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Abstract

Optimizing gait stability for legged robots is a difficult
problem. Even on level surfaces, effectively traversing
across different textures (e.g., carpet) rests on dynami-
cally tuning parameters in multidimensional space. In-
spired by biology, evolutionary algorithms (EA) remain
an attractive solution for feasibly implementing robotic
locomotion with both energetic economy and rapid pa-
rameter convergence. Here, we leveraged this class of
algorithms to evolve a stable hexapod gait controller ca-
pable of traversing uneven terrain and obstacles. Gait
parameters were evolved in a rigid body dynamics sim-
ulation on an 8 x 3 meter obstacle course comprised
of random step field, linear obstacles and inclined sur-
faces. Using a fitness function that jointly optimized lo-
comotion velocity and stability, we found that multiple
successful gait parameter evolutions yielded specialized
functionality for each leg. Specific gait parameters were
identified as critical to developing a rough terrain gait.

Introduction

Small and medium-sized mobile ground robots that operate
in urban and rural outdoor environments must cope with ter-
rain that is uneven and cluttered with obstacles. For travers-
ing uneven terrain and scaling obstacles, legged locomotion
has several advantages over wheeled and tracked vehicles in-
cluding enabling omni-directional movement, scaling obsta-
cles higher than the robot’s center of gravity, avoiding con-
tact with ground hazards, and fault tolerance.

For biological systems with legged locomotion, evolution
by natural selection has favored (in terms of species count)
hexapods, which possess the inherent stability of a tripod
gait as well as the ability to articulate the front two legs for
climbing and manipulation tasks while maintaining a sta-
ble stance on the rear four legs. Effective execution of a
hexapod gait generally requires a minimum of 18 degrees
of freedom. Thus developing an agile and stable gait for
traversing randomly uneven terrain has a large search space
that serves as a good candidate problem for evolutionary
algorithms, and the application of evolutionary algorithms
to the field of gait controller optimization has been a sub-
ject of ongoing research (Lewis, Fagg, and Solidum 1992;
Kon and Sahin 2020).
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Figure 1: Gazebo simulation environment. Obstructions in-
clude a random step field on an incline and linear obstacles.

For legged robots on uneven surfaces, a closed loop gait
controller that can detect when and with what force the feet
contact the ground, and dynamically adjust to the uneven
surface, will usually outperform open loop systems (Irawan
and Nonami 2012; Koenig et al. 2011). However an open
loop gait for uneven surfaces is useful for many legged
robots which may not have ground contact sensing or mo-
tor force feedback. Additionally, some common deformable
surfaces, such as vegetation and litter, do not provide ground
contact certainty, requiring the use of an open loop gait.
This paper demonstrates a method for evolving an open loop
hexapod gait controller capable of traversing uneven terrain
and obstacles and presents results on a PhantomX hexapod
simulated using the Open Dynamics Engine in Gazebo.

Related Work

Evolutionary algorithms have been used to evolve flat sur-
face forward gaits for hexapods in the Open Dynamics En-
gine; for instance Belter and Skrzypczynski (2010) demon-
strated the usage of an evolutionary algorithm in which fit-
ness based selection and crossover was replaced by popula-
tion density based reproduction. Real value gait parameters
were used to encode the genotype. To overcome the real-
ity gap between simulation and the physical robot, they at-
tempted to identify a set of parameters which would induce
the most commonality between the simulated gait and the
physical robot gait. However, very little work has been done
to evolve a gait controller capable traversing randomly un-



even surfaces and scaling obstacles.

