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Abstract
Counterfactual examples (CEs) are generally created to
interpret the decision of a model. In this case, if a model
makes a certain decision for an instance, the CEs of that
instance reverse the decision of the model. There are
many advantages of using counterfactuals as a way of
explaining model decisions; however, there is one issue
known as the Rashomon Effect that might dissuade tar-
get/intended users from using counterfactuals. If some-
one is presented with too many options, this might be
overwhelming to them, and they might end up choos-
ing an option that is not optimal or ideal to them. In this
case, the Rashomon Effect is an impediment to realizing
the full potential of counterfactual explanations. To uti-
lize the full power of CEs and make them more helpful,
we need to address the Rashomon Effect. In this work
we focus on this issue from game-theoretic perspectives
to help target users make informed and feasible deci-
sions by finding highly suitable CEs. In this case, find-
ing good counterfactuals will be a game between two
players where each of them tries to find better CEs.

Introduction
There has been a desire for explanations of how complex
computer systems make decisions for quite some time. The
need for explanations can be dated back to some of the earli-
est work on expert systems (Buchanan and Shortliffe 1984).
Explanations are critical for machine learning (ML), espe-
cially as machine learning-based systems are being used to
inform decisions in societally critical domains such as fi-
nance, healthcare, education, and criminal justice. However,
most explanation methods depend on an approximation of
the ML model to create an interpretable explanation. For ex-
ample, consider a person who applied for a loan and was re-
jected by the loan distribution algorithm of a financial com-
pany. Typically, the company may provide an explanation
as to why the loan was rejected, for example, due to “poor
credit history”. However, such an explanation does not nec-
essarily provide the person with sufficient information re-
garding what they need to do to improve their chances of
being approved in the future. Critically, the most important
feature may not be enough to flip the decision of the algo-
rithm and, in practice, may not even be changeable such as
gender or race.
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Wachter et al. (Wachter, Mittelstadt, and Russell 2017)
argue that there are three important aims for explanations:
(1) to inform and help the person understand why a partic-
ular decision was reached, (2) to provide grounds to contest
the decision in the case of an undesirable outcome, and (3)
to understand what would need to change in order to get
a desirable result in the future, based on the current deci-
sion making model. A counterfactual explanation (CE) of a
prediction describes the smallest change to the feature val-
ues that changes the prediction to a predefined output, and
it can be a good candidate to fulfill the three aims proposed
by Wachter et. al. In interpretable machine learning, coun-
terfactual explanations can be used to explain predictions of
individual instances. In this paper, we use the terms counter-
factuals and counterfactual examples interchangeably.

Counterfactual examples are increasingly seen as enhanc-
ing the autonomy of people subject to automated decisions
by allowing people to navigate the rules that govern their
lives (Barocas, Selbst, and Raghavan 2020). This helps peo-
ple recognize whether to contest the decision making pro-
cess and facilitates direct oversight and regulation of algo-
rithms (Wachter, Mittelstadt, and Russell 2017; Selbst and
Barocas 2018). Specifically, counterfactual examples pro-
vide this information by showing feature-perturbed versions
of the same person who would have otherwise received the
loan (Mothilal, Sharma, and Tan 2020).

Motivation and Contribution: There are many advan-
tages of using counterfactuals as a way of explaining
model decisions, however, there is one issue known as the
Rashomon Effect (Anderson 2016) that might dissuade tar-
get/intended users from using counterfactuals. Rashomon is
a Japanese movie in which the murder of a Samurai is told
by different people. Each of the stories explains the outcome
equally well, but the stories contradict each other. The same
can also happen with counterfactuals, since there are usu-
ally multiple different counterfactual explanations. For each
instance, you will usually find multiple counterfactual ex-
planations. This is inconvenient – most people prefer sim-
ple explanations over the complexity of the real world. If
someone is presented with too many options, this might be
overwhelming to them, and they might end up choosing an
option that is not optimal or ideal to them. In this case,
the Rashomon Effect is an impediment to realizing the full
potential of counterfactual explanations. To utilize the full



power of CEs and make CEs more helpful, we need to ad-
dress the Rashomon Effect and help the target users make
informed and feasible decisions by finding highly suitable
CEs.

We address the Rashomon Effect question from two per-
spectives. The first one will deal with targeted counterfac-
tuals i.e., CEs generated based on the inputs/criteria from
the ‘end user.’ The second perspective is about generating
‘Good/Plausible’ counterfactual based on domain knowl-
edge. In this case, we propose a solution that has three di-
mensions. One dimension deals with domain knowledge, an-
other deals with user preferences, and the last is about the
solution approach. For the solution approach we apply game
theory. In this case, finding optimal counterfactuals will be a
game between two players where each of them tries to find
the better counterfactuals.

