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Abstract

In 2017, Siler introduced Tiered Coalition Formation Games
(TCFGs), inspired by the tiered organization of Pokémon
characters on a fan-based website, Smogon. Siler showed
that, for a natural notion of agent preferences, the Nash table
tier lists were precisely the core stable tier lists, and provided
a polynomial-time algorithm to find a Nash stable tier list.
However, the tiers in that list had size one, which eliminated
the intra-tier competitions that make tier lists meaningful. We
extend Siler’s definition to allow for win probabilities, exam-
ine k-tier TCFGs, and provide a heuristic algorithm for find-
ing good k-tier partitions that allow intra-tier competition.

Introduction
In this work, we introduce a variant on Tiered Coalition
Formation Games (Siler 2017), and show that we can get
significantly improved results. In particular, we introduce a
parameterized version of TCFGs, for which finding parti-
tions (tier lists) with desirable properties is easy. We also
allow matchups to be modeled probabilistically, and pro-
vide a heuristic algorithm for both the unconstrained and the
parameterized versions of TCFGs. We define two new cri-
teria for evaluating partitions, which we call “friendliness”
and “robustness.” Siler’s original paper gave a P-time proce-
dure that produced a minimally-friendly stable partition. Our
experiments show that our algorithm produces consistently
more friendly stable partitions.

Coalition formation games are an increasingly studied
subtopic of computational social choice. Agents, usually
representing actors who may wish to cooperate, form into
a partition of totally spanning, disjoint coalitions. A parti-
tion may lack crucial qualities from the perspective of cer-
tain agents, and so new partitions may be formed for as long
as agents remain unsatisfied.

Many of the games being studied are hedonic games, in
which an agent’s assessment of a partition is derived only
from that agent’s coalition. This restriction is a natural one
when modeling pairing of roommates (Irving 1985) and
other scenarios in which an agent is unlikely to be affected
by coalitions other than its own.

In 2017, Siler introduced tiered coalition formation
games, a non-hedonic game that totally orders its coalitions;
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rather than derive utility from the contents of one’s own
coalition, an agent considers its position in the hierarchy
relative to other agents (Siler 2017). Siler was inspired by
Smogon (Smogon a), a fan-run website for the Pokémon se-
ries of video games, which organizes the 898 Pokémon game
pieces into a tier list of 11 strictly ordered tiers.

Notably, Pokémon game pieces have an intransitive
power structure; Bulbasaur may be likely to win against
Squirtle, and Squirtle may be likely to win against Charman-
der, but this does not imply Bulbasaur is likely to win against
Charmander. This intransitivity makes the power structure
difficult to understand at a glance for humans and computers
alike. Tier lists, and by extension TCFGs, aim to represent
such power structures in an easy-to-understand manner de-
spite intransitivity. Two agents in the same tier are assumed
to be approximately power equivalent, and an agent in a
higher tier is assumed to have a higher overall strength than
agents in lower tiers, even if some of those lower-ranking
agents may be likely to win in a one-on-one matchup.

While many of the most accessible examples of intransi-
tivity relate to video games, intransitivity has been observed
in sports matchups and even in preferences on group forma-
tion among humans (May 1954) (Tversky 1969). The full
range of scenarios TCFGs can be used to model may be quite
extensive, and is not considered here. Instead, we address the
primary topic of future inquiry identified by Siler.

Siler outlined stability concepts for TCFGs, namely Nash
stability and core stability, which are often used in hedonic
games, and found that for a natural notion of agent prefer-
ences, Nash stability and core stability are equivalent, and
that a stable partition may be found in polynomial time. The
stable partition found, however, consists solely of singleton
coalitions. This was considered limiting in the context of
coalition formation. Furthermore, Siler considered as an ex-
ample the game “Rock, Paper, Scissors,” a game piece selec-
tion game with three agents, writing that it would be “sensi-
ble” for these agents to be in a single tier, and that separating
them into singletons is “counterintuitive” (Siler 2017). Siler
concludes that the next challenge to this area of study should
be the addition of new preference criteria or other conditions
that will result in a more realistic tier list.

Consider Siler’s source of inspiration: Smogon. When
justifying the controversial creation of an eleventh tier in
their tier list, the Smogon administrators referred to their



philosophical justification for the very existence of tier lists
(Smogon b). First is that tier lists should be robust, dis-
playing the relative power of all agents rather than only the
strongest ones. Second is that each tier should represent a
useful environment, allowing players to make decisions in
game piece selection and ensuring that matches are fair. In
other words, tier lists should be fun.

