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Abstract
Counterfactual explanations are gaining in popularity as
a way of explaining machine learning models. Coun-
terfactual examples are generally created to help inter-
pret the decision of a model. In that case, if a model
makes a certain decision for an instance, the counter-
factual examples of that instance reverse the decision
of the model. Counterfactual examples can be created
by craftily changing particular feature values of the in-
stance. Though counterfactual examples are generated
to explain the decision of machine learning models, we
have already explored that counterfactual examples can
be used for effective data augmentation. In this work,
we want to explore what kind of counterfactual exam-
ples work best for data augmentation. In particular, we
want to generate counterfactual examples from two per-
spectives: proximity and diversity. We want to observe
which perspective works best in this regard. We demon-
strate the efficacy of these approaches on the widely
used “Adult-Income” dataset. We consider several sce-
narios where we do not have enough data and use each
of these approaches to augment the dataset. We com-
pare these two approaches and discuss the implications
of the results.

Introduction
There has been a desire for explanations of how complex
computer systems make decisions for quite some time. The
need for explanations can be dated back to some of the earli-
est work on expert systems (Buchanan and Shortliffe 1984).
Explanations are critical for machine learning (ML), espe-
cially as machine learning-based systems are being used to
inform decisions in societally critical domains such as fi-
nance, healthcare, education, and criminal justice.

Wachter et al. (Wachter, Mittelstadt, and Russell 2017)
argue that there are three important aims for explanations:
(1) to inform and help the person understand why a partic-
ular decision was reached, (2) to provide grounds to contest
the decision in the case of an undesirable outcome, and (3)
to understand what would need to change in order to get
a desirable result in the future, based on the current deci-
sion making model. A counterfactual explanation (CE) of a
prediction describes the smallest change to the feature val-
ues that changes the prediction to a predefined output, and
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it can be a good candidate to fulfill the three aims proposed
by Wachter et. al. In interpretable machine learning, coun-
terfactual explanations can be used to explain predictions of
individual instances. In this paper, we use the terms counter-
factuals and counterfactual examples interchangeably.

Counterfactual examples are increasingly seen as enhanc-
ing the autonomy of people subject to automated decisions
by allowing people to navigate the rules that govern their
lives (Barocas, Selbst, and Raghavan 2020). This helps peo-
ple recognize whether to contest the decision making pro-
cess and facilitates direct oversight and regulation of algo-
rithms (Wachter, Mittelstadt, and Russell 2017; Selbst and
Barocas 2018). Specifically, counterfactual examples pro-
vide this information by showing feature-perturbed versions
of the same person who would have otherwise received the
loan (Mothilal, Sharma, and Tan 2020).

Motivation and Contribution: With small datasets,
overfitting becomes much harder to avoid. In this case, if our
training dataset itself is small, overfitting is more likely to
occur. We might overfit both the training data as well as the
validation set. Outliers become much more dangerous with
small dataset since even just a few outliers will form large
proportion and significantly alter the model. The smaller our
sample size, the more likely outliers are to skew our find-
ings. To alleviate these problems, it’s very important to have
a large dataset. However, in reality, we cannot always have
as large dataset as we would like because of some practical
constraints. In this case, it will be helpful if we can find a
way to augment our small dataset.

We have already seen that CEs are good candidate to
augment a small datasets (Hasan and Talbert 2021). How-
ever, in our previous work, CEs were generated randomly
i.e. without careful consideration to diversity or proximity.
Now, we want the process of data augmentation by CEs
to be as efficient as possible i.e. we want to generate CEs
that are specially catered for data augmentation purpose. In
other words, we are specially interested in generating “tar-
geted” CEs. Here the targeted CEs will be generated based
on certain criteria that contribute most in achieving certain
targets, and here our target is the data augmentation process.
It may be noted that we are not particularly interested how
significantly these CEs contribute towards explanation as we
are generating CEs targeting data augmentation only. In this
work, we explore how proximity and diversity affect the suc-



cess of data augmentation using CEs. We carefully choose
different values for proximity and diversity and observe the
resulting performance. We use a well-known dataset to con-
duct the experiments in different steps and analyze the re-
sults to measure the extent to which each of the properties
(i.e. proximity and diversity) contributes to successful aug-
mentation of the dataset. In this work, we do not consider
data augmentation for correcting for class imbalance and
leave that as future work. We are particularly interested in
dealing with a situation where we have a small dataset.

The rest of this paper is organized as follows: Next, we
present the necessary background material to understand the
concept. After that we discuss related work done in this
regard. Then, we run relevant experiments to test our pro-
posed approach, which will be followed by the discussion
on the experimental results. Finally, we draw conclusion to
our work with some proposed future research directions.