An interesting problem in locomotion research is creat-
ing gaits for “injury” conditions such as complete leg failure
(Manglik, Gupta, and Bhanot 2016) or individual joint fail-
ure (Kon and Sahin 2020). Similar to our work, Manglik,
Gupta, and Bhanot (2016) used combinations of sinusoidal
waves to govern all leg servo motion. The gait parameters
composing the genotype were eight real valued parameters;
four leg angles and four distance parameters. Gaits were
evolved using a genetic algorithm with a population of 50
individuals over 40 generations. Evolution was performed
in a simple Matlab mathematical simulation and then gaits
were tested on a physical robot. However, when the gaits
were transferred to the physical robot, inefficiencies were
observed due to the lack of physical dynamics modeling in
the simulation (e.g., friction). This illustrates the problem
with conducting the evolution process in low fidelity simu-
lations.

In an effort to adapt to leg joint failure, Kon and Sahin
(2020) evolved their 18 DOF hexapod gaits in simulation for
200 generations with fifty individuals per generation, adapt-
ing gaits to individual motor loss rather than entire leg loss.
A binary genotype of 540 bits corresponded to fifty-four
phenotype decimal gait parameters. Their method relied on
seeding the population with a hand tuned gait; the evolved
gaits were able to adapt to single and dual joint failure albeit
with many gaits considered spastic.

Rather than evolving a single gait, it may be useful to
design multiple gaits for different conditions (Cully and
Mouret 2016; Li et al. 2015). Cully and Mouret (2016)
evolved a repertoire of hexapod walking gaits by selecting
multiple gaits per generation. This was accomplished using
a complex fitness mechanism which selected multiple indi-
viduals in each population based on the resulting trajecto-
ries of the various gaits. For transfer to the physical robot,
gaits developed in simulation using the Open Dynamics En-
gine were tested on the robot at regular intervals and given a
transfer rating. This transfer rating was used to train an SVM
classifier. Once the classifier had been trained with enough
transferred gaits, it could predict the likelihood of success-
ful transfer of a given simulated gait to the physical robot.
The methodology produced several hundred functional gait
controllers useful for adjusting speed and direction.

Method

Simulation environments are often used for evolutionary al-
gorithm work as it is impractical to test thousands of robot
control configurations on a physical robot. For our research,
the Gazebo simulation environment was used to test evolved
gait configurations. Gazebo can be integrated with the Robot
Operating System (ROS) such that Gazebo receives control
input from ROS and also provides telemetry back to ROS
which can then be published as a ROS topic. There are a
number of physics engines that can be used to power the
Gazebo simulation physics. For this effort, the default Open
Dynamics Engine (ODE) was used, though the future work
section will discuss additional dynamics engines that could
be tested.

Figure 2: PhantomX hexapod

The simulated obstacle course shown in Figure 1 is ap-
proximately 3 meters in width and 8.2 meters in length. The
initial 3 meters of the course is composed of a random step
field which varies in height from O to 7.6 cm followed by a
11.4 x 11.4 cm box beam obstacle and then another meter
and a half of random step field followed by a dual box beam
obstacle, and finally a 45 degree inclined random step field.
The course is enclosed with walls on either side to prevent
the robot from moving off the course and the trial is ended
after 90 seconds, or if the robot reaches the top of the incline
(8.2 meters).

With three degrees of freedom per leg, the PhantomX
hexapod (Figure 2) has a total of 18 degrees of freedom. The
middle leg coxa servos are positioned at a 90 degree angle
while the front and rear coxa are at 45 degree angles. Each
leg is 24 cm long fully extended and the thorax is approxi-
mately 9 x 20 x 5 cm. The tallest walking gait can achieve
a ground clearance of just over 15 cm at the expense of sta-
bility and mobility. Typical stable gait ground clearance is 5
cm. The PhantomX Gazebo model (https://github.
com/HumaRobotics/phantomx_gazebo) was used
with an increased mass value of 2.5 kg to more accurately
match the mass of the target PhantomX hexapod with a
battery and CPU. For this setup, the phantomx_walker and
Gazebo nodes are created, joint angles are initialized, and
then the evolutionary algorithm software creates a controller
node. This node sends joint angles to the PhantomX con-
troller which in turn communicates the model movements to
the simulation. Lastly, a listener node receives ground truth
of the robot’s position and orientation to be evaluated by the
fitness function.