Background
In interpretable machine learning, counterfactual explana-
tions can be used to explain predictions of individual in-
stances. The counterfactual explanation method is model-
agnostic, since it only works with the model inputs and
output, and the interpretation can be expressed as a sum-
mary of the differences in feature values. Counterfactuals are
human-friendly explanations, because they are contrastive to
the current instance and because they are selective, meaning
they usually focus on a small number of feature changes.

We can generate counterfactual explanations using a sim-
ple and naive approach, searching by trial and error (Molnar
2019). In this approach, we randomly change feature values
of the instance of interest and stop when the desired out-
put is predicted. There are, however, better, more practical
approaches than trial and error. We can start by defining a
loss function that takes as input the instance of interest and
the output is a counterfactual or the desired outcome. This
loss function measures how far the predicted outcome of the
counterfactual is from the predefined outcome and how far
the counterfactual is from the instance of interest (Wachter,
Mittelstadt, and Russell 2017). There are two ways to opti-
mize the loss function. One way is to optimize the loss di-
rectly with an optimization algorithm like Adam (Adaptive
Moment Estimation) (Kingma and Ba 2014). Another way is
to search around the instance. Wachter et. al (Wachter, Mit-
telstadt, and Russell 2017) proposed an approach by mini-
mizing the following loss function, which was later refined
by Molnar (Molnar 2019):

L(xi, x
′
i, y

′, λ) = λ · (f̂(x′
i)− y′i)

2 + d(xi, x
′
i) (1)

Here, the term λ · (f̂(x′
i) − y′i)

2 represents the quadratic
distance between the model prediction (f̂(x′

i)) for the coun-
terfactual x′

i for an instance of interest xi and the desired
outcome y′i, which the user must define in advance. The sec-
ond term d(xi, x

′
i) is the distance d between the instance of

interest xi to be explained and the desired counterfactual x′
i.

The parameter λ plays an important role here, which bal-
ances the distance in prediction i.e. λ · (f̂(x′

i)− y′i)
2 against

the distance in feature values i.e. f̂(x′
i). The loss is solved

by choosing an appropriate value of λ, and the solution re-
turns a counterfactual x′

i. The value of λ dictates the kind
of compromise we want to make in our preference for coun-
terfactuals. For example, if we choose a higher value of λ
that means we prefer counterfactuals that are closer to the
desired outcome y′i. On the other hand, if we go for a lower
value λ, we prefer counterfactuals x′

i that are very similar
to the instance of interest, xi, in the feature values. A very
large value of λ indicates that, the instance with the predic-
tion that comes closest to y′i will be selected, no matter how
far it is away from xi.

The choice of λ depends on the user, as he/she must de-
cide how to balance the requirement that the prediction for
the counterfactual matches the desired outcome with the re-
quirement that the counterfactual is similar to xi. Wachter et.
al suggest instead of selecting a value for λ, we can select a
tolerance ϵ. The tolerance indicates how far away the predic-
tion of the counterfactual instance is allowed to be from y′i.
We can write this constraint in the following way:

|f̂(x′
i)− y′i| ≤ ϵ (2)

We can use any suitable optimization algorithm to min-
imize this loss function in Eq. (2). For example, if we
have access to the gradients of the machine learning model,
we can use gradient-based methods like RMSprop opti-
mizer (Tieleman and Hinton 2012) or Adam. To the best
of our knowledge, all the recent works on counterfactual
examples generation use Eq. (1) with little or no modifi-
cation (Mahajan, Tan, and Sharma 2019; Mothilal, Sharma,
and Tan 2020; Russell 2019; Sokol and Flach 2019).

Game Theory
Game theory is the study of strategic decision-making,
which provides a framework for understanding choice in sit-
uations among competing players (Gibbons 1992). In this
case, game theory can facilitate competing players to reach
optimal decision-making when confronted by independent
and competing actors in a strategic setting. In our work, we
apply game theory to find optimal CEs that help us reduc-
ing the Rashomon Effect. As a game model we choose the
Stackelberg Leadership model, which is a sequential game
model and is more in line with the kind of problem we are
trying to solve. This game model combines theory with prac-
tice and provides a practical research model (Roughgarden
2004; Fiez, Chasnov, and Ratliff 2020; Chen et al. 2020;
Sinha et al. 2018).