Background
Wachter et. al (Wachter, Mittelstadt, and Russell 2017) pro-
posed the most commonly accepted approach of generating
CEs by minimizing the following loss function, which was
later refined by Molnar (Molnar 2019):

L(xi, x
′
i, y

′, λ) = λ · (f̂(x′
i)− y′i)

2 + d(xi, x
′
i) (1)

Here, the term λ · (f̂(x′
i) − y′i)

2 represents the quadratic
distance between the model prediction (f̂(x′

i)) for the coun-
terfactual x′

i for an instance of interest xi and the desired
outcome y′i, which the user must define in advance. The sec-
ond term d(xi, x

′
i) is the distance d between the instance of

interest xi to be explained and the desired counterfactual x′
i.

The parameter λ plays an important role here, which bal-
ances the distance in prediction i.e. λ · (f̂(x′

i)− y′i)
2 against

the distance in feature values i.e. f̂(x′
i). The loss is solved

by choosing an appropriate value of λ, and the solution re-
turns a counterfactual x′

i. The value of λ dictates the kind
of compromise we want to make in our preference for coun-
terfactuals. For example, if we choose a higher value of λ
that means we prefer counterfactuals that are closer to the
desired outcome y′i. On the other hand, if we go for a lower
value λ, we prefer counterfactuals x′

i that are very similar
to the instance of interest, xi, in the feature values. A very
large value of λ indicates that, the instance with the predic-
tion that comes closest to y′i will be selected, no matter how
far it is away from xi.

The choice of λ depends on the user, as he/she must de-
cide how to balance the requirement that the prediction for
the counterfactual matches the desired outcome with the re-
quirement that the counterfactual is similar to xi. Wachter et.
al suggest instead of selecting a value for λ, we can select a
tolerance ϵ. The tolerance indicates how far away the predic-
tion of the counterfactual instance is allowed to be from y′i.
We can write this constraint in the following way:

|f̂(x′
i)− y′i| ≤ ϵ (2)

We can use any suitable optimization algorithm to min-
imize this loss function in Eq. (2). For example, if we

have access to the gradients of the machine learning model,
we can use gradient-based methods like RMSprop opti-
mizer (Tieleman and Hinton 2012) or Adam. To the best
of our knowledge, all the recent works on counterfactual
examples generation use Eq. (1) with little or no modifi-
cation (Mahajan, Tan, and Sharma 2019; Mothilal, Sharma,
and Tan 2020; Russell 2019; Sokol and Flach 2019).

Proximity and Diversity: Finding CEs is usually formu-
lated as an optimization problem. In a sense, it is similar
to finding adversarial examples (Goodfellow, Shlens, and
Szegedy 2014), where we perturb the data to change the out-
come. In this case, however, we need perturbations that not
only change the output of a machine learning model, but also
are diverse and feasible to change. CEs are usually gener-
ated from two perspectives: proximity or diversity. The goal
of a typical CE generation model is to generate an action-
able counterfactual set. In this case, we need individual CEs
that are feasible with respect to the original input. However,
we also need diversity among the generated counterfactuals
to provide different ways of changing the outcome class. In
this case, consideration may be given to the proximity of the
explanations to the original input as well as the diversity of
those explanations, i.e. the range of suggested changes to the
explanations in question (Mothilal, Sharma, and Tan 2020).

We use the DiCE model that adapts diversity metrics
to generate diverse CEs that can offer users multiple op-
tions (Mothilal, Sharma, and Tan 2020). The authors in-
corporate feasibility using the proximity constraint from
Wachter et al. (Wachter, Mittelstadt, and Russell 2017).

In DiCE, diversity is captured by building on deter-
minantal point processes (DPP), which has been adopted
for solving subset selection problems with diversity con-
straints (Kulesza and Taskar 2012).

Related Work
Mothilal et. al extended the work of Wachter et. al (Wachter,
Mittelstadt, and Russell 2017) and provided a method to
construct a set of counterfactuals with diversity (Mothilal,
Sharma, and Tan 2020). Ribeiro et al. (Ribeiro, Singh, and
Guestrin 2016) proposed a feature-based approach, LIME,
that fits a sparse linear model to approximate non-linear
models locally.

There has been several works on data augmentation espe-
cially on image data. One such work uses Random Erasing
method where it randomly selects a rectangle region in an
image and erases its pixels with random values (Zhong et
al. 2020). However, this work focuses on image data. Liu et
al. lay the groundwork for formal causal language in Data
Augmentation and proposed a data augmentation method
for neural machine translation (Liu, Kusner, and Blunsom
2021). This method works by interpreting language models
and phrasal alignment causally. Mikołajczyk et al. presented
a data augmentation method based on image style transfer,
which allows to generate the new images of high perceptual
quality that combine the content of a base image with the
appearance of another ones (Mikołajczyk and Grochowski
2018). There has been some peripheral works of counter-
factual data augmentation in natural language processing for
Mitigating Gender Stereotypes in Languages (Zmigrod et al.



