
Recommendation System for Open Source Projects for Minimizing Abandonment

Sarah Sayce† and Krishnendu Ghosh †
†Department of Computer Science, College of Charleston,Charleston, SC.

ssayce0511@gmail.com,ghoshk@cofc.edu

Abstract

The rise in the creation and maintenance of Open Source
Software have facilitated the software developers to con-
tribute and prevent abandonment. Software developers often
face a daunting task to select the open source projects that re-
main active. In the absence of any resource to guide in the se-
lection of the Open Source Software projects, recommenda-
tion systems is way to provide guidance to open source con-
tributors. In this work, we describe several approaches in cre-
ation of recommendation systems for Open Source Software
projects. Experiments on a synthetic data set are performed
to evaluate the performance of the recommendation system.

Introduction
Open Source Software (OSS) is becoming increasingly valu-
able in recent years. GitHub is one of the more popular OSS
hosting sites. GitHub’s ability to track developer’s activities
such as commits and pull-requests is valuable to managers
but these metrics are not the sole indicators of project suc-
cess. Surveyed developers have cited the quantity of contri-
butions and contributor growth as measures of success sig-
nificantly more than bug fixes or the quality of the software
produced (McDonald and Goggins 2013).

Mann from the Technology Review critiques modern soft-
ware development, dubbing it ”chaotic” due to a lack of
initial organization (Mann 2002). This lack of organization
could take many forms. Unassigned issues, lack of commu-
nication between contributors, delays on pull requests ap-
provals are all examples of ineffective OSS handling. The
pitfalls of disorganization associated with OSS development
are found in projects of all sizes, but can have fatal conse-
quences for a project maintained by a handful of developers.

An at-risk project could be one not backed by an organiza-
tion, a project with few contributors or no new commits. All
of these factors can indicate future project failure due to in-
efficiencies in the development process or lack of knowledge
and resources and measured by truck factor (Avelino et al.
2019). Truck factor (TF) is the minimal number of develop-
ers of a project that quit before the project is at-risk (Avelino
et al. 2019). A truck factor developer is defined as someone
who is a main contributor to a code stack, if they are hit by a
truck and stop contributing to the project then there is a high

Copyright c© 2021by the authors. All rights reserved.

risk of project abandonment. A project is abandoned when
all truck factor developers have ceased contributing to the
project.The study mentioned previously found key statistics
relating to project abandonment: 65% of sampled projects
had a TF of 2 or less. 2/3 of failed projects only had one core
contributor at the time of abandonment (Avelino et al. 2019).
A goal of this work is to facilitate newcomers into lasting
maintainers of a project (particularly those at risk) so code-
responsibility falls on more active and passionate develop-
ers. As an aid to the software developers, recommendation
system provides options for selection of software projects.

There are thousands of contributors on GitHub, and
turnover in OS development is somewhat unavoidable be-
cause developers are constantly wanting new objectives
(Izquierdo-Cortazar et al. 2009). When one developer leaves
a project and another takes over their orphaned code, there
will always be some sort of knowledge loss. This loss is
compounded if there is a mass exodus of contributors. We
should be striving for efficiency when contributing to OSS.
As a preventive measure of mass exodus of contributors
from OSS, we create a recommendation system that aligns a
given OSS with the interests of the contributors.

Our goal is to tackle the lack of personalization within
recommendation systems for software engineering (RSSE).
We propose a two prong approach, one to address projects
at risk of failure by abandonment, and another to cater to
the needs of developers with the aim of reducing project
abandonment.. We create a hybrid based approach for our
implementation of the recommendation system with the aim
providing the user options for their preferences for selection
of OSS projects.

Related Work
There is a body of work published in recommendation sys-
tems in software engineering (Robillard, Walker, and Zim-
mermann 2009). We focus on the recommendation systems
on open source systems for the contribution of open source
developers and related topics. ConRec (Zhang et al. 2017a)
is a recommender system for contributors given a specific
project. It leveraged user’s historical activity to gauge their
interests and created a commit network of GitHub users. Us-
ing this network a hybrid recommendation system, a combi-
nation of a text matching and collaborative-filtering algo-
rithm, is created. A similar system, DevRec (Zhang et al.



2017b) was designed as a hybrid recommendation system
which combines a development activity based system with a
knowledge-activity based system to recommend proper de-
velopers to open source projects.