Related Work
There has been substantial work defining coalition formation
games and hedonic games, enumerating preference frame-
works, and describing notions of stability within those pref-
erence frameworks. Bogomolnaia and Jackson (Bogomol-
naia and Jackson 2002) are among the very few to distin-
guish hedonic coalition formation games from other classes
of coalition formation game, providing side-by-side com-
parisons of hedonic games with conceptually similar non-
hedonic counterparts, and defining stability alongside no-
tions of fairness and optimality. Banerjee, Konishi, and Son-
mez (Banerjee, Konishi, and Sonmez 2001) offer a seminal
look into stabilizability of certain classes of hedonic games.
Their introduction of additional preference criteria to ex-
isting games in an attempt to simplify computational load
has inspired countless similar approaches in other games,
including our work on TCFGs.

Intransitivity in power relationships complicates our abil-
ity to understand those relationships. Chen and Joachims
(Chen and Joachims 2016) examined intransitive power rela-
tionships in matchup data for two-player competition, repre-
senting these relationships as vectors on a two-dimensional
graph. Saarinen, Tovey, and Goldsmith also investigated
dominance in intransitive round-robin tournaments (Saari-
nen, Goldsmith, and Tovey 2015). Tversky (Tversky 1969)
and May (May 1954) independently offer empirical evi-
dence that points to humans having intransitive preferences
in contexts of hiring and marriage problems, respectively.

There are other coalition formation games based on gam-
ing environments. Spradling, Goldsmith, Liu, Dadi, and Li
(Spradling et al. 2013) introduced Roles and Teams Hedonic
Games, a class of hedonic coalition formation game inspired
by the video game League of Legends. Role-Based Hedo-
nic Games (Spradling 2015) (Spradling 2017) (Tsogbadrakh
and Spradling 2019) were introduced based on RTHGs. An-
chored team formation games (Schlueter, Addington, and
Goldsmith 2021) were inspired by partitioning gamers into
groups for tabletop role-playing games, and the authors in-
troduce heuristics to find nearly-stable partitions.

Preliminaries
In this section, we present some of the basics of coalition
formation games, and results by Siler concerning TCFGs,
inspired by the fan-run site, Smogon, for Pokémon. The def-
inition of the set of seen agents was inspired by the tier struc-
ture used by Smogon, where an agent’s suitability for a tier
is determined by its matchups against other agents in that
same and lower tiers (Smogon a).

Definition 1. (Siler 2017) A tiered coalition formation
game is a coalition formation game (N,�), where N =

{a1, a2, ..., an}; an outcome, or tier list, is a totally or-
dered spanning set of disjoint coalitions {T1, T2, ..., Tk};
Seen(ai, T ) for tier list T denotes the set of all agents that
are in the same tier as ai or are in a lower tier; and the
preferences for each agent ai in each possible tier list T are
determined solely by the set of agents ai “sees” in T .

Note that ∀ai ∈ N and tier lists T and T ′,

(Seen(ai, T ) = Seen(ai, T
′)) =⇒ T ∼i T

′.

Definition 2. (Siler 2017) A Nash stable tier list is a tier list
T such that there does not exist an agent ai that can find a
more-preferred tier list by moving. Equivalently, T is Nash
stable if there is no tier list T ′ that differs from T in the tier
of one agent ai such that Seen(ai, T ′) �i Seen(ai, T ).

Definition 3. (Siler 2017) A core stable tier list is a tier
list T such that there exists no nonempty subset of agents
B that could form a new tier together anywhere in the hier-
archy such that for the resulting tier list T ′, Seen(ai, T ′) �i

Seen(ai, T ) for all ai ∈ B.

Siler showed that a core stable tier list is always Nash
stable. However, a stable tier list is not guaranteed to exist in
a general case, and determining the existence of a core stable
tier list is NP-hard. Siler goes on to introduce preference
criteria that strengthen stabilizability.

Definition 4. (Siler 2017) For given agents a and b, if a is
likely to defeat b, then b is a good matchup for a, and a is a
bad matchup for b.

Note that Siler’s work treats matchups as determined,
although the language used refers to “favorability” of
matchups. We introduce notation Win[i, j] in Definition 7,
which extends Siler’s matchups to the probabilistic case.