For the hexapod control, the coxal servos are set to a con-
stant tripod joint angle trajectory using a continuous sinu-
soidal wave with the ROS clock as the input value. A hexa-
pod tripod gait is a symmetric gait in which the front and
rear legs on a given side will lift and move forward while
the middle leg pushes rearward on the ground. Then the front
and rear legs touch down and push back while the middle leg
lifts. Both sides are timed so that there are always three feet
on the ground, one on one side and two on the other. The
front and rear coxal servos move forward in unison while
the middle servo moves rearward, with the opposite trajec-
tory on the opposing side. Coxal servo range values were
set to maximize range of motion without collision and lim-
ited to reaching directly forward and directly rearward. The
evolution of femur and tibia parameters is such that the two
joint angles follow a sinusoidal wave with either the same



period or double the period of the coxal trajectory. Assuming
a symmetric gait only requires that half the total gait param-
eters need to be evolved as one side is simply a phase shift
from the other side for all joint angles. Consequently, there
are 8 parameters for each leg for a total of 24 real value gait
parameters composing the genome. For each leg, the param-
eters are as follows: femur period, femur phase, femur range,
femur vertical shift, tibia period, tibia phase, tibia range, and
tibia vertical shift. The period value was either 1 or 2, phase
value ranged from O to 2, servo range from O to 1.7 and ver-
tical shift valued -1 to 1.

Similar to the joint angle trajectory approaches (Manglik,
Gupta, and Bhanot 2016), the trajectory of each leg joint is
defined by a periodic function yof the amplitude o, phase
shift ¢ , period multiplier p, time ¢, and the vertical shift v.

W(Qapvtv ¢7V) = Q- COS((p ' t) + ¢) +v

This sinusoidal wave function for gait control was de-
signed to achieve a number of goals. With the intent to trans-
fer the gait controller to the physical robot, and because the
physical dynamics accuracy of the PhantomX Gazebo model
is not known with certainty, a complex wave function (Li et
al. 2015), could evolve into a gait in simulation that would
be beyond the maximum angular velocities of the physical
PhantomX servos, causing the servo trajectory to lag behind
that of desired. This effect could be compounded given the
unknown update rates for the main controller loop when run-
ning on the robot’s CPU. Because ROS is a distributed archi-
tecture, the simulator is running on a separate CPU from the
controller, allowing the controller loop to execute quickly. It
must be taken into account that the controller loop may not
update as quickly while running on the robot’s ARM proces-
sor which will also be processing sensor data.

The performance of EAs rest on fitness functions which
evaluate and select individuals, z, in combination based on
their evolutionary utility for future generations. In robotic
locomotion tasks, distance successfully traveled, orienta-
tional stability, and speed are crucial elements of perfor-
mance. Here, we combined these performance metrics into
a fitness function, designed to jointly maximize velocity, v,
and negative orientational displacement, D, to quantify lo-
comotion stability:
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Here, D, is the negative orientational displacement
pooled across dimensions with respect to initial orientation
conditions. Note, this could also be cast as a maximization,
minimization problem.

There are two basic methods to initialize a population for
the first generation of an evolutionary algorithm. The first
is generating random (Gaussian or uniform) legal values for
each parameter. The second is to start with a seed individual
and randomly mutate the individual to form the first pop-
ulation. For this effort, the initial population was a Gaus-
sian mutation of a hand tuned all terrain gait. The seed in-
dividual itself was not included in the first generation. For
each new generation, the fitness function was used to eval-
uate all individuals and then two parents were chosen us-

ing tournament style selection. Specifically, the first parent
was selected as the highest fitness individual from the first
half of the population and the second parent was the high-
est fitness individual from the second half of the popula-
tion. Once parents were selected, a new population is pro-
duced in the following manner. Each new individual has
a 0.5 probability to be either generated by Gaussian muta-
tion of the higher fitness parent or generated by a two point
random genetic crossover of both parents. For those mu-
tated from a single parent, the mutation probability was 0.4
for each parameter. Elitism was not employed, so parents
did not survive to subsequent generations. The two point
crossover function used for the evolutionary algorithm was
imported from the DEAP evolutionary computation frame-
work (http://github.com/deap/deap).