According to game theory, the interaction among partic-
ipating players are considered as a game. A game can be
multi-player, two-player, or mono-player game. Irrespective
of the number of players in the game, each player tries to
maximize his/her payoff. A gain in one player might result
in either gain or loss in other players. This payoff motiva-
tion dictates each player’s move. In game theory, every par-
ticipating player is considered as rational, and they make
their move intelligently. The heart of every game is the play-
ers who makes decision regarding the next course of action.
While making a decision a player believes that other players
will also try to to maximize their payoff which will result



in the best possible payoff for them. Game theory helps to
determine which action will result in maximum payoff and
provides a solution concept. A solution concept provides the
best possible solution on the strategies or actions to be taken,
and at the same time, it gives an idea of possible payoff.

The important part of a solution concept is to formulate
a payoff function. Based on this payoff function, the action
and strategies are chosen. The action is the move the player
will take in the next step, whereas strategy is a complete set
of actions in all possible situations that a player will take
over the course of the game. Strategy can be of two types.
pure strategy or mixed strategy. A pure strategy is one where
a player takes unique set of actions given the action of other
players. If the strategy requires a randomization given a sit-
uation, then it called mixed strategy.

A Nash Equilibrium is a solution concept that describes
a steady state condition of the game where no player would
have motivation to change action unilaterally as this would
not increase his/her gain. This solution concept only spec-
ifies the equilibrium state but does not specify how that
steady state is reached in the game. The Nash equilibrium
is the most famous equilibrium, and in almost every security
game, this concept is used. In truth, it does not ensure the
best possible outcome but it does ensure that a player has
made the best response given other players’ responses. This
is when the Nash Equilibrium is achieved.

The general terminologies of Game Theory are described
below (Gibbons 1992; Roy et al. 2010; Osborne and Rubin-
stein 1994).
Game: A description of the strategic interaction between
opposing, or co-operating interests, where the constraints
and payoff for actions are taken into consideration.
Player: A player is a basic entity in a game that is tasked
with making choices for actions. A player can represent a
person, machine, or group of persons within a game.
Action: An action constitutes a move in the given game.
Payoff: The positive or negative reward to a player for a
given action within the game.
Strategy: Plan of actions that a given player can take during
game play.

Related Work
Mothilal et. al extended the work of Wachter et. al (Wachter,
Mittelstadt, and Russell 2017) and provided a method to
construct a set of counterfactuals with diversity (Mothilal,
Sharma, and Tan 2020). Ribeiro et al. (Ribeiro, Singh,
and Guestrin 2016) proposed a feature-based approach,
LIME, that fits a sparse linear model to approximate non-
linear models locally. Guidottiet al. (Guidotti et al. 2018)
extended this approach by fitting a decision tree classi-
fier to approximate the non-linear model and then trac-
ing the decision-tree paths to generate explanations. Simi-
larly, Lundberg and Lee (Lundberg and Lee 2017) provided
human-comprehensible approximations for linear models
and presented a unified framework that assigns each fea-
ture an importance value for a particular prediction. Rus-
sel worked on efficiently finding coherent counterfactu-
als avoiding the need for brute-force enumeration (Russell

2019). Ustun et. al worked on evaluating a linear classifi-
cation model in terms of recourse, which behaves similarly
to counterfactuals (Ustun, Spangher, and Liu 2019). In this
case, the recourse provides a person the ability to change
the decision of the model through actionable input variables.
Mahajan et. al addressed the challenge of the feasibility of
counterfactual examples by preserving causal relationships
among input features (Mahajan, Tan, and Sharma 2019).

Even though there have been much work going on in the
counterfactual explanation area, there is not much that ad-
dresses the Rashomon Effect. As we mentioned before it is
important to address the Rashomon Effect to utilize the full
potential of CEs. To the best of our knowledge, we are the
first to use game theory to address this issue. In this work,
we explore the problem of selecting highly suitable CEs us-
ing game theory, which is a strong tool used to analyze and
find good solution (Gibbons 1992).

Game Theoretic approach to address the
Rashomon Effect

Addressing the Rashomon Effect is very important to uti-
lize full potential of CEs and make CEs more helpful for
end users. Game theory is very popular for resolving strate-
gically conflicting issues (Gibbons 1992). In this work we
apply game theory based on the fact that choosing the best
CE(s) is a strategically challenging decision, and game the-
ory is appropriate for such situations.