Definition 5. (Siler 2017) A matchup-oriented preference
representation is one in which the scalar utility of an agent
i derived from Seen(i, T ) is equal to

∑
j∈Seen(i) Win(i, j)

for an antisymmetric Win.

Siler then showed, for matchup oriented preferences, a tier
list is Nash stable iff it is core stable.

Theorem 1. (Siler 2017) Under matchup-oriented prefer-
ences, a Nash stable and core stable tier list is guaranteed
to exist. Furthermore, it can be found in polynomial time.

Siler defines a search that iteratively sorts agents until a
stable tier list is reached, in O(n4) time. We refer to that
process as “Siler sort,” which produces “Siler’s stable tier
list.”

In a hedonic game (where an agent’s preference refer-
ences only their own coalition), a partition is contractually
individually stable if no agent can improve their utility by
changing coalitions while leaving the agents in the aban-
doned and receiving coalitions with at least as high utility as
before the change. In a hedonic game, such a move neces-
sarily raises the social utility, because the utilities of agents
outside the abandoned and receiving coalitions are not af-
fected. However, when an agent in a TCFG moves to another
level, the utilities of the agents in intermediate levels are also
affected. Thus, we introduce socially conscious stability.



Definition 6. Given an instance of a TCFG, a tier list T
is socially consciously stable if no agent can improve their
own utility by moving to another tier without decreasing the
total utility among other agents.
Observation 1. Any maximal-utility tier list is, by necessity,
socially consciously stable.

Siler’s matchups were deterministic, unlike those in
Pokémon, sports environments, and many other real-world
competitions. We extend Siler’s model to probabilistic
matchups.
Definition 7. We define probabilistic matchup-oriented pref-
erences as matchup-oriented preferences where the prefer-
ence relationships are derived from a probabilistic win ma-
trix, here denoted P where P [i, j] ∈ [0, 1] and P [i, j] =
1− P [j, i].

We define Win under probabilistic preferences as

Win[i, j] = 2(P [i, j]− 0.5).

The total utility of an agent in a tier list is still∑
j∈Seen(i) Win(i, j).

This transformation from probability to utility has two
purposes. First, it guarantees that the relationship between
two agents is antisymmetric; the utility i gains from seeing
j is the opposite of the utility j gains from seeing i, for any
two agents i and j. Second, the utility i gains from seeing
j is in the range [-1, 1] under this model. This is the same
range as for Siler’s deterministic matchup preferences (Siler
2017), allowing direct comparison.

Because Siler’s proofs of the properties of matchup-
oriented preferences depend solely on the antisymmetric na-
ture of the Win relationship and not on the exact values
of Win , the key properties of this preference framework,
including Siler’s procedure to find a stable tier list of sin-
gletons, hold under probabilistic preferences. In fact, Siler’s
proofs of these properties hold for any simple, antisymmet-
ric Win .

We adapt the notion of a tier list’s ‘fun’ held by Smogon
into an empirical measurement, which we call ‘friendliness,’
as well as formalizing their notion of ‘robustness’(Smogon
b).
Definition 8. The friendliness of a tier list T is equal to
|F |/(|F |+ |S|), where F is the set of coalitions Ti ∈ T s.t.
|Ti| > 1, and |S| is the set of coalitions Tj ∈ T s.t. |Tj | = 1.

Informally, the friendliness of a tier list is the proportion
of tiers it contains that are not singletons. This measurement
is 0 for a tier list of singletons, and 1 for a tier list of non-
singletons.
Definition 9. Let a be an agent in tier list T , and let Ti be
a tier such that a ∈ Ti. The fitness of a to Ti is defined
as

∑
b∈Ti/a

Win[a, b]. The robustness of T is the minimum
fitness of all agents in T to those agents’ tiers.

Rather than being a summary statistic of an entire tier list
(as are utility and friendliness), robustness is an observation
of a minimum, relating to the agent least fit to its current tier.
Preferences of agents are not determined solely by the com-
position of that agent’s tier, but if a tier list is both robust

and friendly, each of its tiers is known to contain agents that
are approximately equivalent in power, an important prop-
erty according to both the philosophical justification of tier
lists per Smogon (Smogon b) and the challenge set by Siler
to value placing Rock, Paper, and Scissors in a single tier
(Siler 2017).