A study interviewing project mentors found that most
new contributors face common challenges, one of the most
prominent being a lack of self confidence and understand-
ing their background in regards to the project (Balali et al.
2020). Many developers have skills that can be utilized but
there are social barriers preventing them from taking advan-
tage. A similar study analyzed the common roles present in
a OSS ecosystem (Trinkenreich et al. 2020). One subsys-
tem were labeled as community centred roles. Particularly
an OSS Advocate is an individual that focuses on increas-
ing contribution to the project by bringing new people in
and making the community and inclusive and safe experi-
ence. The same study found that entry points and career
pathways are fluid and non-linear. Users could be coders
or non-coders within project or community centered roles.
Researchers have explored methods to recommend relevant
GitHub projects based on user behavior data (Zhang et al.
2014).

Methodology
Data for Recommendation System: The dataset for the
evaluation of recommendation system is publicly available
(Avelino et al. 2019). The dataset based on GitHub was
used to study truck factor. This GitHub data set was devel-
oped by focusing on 6 programming languages most pop-
ular on GitHub and then selecting the top 500 reposito-
ries from each language (excluding forks). Using popular
projects with common languages ensures the quality of the
data and ensures the projects are relevant to the OSS com-
munity. The data set was slimmed down to 1,932 projects
after researchers excluded projects that had not exclusively
been hosted by GitHub, or had less than 2 years of devel-
opment history (Avelino et al. 2019). Figure 1 displays the
distribution of our quantitative data including the number of
project commits, forks, developers, files, open issues, and a
truck factor calculation for each project. Take note of the
logarithmic scale. The quantity of forks, files, and devel-
opers per project each have relatively uniform distribution.
These attributes are used to identify qualitative aspects of
the projects for the knowledge based system. Figure 2 shows
the frequency of the 20 most common words in the project
descriptions. The descriptions of each project is utilized for
text analysis in our content-based system.

System Architecture : Each type of recommendation sys-
tem has their advantages and disadvantages. The aim of a
hybrid recommendation system is to create a synergy be-
tween these two methods that make up for each other’s short-
comings (Burke 2007). Due to the limitations of our data
set, which only contains product data, a collaborative filter-
ing technique would not be effective since it relies heav-
ily on user ratings. While a content based recommenda-
tion system relies on product data (which we have an abun-
dance of) it still suffers from the cold start problem. We
have an abundance of products with no existing ratings and

Figure 1: Box plots of numerical project data.

Figure 2: Word frequency in project descriptions.

new users. A knowledge-based recommendation system can
overcome this problem. While it requires domain knowledge
and in our case heavy influence from a knowledge engineer,
a knowledge-based system focuses on the users immediate
need. The utilization of a knowledge-based system also aids
in the stability vs. plasticity problem (Burke 2007). Since
this is a recommendation system for software engineering,
users’ preferences are expected to be static compared to the
preferences for products. Our data set contains sufficient
product data and there is an assumed acceptable level of do-
main knowledge surrounding OSS projects. Since our data
set contains no user data, this knowledge source compiled of
synthetic data that we produce to train and test our model.

In our implementation of recommendation systems, a fea-
ture augmentation strategy to created for a hybrid recom-
mendation system. Feature augmentation hybrids allow the
contributing recommendation system to augment the data
with it’s own recommendation logic before reaching the
main recommendation system (Burke 2007). This strategy is
employed when there is a desire to add additional knowledge
sources to an existing recommendation system. Our con-
tributing recommendation system will be knowledge based
and augment the incoming data based on the user’s prefer-
ences. This augmented data will be used in our main content
based recommendation system.

Knowledge Based Recommendation System (KBRS):
The knowledge based recommendation system will gen-

erate a list of projects that match the developers needs. It
is worth noting that aside from aiding developers, a second
goal of this project is to prevent the failure of at risk projects.
For this reason the recommendations from the knowledge



based system are sorted initially by the number of forks a
project has. The less forks a project has implies there are
less remote copies of this project and is less popular or used.

The third and final query to our user requires a Boolean
response, and asks if they would be interested in contributing
to an at risk project. If they respond yes, the recommenda-
tions will be sorted based on truck factor then by forks. A
lower truck factor (TF) correlates to project instability and
risk of complete abandonment. The majority of projects in
our data set have a TF of 3 or lower, with only a handful of
outliers so this sorting will most likely throw out any larger
more established projects from our recommendation set. We
have augmented the data with our query to the user and will
take the top match as input for our content based recommen-
dation system.