As to be expected with random mutation, many individ-
ual gaits were found to be extremely unstable during ini-
tial testing. To manage this, maximum orientation thresh-
olds were imposed such that an individual gait trial would
terminate early if the gait proved excessively unstable or re-
versed in direction. During the trial for each individual, the
published (ROS topic) quaternion values were used to de-
termine drastic changes in orientation and thus end the trial
early if the individual went outside specific orientation pa-
rameters. Maximum orientation parameters were set at 45
degrees roll, 70 degrees pitch and 90 degrees yaw. Addition-
ally, if the gait drove the robot in reverse for more than 0.2
meters, the trial was ended. The average rate of change in the
w quaternion value was used to measure orientation stabil-
ity of the gait. This stability accounted for 5% of the overall
fitness score. The time period for each trial was set at 90 sec-
onds. Lateral displacement was not explicitly penalized, as a
real world gait controller would provide steering capability
and any open loop gait is likely to veer of course a bit in a
random step field. The overall linear directional fitness pro-
vided implicit penalty to lateral displacement, and though it
may possible for an erratic gait to achieve higher linear di-
rectional fitness by bouncing off of the walls, the orientation
stability component of the fitness value would explicitly pe-
nalize such a gait. We executed the evolutionary algorithm
with a population of 200 individuals for 23 generations.

Evaluation

For comparison, the hand tuned, fast, flat surface gait was
able to traverse the 8.6 meters on flat ground in 34.8 sec-
onds. When traversing the random step field, this initial tri-
pod gait only achieved 1.28 meters in the same time period.
The evolutionary algorithm evolved a gait controller which
was able to traverse over 6 meters of random step field and
obstacles over 90 seconds.

Fitness results indicate that the evolved gaits were able to
reach the first obstacle starting with the 1st generation and
then didn't find a good obstacle climbing gait until the 6th
generation (Fig 3). From the 5th generation to the 8th, the
algorithm achieved a rapid improvement in fitness with the
fitness scoring diverging slightly from the distance achieved
once the hexapod passed the 5 meter mark, likely due to the
obstacles at that point. Distance achieved for generation 8
was 6.2 meters which is just starting to climb the step field
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Figure 3: Fitness (blue) and distance traveled (red) by gen-
eration (x-axis). The highest distance achieved in generation
8 had relatively low stability.

incline. Fitness then sharply dropped off for the next few
generations; the robot was unable to traverse the second ob-
stacle until generation 22 and 23, with generation 23 reach-
ing the second furthest distance of 5.9 meters. If elitism had
been employed, in which parents survive to the next gener-
ation, the generation 23 gait solution would likely not have
been discovered, limiting the overall search space.

Table 1 shows the gait parameters for generation 8 and
generation 23, the highest fitness individuals. The period
multiplier value is not shown as it converged to one in every
generation but the first. The average difference between the
two gaits is 22% with 9 of the 18 parameters values within
10% of each other. The front tibia kinematics appear to be
most similar between the two gaits at only 20% difference,
while the rear tibias have the most difference at 41%. With
only a 5% difference in fitness and distance between the two
gaits, there are no obvious indications that gait 23 was con-
verging toward the same optima as gait 8.