Observe that this measure of robustness is always nonpos-
itive; it is impossible for all agents to have a positive sum-
of-win against their peers.
Observation 2. A tier list of singletons is minimally friendly
(friendly = 0) and maximally robust (robust = 0).

In addition to this observation, a stable tier list of sin-
gletons generally has high total utility, and therefore a high
ranking in two of three evaluative criteria. Our goal is to find
a tier list with high utility, high friendliness, and high robust-
ness.

k-Tier Lists
We introduce a new variation on tiered coalition formation
games, the TCFG with fixed tier count, inspired again by
Smogon’s model (Smogon a).
Definition 10. A tiered coalition formation game with k-
fixed tier count (k-TCFG) is a coalition formation game
(N,�, k), where N = {a1, a2, ..., an}, k ≤ n is in N and
an outcome is a spanning tier list of exactly k totally ordered
disjoint coalitions, and Seen(ai, T ) for tier list T is defined
and determines preferences as in a standard tiered coalition
formation game (N,�).

We observe that a tier list T is in a given (N,�, k) if and
only if T has exactly k tiers and is in (N,�).
Theorem 2. If a tier list T with k tiers is Nash stable on
a given standard TCFG (N,�), it is Nash stable on the k-
TCFG (N,�, k).

Proof. Suppose that T with k tiers is Nash stable on a
(standard) TCFG but not Nash stable on the correspond-
ing k-tiered coalition formation game. Then ∃i such that
ai that can move from T without changing the number
of tiers s.t. for the resulting tier list T ′, Seen(ai, T ′) �
Seen(ai, T ). However, the preferences for ai on the k-
TCFG and the standard TCFG are the same.⇒⇐

Similarly, a core stable tier list on a standard TCFG is
core stable on its corresponding k-TCFG. We omit the proof
here.

Note that the converse does not hold. For example, in
a two-agent matchup-oriented instance in which one agent
wins over the other, a single tier of two agents is not Nash
stable in the standard TCFG, but is Nash stable in the 1-
TCFG.

Let Game 1 be a 2-TCFG on agents a1, a2, a3, a4, with
probabilistic matchup-oriented preferences shown in Table
1, where row ai, column aj denotes Win[ai, aj ].
Claim 1. Game 1 has no Nash stable partitions.

Proof. There are fourteen partitions of these four agents into
nonempty lower tier T1 and nonempty higher tier T2. If a4 ∈
T2 and at least one other agent is also in T2, a4 can profitably



Table 1: GAME 1

a1 a2 a3 a4
a1 0.9 -0.1 1.0
a2 -0.9 0.1 1.0
a3 0.1 -0.1 1.0
a4 -1.0 -1.0 -1.0

move to T1. In the only other tier list in which a4 ∈ T2,
namely {{a1, a2, a3}, {a4}}, any of the three other agents
can profitably move to T2.

The following shows the remaining seven partitions and
possible profitable moves for an agent from each.
{{a4}, {a1, a2, a3}} → {{a2, a4}, {a1, a3}}
{{a2, a4}, {a1, a3}} → {{a1, a2, a4}, {a3}}
{{a1, a2, a4}, {a3}} → {{a1, a4}, {a2, a3}}
{{a1, a4}, {a2, a3}} → {{a4}, {a1, a2, a3}}
{{a1, a3, a4}, {a2}} → {{a3, a4}, {a1, a2}}
{{a3, a4}, {a1, a2}} → {{a2, a3, a4}, {a1}}
{{a2, a3, a4}, {a1}} → {{a2, a4}, {a1, a3}}
Hence, there is no stable partition of Game 1.

As illustrated by the example of Game 1, using matchup-
oriented preferences does not guarantee the existence of a
Nash stable outcome for an instance of k-TCFG in the gen-
eral case.

Socially Consciously Stable k-Tier Lists
As we saw in Observation 1, it is sufficient to find a
maximal-utility tier list in order to find a socially con-
sciously stable one. We define a local search on tier lists,
and claim that, in the k-tier list setting, it always produces a
maximal-utility k-tier list. A local search on k-tier lists that
moves agents if they desire to move and have permission to
move from the rest of the tier list will improve the total util-
ity of the tier list every time it moves an agent. Following the
same principle as for Theorem 1, the resulting tier list will
be socially consciously stable when local search halts.