Content-Based Recommendation System (CBRS)
The content-based recommendation system in our hybrid

is the main recommendation system. The content-based rec-
ommendatiom system will analyze the descriptions of our
software projects using a term frequency-inverse document
frequency (TF-IDF) matrix. A TF-IDF calculation tells us
the importance or relevance of a word in a particular docu-
ment, in our case the project descriptions. Using the project
names as indices, this system will take an existing project
name from the data set and return the top 10 most similar
projects. Since our knowledge-based recommendation sys-
tem is our accompanying system, the input for our content
recommendation system will be the top 10 matches on the
users query. Our content recommendation system will pro-
vide the most textually similar project to each item. This
final set of 20 will be ranked ascending by number of forks
and presented to the user. We choose number of forks here
since there is not much variability within truck factor left in
our augmented data set. While our content recommendation
system is our main system, the knowledge based recommen-
dation system aided in our text analysis of projects by pro-
viding domain knowledge otherwise unavailable to the sys-
tem alone. The content based recommendation system pro-
vides items that were otherwise out of the users query.

Evaluation & Results
The dataset consisted of only project data. However, to eval-
uate our system we had to augment the dataset using syn-
thetic user data. The synthetic data we created contains 50
users each assigned 3 features corresponding to the three
queries (preferred coding language, experience, and will-
ingness to help others). Since our user data is synthetic, we
shall have to add a column for the actual outcome of our rec-
ommendation results. A satisfaction column has been added
to our users data frame. A users satisfaction is on a scale
of 0-10 . The generation of the satisfaction ratings for our
synthetic users we add a variable to the user profiles that
represents the users taste. A user’s taste is not random, but
influenced by other values in the user’s profile. More expe-
rienced users will be labeled as ”optimists” and have a dis-
tribution of ratings skewed higher, while less experienced
users will be labeled as ”demanding” thus their ratings will
be skewed to lower values. The reasoning behind assigning

Train/Test Split MAE MSE RMSE
50/50 0.592 0.452 0.672
70/30 0.467 0.358 0.598
80/20 0.461 0.388 0.623
90/10 0.592 0.604 0.777

Table 1: Performance Measure of Recommendation System
with Mean absolute error(MAE), Mean square error (MSE)
and Root Mean Squared Error (RMSE)

these tastes to particular users is to generate more realistic
data that is somewhat aware of the context in which these
ratings are given. We can use probability distribution func-
tions to help create context-aware synthetic data (Pasinato et
al. 2013). It is assumed that the less experienced the user,
the more guidance and accurate recommendations needed.
Experienced OSS developers can be assumed to have low
expectations or be more willing to work on anything rather
than satisfy a niche. A users assigned taste will be a scalar
value 1-3 and correlate to the users experience. 1 being a
pessimist with a skewed distribution to lower values and 3
being an optimist with a skew to higher values. Those with
an indicated level 2 experience will have a normal distribu-
tion. Each user will be assigned a PDF or probability distri-
bution function that governs it’s rating behavior. To manipu-
late the distribution of ratings we will only need to manually
change the mean and standard deviation of our random vari-
able. While all user ”types” will have ratings of a normal
(Gaussian) distribution and a standard deviation of 2. Av-
erage users will have a randomly generated distribution of
ratings with a mean of 5. Pessimists will have an average
of 3 and optimists an average of 7. Now each user will as-
sign 10 scores to their respective 10 results. These scores are
randomly generated following their assigned PDF. These 10
scores will be averaged for a users final satisfaction score.
This will be the metric we will use to evaluate our model.

Statistical accuracy metrics evaluate accuracy of a filter-
ing technique by comparing the predicted ratings directly
with the actual user rating. In our case, the users ”actual”
rating was the context-aware satisfaction score we just gen-
erated for each user. We are implementing a train / test split
to create and evaluate our model. Multiple models were cre-
ated with the corresponding training / testing intervals us-
ing polynomial regression, predicting satisfaction outcome
with experience level. Root Mean Squared Error (RMSE)
value for our initial model was 0.834, so we can infer around
80% of the variance here is explained by our model. This
is due to the context-aware attributes we established earlier
that governs the ”users” behavior. Table I shows the mean
absolute error, as well as the mean squared and root mean
squared error for each of our three models (Isinkaye, Fo-
lajimi, and Ojokoh 2015). These metrics reveal the accu-
racy of our model, the lower the value the more accurate our
predictions. Decision Accuracy Metrics are another way to
measure the effectiveness of the system. These metrics help
users in selecting items that are of very high quality out of
the available set of items. The metrics view prediction pro-
cedure as a binary operation (Isinkaye, Folajimi, and Ojokoh



Train/Test Split Recall Precision F1
50/50 0.350 0.149 0.204
70/30 0.500 0.322 0.388
80/20 0.333 0.155 0.208
90/10 0.333 0.222 0.250

Table 2: Performance Measure of Recommendation System
with Mean absolute error(MAE), Mean square error (MSE)
and Root Mean Squared Error (RMSE)

2015). The relative contribution of precision and recall to the
F1 score are equal. Table 2 displays these metrics along with
the respective models.