Figure 4 shows distance achieved versus scaled stability.
A higher stability value in the chart indicates higher orienta-
tional stability. The stability (average change in quaternion
w) over the generations indicates that the initial high fitness

Gen. 8 | Gen. 23 | Diff. | % Range
Fitness 6 5.7 3 5%
Distance 6.2 59 3 5%

Front Femur Phase 6.28 6.28 0.00 0%

Front Femur Range 0.41 1.27 0.86 51%

Front Femur Shift -0.27 -1.00 .73 37%
Front Tibia Phase 2.29 2.89 0.60 10%
Front Tibia Range 1.50 1.36 0.14 8%
Front Tibia Shift 0.71 0.81 0.11 5%

Middle Femur Phase 0.46 6.28 5.82 7%

Middle Femur Range | 0.97 1.08 0.11 6%

Middle Femur Shift -0.67 0.31 0.97 49%

Middle Tibia Phase 0.94 1.36 0.41 7%

Middle Tibia Range 0.05 0.73 0.67 40%

Middle Tibia Shift 0.41 0.54 0.13 7%

Rear Femur Phase 6.23 1 0.52 10%
Rear Femur Range 0.12 0.62 0.50 29%
Rear Femur Shift -0.75 -0.87 0.13 6%
Rear Tibia Phase 1.62 6.03 4.41 70%
Rear Tibia Range 0.14 0.87 0.73 43%
Rear Tibia Shift 0.00 -0.21 0.21 11%

Table 1: The two best gaits compared. The scalar value dif-
ference is shown along with the percentage difference. The
large difference in gait values likely indicates the generation
23 gait was toward a different optima in search space.

of generation 8 was not as stable as the solution found in
generation 23, further evidence of the different location in
search space between the two solutions. Traversing the box
beam obstacles has the highest adverse impact on stabil-
ity, in that the hexapod encounters a vertical obstacle which
causes rapid changes in pitch when traversing. Three of the
five highest stability gaits were the ones that stopped at or
just before the first obstacle (gaits 4, 11 and 15). Conse-
quently, the main stability challenge was the dual box beam
obstacle which was configured with the first beam starting at
4.75 meters and the next beam at 5.2 meters, leaving only a
35cm gap between box beams. The PhantomX hexapod neu-
tral stance has a minimum of 40cm between front and rear
feet so the dual box beam forms a single obstacle. For gaits
16, 18 and 20, encountering this obstacle likely adversely
affected their stability score as well as halting any further
directional progress.

Figure 5 shows the right front leg angular trajectories for
the highest fitness gait. As illustrated, it is evident that just
before the coxa drives rearward, the femur starts its down-
ward stroke, followed quickly by the tibia. Next, the femur
and tibia start their upward stroke before the coxa reaches its
rearmost point. The tibia range (amplitude) of 1.5 is much
greater than that of the femur range 0.4 which is in stark
contrast to the hand tuned all-terrain seed gait which had a
tibia range of only 0.4 and a femur range of 0.8. Further-
more, the tibia wave is shifted higher, giving the tibia the
ability to reach up and over obstacles.

Unlike the front legs, where the tibia had a much higher
range of motion than the femur, in the middle legs the fe-
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Figure 4: Distance achieved in meters (blue) and scaled ori-
entational stability value (red) is shown for each generation
(x-axis).

mur is doing most of the work while the tibia is angled up
slightly but with very little range of motion. For the rear legs,
femur and tibia have evolved a very low range of motion.
With the femur angled down (horizontal shift) and the tibia
in phase with the coxal, it would appear the rear legs are
acting more to stabilize the hexapod orientation while still
providing ground clearance versus any significant contribu-
tion to forward momentum.

Figure 6 shows the parameter data from generation 5
through 8; it reveals a rapid increase in fitness, going from
the second lowest fitness to the highest in only 4 generations.
The largest increase in fitness was observed between gener-
ations 6 and 7 where we see a substantial decrease in middle
tibia phase which may be correlated with the large change in
fitness.