Theorem 3. For any instance I of kTCFG with matchup-
oriented preferences, there exists a socially consciously sta-
ble tier list.

Using three separate algorithms, Siler sort, a dynamic
programming algorithm called kTierOrderPreserve, and
local search (applied in that order), we find k-tier lists
that are socially consciously stable, utilitarian, robust, and
friendly. We call this three-part algorithm TriPart(I,k).

The dynamic programming algorithm kTierOrderPre-
serve takes as part of its input a Siler stable tier list, and
its outputs describe the highest-utility order-preserving k-
tier list for that instance. The first output, U [1, n, k], is nu-
meric and represents the change in total utility in the tier list
as a result of the best possible order-preserving transforma-
tion from n tiers to k tiers. The second output, V [1, n, k], is
a vector describing this transformation as a sequence of k
pairs. For example, let {{a1}, {a2}, . . . , {an}} be a Siler’s
stable tier list. An output of Y, [[1, i], [i + 1, j], [j + 1, n]]
indicates that the best 3-tier list that preserves order is

{{a1 . . . ai}, {ai+1 . . . aj}, {aj+1 . . . an}} and that the total
utility of agents in this tier list is equal to the total utility of
the initial tier list plus Y .

Algorithm 1 kTierOrderPreserve

Input:
instance I
number of agents n
matchup matrix Win
number of tiers k
S(I) a Siler tier list

Initialize Cost , an n× n matrix of zeroes
for i in 1 . . . (n− 1) do
c = 0
for j in (i+ 1) . . . n do

c = c+Win[i, j]
Cost [i, j] = c
end

end
Initialize U , an n× n× n matrix of −∞
Initialize V , an n× n× n matrix of []
for i, j ∈ {1, . . . , n}, and i ≤ j do
U [i, j, 1] =

∑j
h=i Cost[h, j]

V [i, j, 1] = [i, . . . , j]
end

for r in 2 . . . k do
for i in {1 . . . n}; j in {i+ r, . . . n} do

for m in (i+ r − 1) . . . (j − 1) do
mu = U [i,m, r − 1] + U [m+ 1, j, 1]
if mu > U [i, j, r] then

U [i, j, r] = mu
V [i, j, r] = [V [i,m, r − 1], [m+ 1, j]]
end

end
end

end
return U [1, n, k], V [1, n, k]

Observe that we need only compute the change in utility
on each agent induced by merging with agents above itself,
as merging with lower agents does not affect utility. Hence
these costs are computed by the first loop in the algorithm,
which has complexity of O(n2).

Proceeding through the algorithm: when k = 1, the only
option available is to merge all remaining agents into a sin-
gle tier. Otherwise, we iterate with r from 2 to k. To find the
best r-tier list from any agent i to any agent j, we iterate over
m to find the value of m that gives the greatest sum of utility
of a (r− 1)-tier list from i to m and a 1-tier list from m+ 1
to j. Hence, U [i, j, r] describes the best possible change in
utility of an r-tier list from i to j, and V [i, j, r] describes the
tier cutoffs for that best tier list. These correspond to return
values when i = 1, j = n, r = k.

The iteration through r is O(k), and iteration through i, j,
and m are each O(n). The time complexity of kTierOrderP-
reserve is therefore O(kn3).

The tier list described by the output of kTierOrder-
Preserve is not necessarily socially consciously stable.



kTierOderPreserve is, however, a heuristic that produces a
high-utility argument to local search.

Entities such as Smogon often know ahead of time ap-
proximately how many tiers they want to use for a given
instance (Smogon b). In the case of unknown k, a manager
can select a favorite tier list from among a handful of viable
possibilities. Whether or not a value of k is known in ad-
vance, k-TCFGs provide an answer to the research question
posed by Siler (Siler 2017); our algorithm can now compute
high-utility, friendly tier lists with good robustness as well!

Experiments
Here, we empirically test our heuristic algorithm, using gen-
erated instances and comparing the result of our procedure
against other k-tier lists. Any k-tier list passed to local
search will result in a socially consciously stable partition,
and we have justified the use of our dynamic programming
approach by asserting that its output, passed to local search,
will result in a tier list with better results in utility and robust-
ness. We run each component and each pair of component
algorithms of TriPart, and compare their outputs to that of
TriPart on the same instances, to demonstrate whether each
of the three parts of the procedure significantly improves the
results.

