoning: Foundations, emerging applica-
tions, and prospects. AI Magazine 39(2):3–24.
Andreas, J.; Klein, D.; and Levine, S. 2016. Modular multitask
reinforcement learning with policy sketches. CoRR abs/1611.01796.
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.;
Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, P.; and Zaremba, W.
2017. Hindsight experience replay. In Proc. NeurIPS.
Bagaria, A.; Senthil, J. K.; and Konidaris, G. 2021. Skill discovery
for exploration and planning using deep skill graphs. In Proc. ICML,
521–531.
Barto, A. G., and Mahadevan, S. 2003. Recent advances in hier-
archical reinforcement learning. Discrete event dynamic systems
13(1):41–77.
Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J. 2009.
Curriculum learning. Proc. ICML 41–48.
Chakravorty, J.; Ward, P. N.; Roy, J.; Chevalier-Boisvert, M.; Basu,
S.; Lupu, A.; and Precup, D. 2020. Option-critic in cooperative
multi-agent systems. In Proc. AAMAS, 1792–1794.

3Disclaimer This paper was prepared for informational purposes in part by the Artificial In-
telligence Research group of JPMorgan Chase & Co. and its affiliates (“JP Morgan”), and is not a
product of the Research Department of JP Morgan. JP Morgan makes no representation and warranty
whatsoever and disclaims all liability, for the completeness, accuracy or reliability of the information
contained herein. This document is not intended as investment research or investment advice, or a
recommendation, offer or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of participating in
any transaction, and shall not constitute a solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would be unlawful.

Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2018. Minimal-
istic gridworld environment for OpenAI gym. https://github.com/
maximecb/gym-minigrid.
Dietterich, T. G. 1998. The maxq method for hierarchical reinforce-
ment learning. In Proc. ICML, volume 98, 118–126.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated Planning
and Acting. Cambridge University Press.
Hawes, N. 2011. A survey of motivation frameworks for intelligent
systems. JAIR 175(5-6):1020–1036.
Illanes, L.; Yan, X.; Icarte, R. T.; and McIlraith, S. 2019. Symbolic
planning and model-free reinforcement learning: Training taskable
agents. In Proc. RLDM, 191–195.
Illanes, L.; Yan, X.; Icarte, R. T.; and McIlraith, S. A. 2020. Sym-
bolic Plans as High-Level Instructions for Reinforcement Learning.
Proc. ICAPS 30:540–550.
Jong, N. K., and Stone, P. 2008. Hierarchical model-based rein-
forcement learning: R-max+ maxq. In Proc. ICML, 432–439.
Konidaris, G.; Kuindersma, S.; Grupen, R.; and Barto, A. 2012.
Robot learning from demonstration by constructing skill trees. The
Int’l Journal of Robotics Research 31(3).
Levy, A.; Konidaris, G.; Platt, R.; and Saenko, K. 2019. Learning
multi-level hierarchies with hindsight. Proc. ICLR.
Nau, D.; Patra, S.; Roberts, M.; Bansod, Y.; and Li, R. 2021. GTPy-
hop: A hierarchical goal+task planner implemented in Python. In
ICAPS Wksp. on Hierarchical Planning (HPlan).
Nau, D. 2013a. Game applications of HTN planning with state
variables. In ICAPS Workshop on Planning in Games. Keynote talk.
Nau, D. S. 2013b. Pyhop, version 1.2.2: A simple HTN planning
system written in python. Software release.
https://bitbucket.org/dananau/pyhop/src/master/.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.;
Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A. 2017. Automatic
differentiation in pytorch. In Proc. NeurIPS.
Ram, A., and Leake, D., eds. 1995. Goal-Driven Learning. Bradford
Press.
Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Universal
value function approximators. In Proc. ICML, 1312–1320.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and Klimov, O.
2017. Proximal policy optimization algorithms.
Shivashankar, V.; Kuter, U.; Nau, D. S.; and Alford, R. 2012. A
hierarchical goal-based formalism and algorithm for single-agent
planning. In Proc. AAMAS, 981–988.
Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. S. 2013.
The GoDeL Planning System: A more perfect union of domain-
independent and hierarchical planning. In Proc. IJCAI, 2380–2386.
Shivashankar, V.; Alford, R.; Roberts, M.; and Aha, D. 2016. Cost-
optimal algorithms for planning with procedural control. In Proc.
ECAI, 1702–1703.
Shivashankar, V. 2015. Hierarchical Goal Networks: Formalisms
and Algorithms for Planning and Acting. Ph.D. Dissertation, Com-
puter Science Dept., University of Maryland.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learning: An
Introduction. MIT Press, 2nd edition.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between mdps and
semi-mdps: A framework for temporal abstraction in reinforcement
learning. AIJ 112(1):181–211.
Willems, L. 2021. Rl starter files. https://github.com/lcswilliems/rl-
starter-files.