(a) Change in diversity. (b) Change in proximity.

Fig. 1: (a) Performance of Bagging (Bootstrap Aggregation) applied to decision trees when CEs are generated varying diversity.
(b) Performance of Bagging applied to decision trees when CEs are generated varying proximity.

(a) Change in diversity. (b) Change in proximity.

Fig. 2: (a) Performance of Random Forest when CEs are generated varying diversity. (b) Performance of Random forest when
CEs are generated varying proximity.

2019) and reducing bias (Kaushik, Hovy, and Lipton 2019).
The authors used counterfactual examples as a tool to mit-
igate those issues but not as a tool to augment the dataset.
However, there has not been that much work done on tabular
data augmentation except for Synthetic Minority Oversam-
pling (SMOTE) (Chawla et al. 2002), which works by creat-
ing synthetic observations based upon the existing minority
observations (Chawla et al. 2002). In this case, SMOTE se-
lects examples that are close in the feature space, draws a
line between the examples in the feature space, and selects
a new sample at a point along that line. Specifically, a ran-
dom example from the minority class is first chosen. Then
k of the nearest neighbors for that example are found (typ-
ically k=5). A randomly selected neighbor is chosen and a
synthetic example is created at a randomly selected point be-
tween the two examples in feature space (Chawla et al. 2002;
He and Ma 2013). The synthetic example looks too much
like the original data and does not bring any new informa-

tion to the dataset. Hasan et. al explored on the effectiveness
of CEs to augment a small dataset (Hasan and Talbert 2021).
There has been some efforts on using Generative Adversar-
ial Networks(GANs) to augment a small dataset (Frid-Adar
et al. 2018). However, there has been a work that showed
empirically that CEs are more viable compared to GANs for
data augmentation purpose (Hasan and Talbert 2021). CEs
apparently do contribute useful information and put points
in space (Hasan and Talbert 2021).

Even though it has been showed that CEs can be great
alternative for data augmentation purpose (Frid-Adar et al.
2018). However, to the best of our knowledge, there is no
work available that considers proximity and diversity with
special attention in this purpose i.e., which of them impacts
more in the data augmentation purpose. In this work, we ex-
plore which one of these two plays the dominant role in sup-
porting the data augmentation process.



(a) Change in diversity and proximity. (b) Change in diversity and proximity.

Fig. 3: (a) Performance of Bagging when CEs are generated varying both diversity and proximity. (b) Performance of Decision
Tree when CEs are generated varying both diversity and proximity.

(a) Change in diversity and proximity. (b) Performance with varying proximity.

Fig. 4: (a) Performance of Random Forest when CEs are generated varying both diversity and proximity. (b) Performance of
different models when CEs are generated varying proximity.

(a) Proximity-based CEs. (b) Proximity-based CEs.

Fig. 5: (a) Performance of Random Forest when CEs are generated varying proximity. (b) Performance of Bagging CEs are
generated varying proximity.



Implementation
We apply a technique introduced by Mothilal et.
al (Mothilal, Sharma, and Tan 2020) to generate the
counterfactual examples (CEs). We generated counterfac-
tual examples using a shallow artificial neural network
(ANN) and then used those counterfactual examples in
other models. We used different models to experiment with
the generated counterfactual examples to avoid potential
bias that might arise when the same model that generated
the CEs is again used to test those CEs. At the same time,
we also wanted to make sure that CEs generated by one
model are transferable to another model.

Dataset
In this experiment, we consider the Adult-Income data set,
which contains demographic, educational, and other infor-
mation based on the 1994 Census database and is avail-
able on the UCI machine learning repository (Kohavi and
Becker 1996). The data set is credited to Ronny Kohavi
and Barry Becker (Kohavi 1996). It involves using per-
sonal details such as education level, hours of work per
week, etc. to predict whether an individual will earn more
or less than $50,000 per year. The Adult-Income data set is
a widely used standard machine learning data set and has be-
come a de facto data set for counterfactual example experi-
ments (Karimi et al. 2020; Mothilal, Sharma, and Tan 2020;
Mahajan, Tan, and Sharma 2019). We obtained 8 features,
namely, hours per week, education level, occupation, work
class, race, age, marital status, and sex by applying the pre-
processing based on a prior analysis (Zhu 2016). In this case,
the ML model’s task is to classify whether an individual’s
income is over $50,000.