By examining the covariance of each parameter over all
generations with respect to distance traveled (Fig. 7), it is
evident that front femur phase, middle femur phase and rear
tibia phase are key parameters for a successful adverse ter-
rain gait evolution. Front femur vertical shift, middle tibia
range, rear femur vertical shift and rear tibia range are the
least correlated with distance traveled. Since the phase shift
parameters control the relationship between a given joint
movement cycle with respect to the coxa, having this tim-
ing off would greatly affect vehicle movement (e.g., if the
coxal joint is moving rearward and the femur has the leg in
the air versus on the ground).
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Figure 5: Front leg angular trajectories. Red is the coxa,
green is the femur and blue is the tibia, with higher coxa
values being servo forward and higher values for the femur
and tibia both being servo up.

Figure 6: Change in gait parameters (generation 5 through
8). The nearest data is generation 5 with Front Femur Phase
(FFR) on the left, then Front Femur Range (FFR), then Front
Femur Shift (FFES), Front Tibia Phase (FTP) and so on for
middle and rear values.

Conclusion and Future Work

Using an evolutionary algorithm, an open loop gait con-
troller was evolved to enable a hexapod robot to traverse un-
even terrain and obstacles in simulation. Using a population
of 200 individuals over 23 generations, the evolutionary al-
gorithm evolved a gait that was able to traverse just over 6
meters of random step field and linear obstacles in 90 sec-
onds. The highest fitness score was actually reached in the
8th generation, then fitness lowered for the population and
eventually climbed back up to 96% of the earlier solution.
For the given hexapod simulation model and physics en-
gine, evolving a multi-terrain gait for a high degree of free-
dom legged robotic platform was successful in fewer gen-
erations than anticipated. A gait was evolved that could tra-
verse random step fields, box beam obstacles and a inclined
step field while also maintaining a degree of orientational
stability. Future research into characterizing highly transfer-
able multi-terrain gaits could allow a multitude of obstacle
traversing gaits to be developed in simulation for successful
transfer to the physical robot. Furthermore, considering the
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Figure 7: Gait covariance with distance. This analysis re-
veals that the front femur phase, middle femur phase, and
rear tibia phase parameters are highly correlated with dis-
tance achieved.

correlation of changes in gait parameters with respect to per-
formance should inform additional refinement towards the
most efficient strategy for evolving robotic gaits.

Evolving the gait in simulation is only useful if it is trans-
ferable to an actual hardware platform. Given this, the next
step is to test the various peak performing gaits on the actual
hardware of the PhantomX hexapod. From the fitness graph,
it is evident that there may be more than one capable gait
worth transfer testing.

Selecting and fine tuning the various evolutionary algo-
rithm techniques and choice of parameters has a significant
impact on algorithm performance. The practice of meta-
evolution, in which these variables are themselves evolved
and optimized, enables much more efficient genotype-to-
phenotype mapping as shown by previous work (Scott and
Bassett 2015). Specifically, a linear pleiotropic encoding
would enable a single genotype value to alter multiple gait
parameters and discover solutions more efficiently.

A future study could also implement different rigid body
dynamics engines in Gazebo such as Bullet, DART or Sym-
body, and then test transfer to the physical platform to see
which dynamics engines are evolving the most transferable
gaits. Additionally, implementing machine learning to clas-
sify gaits based on the the quality of each gait transfer from

hardware to simulation (Cully and Mouret 2016) could also
help overcome the “reality gap”.

Anther consideration for future research is a repertoire of
gaits approach in which a gait controller is evolved sepa-
rately for each obstacle class. These gaits could then be bred
as seed genomes for an initial population, in the interest of
discovering new multi-obstacle hybrid gaits.

Finally, Gazebo supports a contact sensor module, which
reports collisions and forces between objects. This module
could provide the means to evolve a closed loop gait con-
troller if the contact sensor were added to the tibia/foot. A
dynamic controller that could maximize agility as well as
minimize contact forces would help to increase power effi-
ciency, which is a significant challenge for legged robotics,
especially over rough terrain.
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