Unbiased Instances
We generate instances of TCFGs by randomly choosing win
values Win[i, j] ∈ [−1, 1] for i > j, and set Win[j, i] =
−Win[i, j]. We set Win[i, i] = 0.

In each generated instance, we pass several k-tier lists to
k-tier local search. These are: the list resulting from calling
Siler’s sort and kTierOrderPreserve (TriPart); a randomized
k-tier list (Random); a randomized list of singletons passed
to our dynamic algorithm (No S. sort); the output of Siler’s
sort divided into k approximately equal tiers (Even); and the
output of Siler’s sort divided into k − 1 singletons and one
high tier containing n − k + 1 agents (Uneven). In addi-
tion, we recorded the output of kTierOrderPreserve with-
out subsequent local search (No Search). The total utility,
friendliness, and robustness of each of these k-tier lists was
recorded from each instance.

We studied instances of 50, 100, and 200 agents, gen-
erating 100 instances of each size and comparing the
average results for each method of obtaining a k-tier
list, for k values selecting all values less than n from
{2, 4, 8, 16, 32, 64, 128}.

Biased Instances
In the previous experiments, win frequencies between agents
are generated from a uniform distribution. In many of the in-
transitive structures that tier lists attempt to capture, clear
patterns emerge, and the structure may resemble a linear
one. To ensure our procedure is effective in these instances,
we generate randomized Win matrices with bias.

For i > j, we initially randomly chose a value x ∈
[−1, 1] from a uniform distribution, and then set Win[i, j] =
min(1, x+(i−j+1)/n. As before, Win[j, i] = −Win[i, j]
and Win[i, i] = 0. We examined the same set of k-tier lists

for each instance, and once again generated 100 instances
each of 50, 100, and 200 agent environments, using the same
set of values of k.

Results
We found that the results for the different sizes of instances
were similar and we present only the results from the 200-
agent instances. What we saw was that the kTierOrderPre-
serve algorithm consistently performed well, finding high-
utility tier lists with few singletons and reasonable worst-
case fitness to tiers. By considering pairs of components of
that three-part algorithm, we show that each part contributes
significantly to the algorithm.

For example, the lower scores in all three of our evalu-
ative criteria for the No Sort tier list indicates the impor-
tance of the order of input to the dynamic programming por-
tion. Siler’s sort ensures a sensible input order as compared
to randomized input order. We cannot disprove the possi-
bility that for certain instances, a stronger input order can
be found that will result in a higher-scoring final k-tier list.
However, Siler’s sort is applicable in all instances, and our
results prove its reliability.

The Even and Uneven tier lists were constructed without
kTierOrderPreserve, and so these results indicate the useful-
ness of that algorithm. We see that for large k, the Even tier
lists may rank more highly in friendliness, which can be ex-
pected from passing equally-sized tiers to local search. By
contrast, Even scored lower than TriPart in friendliness and
robustness at all levels of k, and the averages for Uneven
were always strictly worse than the averages for Even.

The average results for No Search were so marginally dif-
ferent from the results for TriPart that they would not be
visible under the number of significant figures in our table,
and so these results are not shown. We also observed the av-
erage number of iterations of local search for TriPart, which
at n = 200 ranged from 0.0 (at k = 2 in biased instances)
to 9.33 (at k = 2 in unbiased instances). These results show
that including local search in TriPart may not significantly
improve utility; however, local search ensures that the output
is socially consciously stable, and in TriPart it is completed
in relatively few iterations.

Note that in our implementation of local search, if two
agents i and j have an available move that is profitable and
permissible under socially conscious stability, and if the set
of tiers whose utility is affected by the movement of i is
disjoint from the set of tiers whose utility is affected by the
movement of j, both i and j may move in the same iteration
of local search. Although this caused a slight speedup, each
iteration of the algorithm is still O(n2).

Conclusion
Our results demonstrate the effectiveness of TriPart for effi-
ciently finding at a socially consciously stable tier list that is
utilitarian, robust, and friendly. Probabilistic matchup pref-
erences, which are useful outside the contexts of kTCFGs,
strengthen these results, leading to better and more useful
tier lists. Our newly introduced notions of friendliness and
robustness are applicable measurements for any future ef-
forts in this topic, helping us to understand which partitions



are most useful. Thus, we have provided answers to Siler’s
challenge, and offered new structures for consideration.
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