Game Theory in Action A number of CEs can be gener-
ated for a single instance using different approaches. How-
ever, too many can do a disservice to its very own purpose.
The target user might get confused when there are too many
options to choose from. Choosing at random might not be
the best choice for the user. Again, spending lots of time
in deciding the correct one is also not the best idea. Out of
all these choices of counterfactual examples to choose from,
the user should be given only a handful of curated examples
based on the needs of the use and feasibility of the CE. Find-
ing these curated CEs can be considered as a competition
between two agents (Leader and Follower), which is influ-
enced by several factors. In this work, we analyze this com-
petition by modeling the problem as a sequential game (My-
erson 2013), in particular, using the Stackelberg Leadership
Model (Osborne and others 2004). Solving the game pro-
vides optimal CEs. In this work, we explore the problem
of selecting the optimal CEs using game theory, which is a
strong tool used to analyze and settle down strategically con-
flicting issues (Gibbons 1992). In this game-theoretic analy-
sis, we primarily map the competition between two agents
using the sequential (multistage) Stackelberg game (Gib-
bons 1992; Osborne and Rubinstein 1994) and solve the
game to find the Nash Equilibrium (NE) (Gibbons 1992).
When a game reaches Nash Equilibrium i.e. we find the re-
quired number of optimal CEs, there is no benefit for any
player to switch strategies. In this situation, all players in
the game are satisfied with their game choices at the same
time, so the game remains at equilibrium.
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Fig. 1: Process flow of Stackelberg game for selecting the optimal CEs.

Algorithm 1: Rashomon-Game
Result: Finds optimal counterfactual(s)
Input: Generated Counterfactual example pool CP,

NE Threshold (Nϵ), Desired no. of CEs , Maximum
number of iterations (Imax);
S← ∅
I ← 0
while CP is not empty and |CP| < RN and I < Imax

do
1. I ← I + 1

2. Nature chooses the Leader.
3. The Leader randomly selects one CE (LCE) from CP .

CP ← CP − LCE

4. Nature chooses the Follower.
5. The Follower observes the selection of the Leader.
6. The Follower determines it payoff maximization criteria

(PMC).
7. The Follower randomly chooses a CE (FCE) from CP .

CP ← CP − FCE

8. The Follower applies the PMC to the selected FCE .
if (LCE and FCE are in NE) or
PMC(LCF )− PMC(FCF ) ≤ Nϵ then

S← FCE

CP ← CP ∪ LCE

else
CP ← CP ∪ {LCE , FCE}

end
9. Return S.

end

Fig. 1 is a simplified diagram of the proposed process cor-
responding to a Stackelberg game. In this sequential game,
the follower has the perfect and complete information about
the leader’s choice. At the first step, we need to find the best
response of the follower based on the actions of the leader.
The Leader and the Follower both can be chosen by na-
ture (Osborne and Rubinstein 1994). The Leader will be
assigned one of the generated CEs randomly. The Follower
will have the rest of the CEs of the CE pool. In this case,
we have designed Algorithm 1 to find the optimal CEs using
game theory. The schematic diagram of the process is shown
in Fig. 1.

Cost and Benefit In this section, we discuss the potential
cost each of the players needs to consider while choosing a
move to find the optimal counterfactual(s). The players need
to consider the following costs:

1. Difficulty of changing the feature (hardness criteria).
2. Magnitude of the feature change.
3. Willingness to change the feature.
4. Time length to change the features.

Difficulty of changing the feature (hardness criteria):
Some features might be difficult to change if not impossible.
We call this difficulty of changing features the ’hardness’
criteria. The hardness will be rated on a scale of 10 with 1 be-
ing the easiest to change and 10 being the hardest to change.
Some features are on the extreme end of hardness criteria
(i.e. 10 in that hardness criteria scale), we call these fea-
tures as immutable features. Immutable features (like race)
should not be suggested to change. While looking for fea-
sible/optimal counterfactuals, considerations of immutable
features should be accounted for. We use indicator function
to indicate immutability of a feature. In general, we can de-
termine the hardness from the domain knowledge. However,
in other cases, we need to consult a domain expert.



Magnitude of the feature change: To what extent we
want to or can change the value of a feature is an important
aspect to consider when looking for a good counterfactual.
For example, in the case of loan application, increasing the
’salary’ value might be an option to get accepted. However,
if the change amount is so big that the user is unable or un-
likely to reach that, it’s should not be considered as a good
feature change to get the desired counterfactual.

Willingness to change the feature: Some users might be
reluctant to change some features suggested in the CEs even
though they sound feasible. In this case, we have the option
to take the user’s feedback. The willingness will be rated on
a scale of 10 with 1 being the ’very willing’ to change and
10 being the ’not willing’ to change.