Experiments
We trained an artificial neural network (ANN) model using
the Adult-Income dataset. In this case, we generate CEs for
several scenarios. Here are couple of example scenarios: (i)
we generate CEs varying the proximity but keeping diversity
fixed, (ii) we generate CES varying the diversity but keeping
the proximity fixed, and (iii) we generate CEs varying both
the proximity and diversity.

There is a work that showed CEs can be an effective al-
ternative for augmenting a small dataset (Hasan and Talbert
2021). In this work, we are mainly interested to find out the
impact of diversity and proximity in the data augmentation
process. We run our experiments in different scenarios as
mentioned above.

To test how proximity and diversity impact augmenting a
dataset using CEs, we reduced the original dataset by 80%.
This truncated dataset became our new baseline dataset,
which we wanted to augment. The rationale behind this idea
is if, for some experiments, we do not have enough data to
adequately train a model then CEs can be used to effectively
supplement the given data.

In such a case, we would use that small dataset to train
a model and use this trained model to generate CEs. These
CEs along with the original dataset can then be used to train
another model. In the latter case, choosing a different model

than the one used to generate the CEs is preferable. In this
way, we can avoid the bias that might potentially be created
using the same model for both the purposes. This also paves
the way for the generated CEs to become model-agnostic
i.e., we can train any classifier with the generated CEs.

Fig. 1(a) and Fig. 1(b) show the performance of a bagging
applied to decision trees when CEs are generated based on
diversity and proximity, respectively. In this case the trend
shows that proximity-based CEs perform better and more
consistently than diversity-based CEs. We observe similar
situation in the case of Random Forest (Fig. 2) as well. Fig. 3
(a), Fig. 3 (b), and Fig. 4 (a) show direct contrast in perfor-
mance of proximity-based and diversity-base CEs for differ-
ent models. Fig. 4 (b) shows how different values of proxim-
ity affect data augmentation process. Fig. 5 (a) and Fig. 5 (b)
show how proximity-based CEs perform compared to ran-
domly generated CEs (Hasan and Talbert 2021).

Discussion

Counterfactual examples generation method is model-
agnostic, since it only works with the model inputs and out-
put (Molnar 2019). As we have demonstrated in the exper-
iments, we used one model (e.g. ANN) to generate coun-
terfactual examples and different models (e.g. decision tree,
Random Forests, and Bagging) to test the utility of the gen-
erated examples.

When the target is counterfactual explanations, there are
certain criteria that need to be fulfilled. One of the fore-
most requirements is proximity i.e. a counterfactual instance
should produce the predefined prediction as closely as pos-
sible by defining a relevant change in the prediction of an
instance (i.e. the alternative reality) (Molnar 2019). At the
same time, diversity is an important factor in counterfactual
explanation, and it’s often suggested to have diverse CEs.
Generating a set of diverse explanations increases the likeli-
hood of finding a useful explanation (Mothilal, Sharma, and
Tan 2020)(Russell 2019). In a set of diverse CEs, each one
proposes to change a different set of attributes.

However, we observe a different scenario when our tar-
get is data augmentation. Our experimental results show
that proximity-focused CEs perform better than diversity-
focused CEs. The reason behind this lies in the way
proximity-focused CEs are generated. In the case of proxim-
ity, CEs should be as similar as possible to the instance re-
garding feature values. This criterion necessitates an appro-
priate distance measure between two instances. The coun-
terfactual example should not only be close to the original
instance, but should also change as few features as possi-
ble (Molnar 2019). To fulfill this criterion, an appropriate
distance measure like the Manhattan distance is required. In
other words, we get CEs that are very much similar to the
original instances and do not change the model parameters
significantly. However, in the case of diversity, the focus is
given on how diverse the CEs are from each other and from
the original instance. To fulfill the diversity criteria, often
times features are changed randomly. We believe this causes
the model to fail to generalize well.



Conclusion and Future Work
In recent literary work, Counterfactual explanation has gar-
nered a lot of attention as an effective way to provide ex-
planation for machine learning model’s decision. We have
observed that CEs can be a great alternative to augment a
small dataset. In this work, however, we were interested to
see how proximity-based CEs and diversity-based CEs fair
in this purpose. We ran extensive experiments and found out
that overall, proximity-based CEs perform better for data
augmentation purpose. We conclude that if our target is to
augment a dataset using CEs, we should emphasize more
on proximity while generating them. In the future, we want
to experiment with other datasets from different applica-
tion areas. Additionally, we want to consider other models
and other counterfactual example generation techniques. We
want to explore how CEs can also be used to address class
imbalance.
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