Interestingly the recall, precision, and F1 score indicate
the 70/30 split model performs better in those aspects than
the 80/20 model. This is also reflected in the model’s respec-
tive receiver operating characteristic (ROC) curves. An ROC
curve shows the relationship between recall over time. More
acutely, it is the plot between the false positive rate and the
true positive rate.

Conclusion
The hybrid recommendation system produced was a fea-
ture augmentation hybrid of a knowledge based and content
based recommendation system. In terms of statistical accu-
racy the model did well, but it had limited effectiveness re-
garding precision and recall. These shortcomings are most
likely due to the small number of ratings from our synthetic
user data. The content based half of the hybrid system would
have more effectiveness with a larger corpus of documents.
This recommendation system could be improved upon in the
future with a larger data set of GitHub user and project data.
Our system was effective in promoting projects that were
”at risk” and deemed to have a low truck factor regardless
of user input. The design of this recommendation system
could be built on in the future to increase the personalizing
among software recommendation systems. Further research
into developer motivations and behaviors would be useful
for similar knowledge based systems. Rigorous evaluation
of the recommender system using open source software data
will be conducted. This user-centered recommendation sys-
tem can serve as a preliminary model for future developer-
focused software recommendation engines.

References
Avelino, G.; Constantinou, E.; Valente, M. T.; and Sere-
brenik, A. 2019. On the abandonment and survival of
open source projects: An empirical investigation. In 2019
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 1–12. IEEE.
Balali, S.; Annamalai, U.; Padala, H. S.; Trinkenreich, B.;
Gerosa, M. A.; Steinmacher, I.; and Sarma, A. 2020. Rec-
ommending tasks to newcomers in oss projects: How do
mentors handle it? In Proceedings of the 16th International
Symposium on Open Collaboration, 1–14.
Burke, R. 2007. Hybrid web recommender systems. The
adaptive web 377–408.

Figure 3: ROC Curves of Different Training-Test Data

Isinkaye, F. O.; Folajimi, Y.; and Ojokoh, B. A. 2015. Rec-
ommendation systems: Principles, methods and evaluation.
Egyptian Informatics Journal 16(3):261–273.
Izquierdo-Cortazar, D.; Robles, G.; Ortega, F.; and
Gonzalez-Barahona, J. M. 2009. Using software archae-
ology to measure knowledge loss in software projects due
to developer turnover. In 2009 42nd Hawaii International
Conference on System Sciences, 1–10. IEEE.
Mann, C. C. 2002. Why software is so bad. Technology
Review 105(6):33–38.
McDonald, N., and Goggins, S. 2013. Performance and par-
ticipation in open source software on github. In CHI’13 Ex-
tended Abstracts on Human Factors in Computing Systems.
139–144.
Pasinato, M.; Mello, C. E.; Aufaure, M.-A.; and Zimbrao,
G. 2013. Generating synthetic data for context-aware rec-
ommender systems. In 2013 BRICS Congress on Computa-
tional Intelligence and 11th Brazilian Congress on Compu-
tational Intelligence, 563–567. IEEE.
Robillard, M.; Walker, R.; and Zimmermann, T. 2009. Rec-
ommendation systems for software engineering. IEEE soft-
ware 27(4):80–86.
Trinkenreich, B.; Guizani, M.; Wiese, I.; Sarma, A.; and
Steinmacher, I. 2020. Hidden figures: Roles and pathways
of successful oss contributors. Proceedings of the ACM on
Human-Computer Interaction 4(CSCW2):1–22.
Zhang, L.; Zou, Y.; Xie, B.; and Zhu, Z. 2014. Recommend-
ing relevant projects via user behaviour: An exploratory
study on github. In Proceedings of the 1st International
Workshop on Crowd-Based Software Development Methods
and Technologies, CrowdSoft 2014, 25–30. New York, NY,
USA: Association for Computing Machinery.
Zhang, X.; Wang, T.; Yin, G.; Yang, C.; and Wang, H. 2017a.
Who will be interested in? a contributor recommendation
approach for open source projects. In SEKE, 363–369.
Zhang, X.; Wang, T.; Yin, G.; Yang, C.; Yu, Y.; and Wang,
H. 2017b. Devrec: a developer recommendation system for
open source repositories. In International Conference on
Software Reuse, 3–11. Springer.