Time length to change the features: Some feature
changes might be time sensitive and the user might not be
willing to commit to that. Furthermore, by the time the user
achieves the desired feature change, the time might have im-
pact on other features as well. For example, to get loan ap-
proval if one needs to have a Graduate degree and by the
time the user achieves the degree, it might affect other fea-
tures (e.g. age) that might negatively impact the outcome.

Fig. 2: Feasibility of game-theory curated CEs.

Implementation and Evaluation
We applied a technique introduced by Mothilal et.
al (Mothilal, Sharma, and Tan 2020) to generate the CEs.
We generated CEs using a shallow artificial neural network
(ANN) and then used those CEs in other models. We used
different models to experiment with the generated CEs to
avoid potential bias that might arise when the same model
that generated the CEs is again used to test those CEs. At
the same time, we also wanted to make sure that CEs gener-
ated by one model are transferable to another model.

Dataset
In this experiment, we consider the LendingClub
dataset (Davenport 2015). LendingClub is the first
peer-to-peer lending company to register its offerings

as securities with the Securities and Exchange Com-
mission (SEC). Their operational statistics are public
and available for download (Serrano-Cinca, Gutiérrez-
Nieto, and López-Palacios 2015). We preprocess the
data based on previous analyses (Davenport 2015;
Tan et al. 2018) and obtain 8 features, namely, employment
years, annual income, number of open credit accounts,
credit history, loan grade as decided by LendingClub, home
ownership, purpose, and the state of residence in the United
States. The ML model’s task is to decide loan decisions
based on a prediction of whether an individual will pay back
their loan.

Experiments and Discussion
We trained an artificial neural network (ANN) model us-
ing the LendingClub dataset. We randomly selected 400 in-
stances and generated a maximum of 10 CEs for each of the
instances. We would like to evaluate how feasible our game-
theoretically-curated CEs i.e. CEs found in Nash Equilib-
rium. Our target was to reduce the Rashomon Effect. In this
case, we cut down the number CEs from 10 to to 4, which
are feasible and optimal. As a tool for explanation, CEs help
a user intuitively explore specific points on the other side
of the ML model’s decision boundary, which then help the
user to “guess” the workings of the model. To construct a
metric for the accuracy of such guesses, we approximate
a user’s guess with another machine learning model that is
trained on the generated CEs and the original input. Specif-
ically, given a set of CEs and the input example, we train a
1-nearest neighbor (1-NN) classifier that predicts the output
class of any new input. Thus, an instance closer to any of
the CEs will be classified as belonging to the desired coun-
terfactual outcome class, and instances closer to the orig-
inal input will be classified as the original outcome class.
We chose 1-NN for its simplicity and connections to peo-
ple’s decision-making in the presence of examples. We then
evaluate the feasiblity of the CEs obtained from the game
model in a mechanistic way. In this case, we hand pick a CE
for each of the test instances based on the practical criteria
stated above. Then we use our game model to find up to 4
optimal CEs. We can use our game model to pick any num-
ber of optimal CEs depending on the user’s preference, but
for simplicity, we cap this up at 4. It may be noted that orig-
inally we generated as many as 10 CEs for each instance.
Here the 4 CEs obtained from the game model are supposed
to reduce the Rashomon Effect as now the user will only
have to choose from 4 feasible options rather than 10.

The accuracy of optimal CEs returned by the game model
is shown in Fig. 2. We observe that when the game model
provides only one CE in the equilibrium, the model performs
better. As in this case, the ‘neighbor’ (our hand picked CE in
this case) returned by the 1-NN model closely matches with
the CE returned by the game model. When the game model
returns more than 1 CE, we randomly choose 1 CE from
the returned CEs (i.e. optimal CEs from the game model)
and the 1-NN model return the ‘neighbor’. In this case, the
performance is slightly weaker. As we increase the num-
ber of returned CEs, we observe weaker performance. How-
ever, when we use all the generated CEs (i.e. we do not use



game model to return optimal CEs), the performance be-
comes worse. This indicates that our game-theoretic model
is helping to reduce Rashomon Effect.

Conclusion and Future Work
In recent literary work, counterfactual explanations have
garnered a lot of attention as an effective way to explain a
machine learning model’s decision. However, to utilize the
full potential of counterfactual explanations, it’s important
to mitigate the Rashomon Effect. Our preliminary results
shows that a game-theoretic model can effectively address
this issue. Incorporating our game-theoretic model on top of
a CE-generation model can mitigate the Rashomon Effect
and make CEs more appealing to the intended users. In the
future work, we want to further this idea by replacing the
randomness in the CE choice by a more-informed process
and run more extensive experiments with other datasets.
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