
Switch lists in the landscape of knowledge representation languages

Ondřej Čepek
Faculty of Mathematics and Physics, Charles University

Malostranske namesti 25
118, 00 Praha 1, Czech Republic

Abstract

A switch-list representation (SLR) of a Boolean func-
tion is a compressed truth table representation of a
Boolean function in which only the function value of
the first row in the truth table and an ordered list of
switches are stored. A switch is a Boolean vector whose
function value differs from the value of the preceding
Boolean vector in the truth table. In this short paper we
outline scenarios under which SLRs constitute a bet-
ter representation language than standard representation
languages such as CNFs and OBDDs. Furthermore, we
outline a possible approach to constructing a compiler
from CNFs to SLRs which is a necessary tool for veri-
fying practical usefulness of SLRs.

Introduction
Knowledge representation languages constitute different
formalisms for representing Boolean functions. A Boolean
function on n variables is a mapping from {0, 1}n to {0, 1}.
This concept naturally appears and is extensively used in
several areas of mathematics and computer science and has
many applications to real life problems. Well known repre-
sentation languages include various types of Boolean formu-
las (e.g. CNFs and DNFs), various types of binary decision
diagrams (BDDs, FBDDs, OBDDs), and negational normal
forms (NNF, DNNF, d-DNNF). A Boolean function can also
be represented by a truth table or a list of models.

The task of transforming one of the representations of a
given function f into another representation of f (e.g. trans-
forming a DNF into an OBDD or a DNNF into a CNF)
is called knowledge compilation. A comprehensive review
paper on knowledge compilation (Darwiche and Marquis
2002) introduces a Knowledge Compilation Map (KCM).
KCM systematically investigates different representation
languages with respect to (1) their relative succinctness,
(2) the complexity of common transformations, and (3) the
complexity of common queries. The succinctness of repre-
sentations roughly speaking describes how large the output
representation in languageB is with respect to the size of the
input representation in language A when compiling from A
to B. A precise definition of this notion will be given later
in this text. Transformations include negation, conjunction,

Copyright c© 2021by the authors. All rights reserved.

disjunction, conditioning, and forgetting. The complexity of
such transformations may differ dramatically from trivial to
NP-hard depending on the chosen representation language.
The same is true for queries such as consistency check, va-
lidity check, clausal and sentential entailment, equivalence
check, model counting, and model enumeration.

The paper (Le Berre et al. 2018) included Pseudo-Boolean
constraint (PBC) and Cardinality constraint (CARD) lan-
guages into KCM by adding them into the succinctness di-
agram, and by proving the complexity status of almost all
queries and transformations introduced in (Darwiche and
Marquis 2002). The same was later achieved for languages
SL and SL< based on switch list representations in (Čepek
and Chromý 2020). In this paper, we discuss several scenar-
ios under which SL and SL< are superior to other known
representation languages and suggest a research direction
which may show their practical usefulness. Let us start by
defining the two languages considered in this paper.

Definition 1. Let < be a total order on the set PS of all
propositional variables, let X be a subset of PS of size n,
and let f be a Boolean function on variables from X . Con-
sider vector x ∈ {0, 1}n where the bits of x correspond to
the variables ofX in the prescribed order<. Each such vec-
tor x can be in natural way identified with a binary number
from [0, 2n − 1], so for every x > 0 the vector x− 1 is well
defined. We call x ∈ {0, 1}n a switch of f with respect to
order <, if f(x − 1) 6= f(x). The list of all switches of f
with respect to < is called the switch-list of f with respect
to <. The switch-list of f with respect to < together with the
function value f(0) is called the switch-list representation
(SLR) of f with respect to<. The set of switch-list represen-
tations with respect to< (of all functions) forms the proposi-
tional language SL<. Finally, the language SL is the union
of SL< languages over all total orders on the set PS.

Furthermore, function f is called a k-switch function if
there exists a SLR of f with respect to some order < of its
variables that has at most k switches.

In the following three sections we compare SL and SL<

languages with other standard representation languages with
respect to (1) their relative succinctness, (2) the complex-
ity of common transformations, and (3) the complexity of
common queries. In the last section we outline a possible
approach for compilation into the SL language.

Relative Succinctness
Two sentences (possibly from two different propositional
languages) are called logically equivalent if they represent
the same Boolean function. Let us now define the notion of
relative succinctness.

Definition 2. A propositional language L is at least as suc-
cinct as a propositional language K, denoted L ≤ K, if
and only if there exists a polynomial p such that for every
sentence α ∈ K there exists a logically equivalent sentence
β ∈ L such that |β| ≤ p(|α|) (where the size of a sentence is
the number of bits necessary to encode it). If L ≤ K holds
and K ≤ L does not (denoted K 6≤ L) then L is strictly
more succinct than K, denoted L < K.

The diagram in Figure 1 from (Darwiche and Marquis
2002) summarizes the strict succinctness relations of many
commonly used propositional languages. It is amended here
by the results from (Le Berre et al. 2018) dealing with the
PBC and CARD languages and the results from (Čepek
and Chromý 2020) dealing with SL and SL< languages.

PBC

CARD

CNF

PI

DNF

IP

MODS¬MODS

NNF

DNNF

d-DNNF

FBDD

OBDD

OBDD<

SL

SL<

Figure 1: L→ K means L < K

When arguing about the quality of a representation lan-
guage L it is customary to compare its properties to the prop-
erties of its neighbours in the succinctness diagram. Obvi-
ously, L should have better properties (support more queries
and transformations in polynomial time) than the more suc-
cinct languages ”above it” and may support fewer queries
and transformations than the less succinct languages below
it. Thus, when assessing the quality of SL and SL<, we
should compare them primarily to CNF , DNF, OBDD
and OBDD< on one hand and to the language MODS of

all models on the other hand (the language ¬MODS is not
commonly used and is added into the diagram only for sym-
metry reasons). It is also interesting to compare the prop-
erties of SL and SL< to the properties of the language IP
of all prime implicants (and its symmetric language IP of
all prime implicates). The languages IP and PI lie on the
same level in the succinctness diagram as SL and SL< and
are incomparable with them with respect to the succinctness
relation.

As we shall see in the next two sections SL and SL< have
a wider set of supported queries and transformations than
CNF , DNF, OBDD and OBDD< (and even IP and
PI) which may make SL and SL< a good choice as target
languages for knowledge compilation under certain scenar-
ios which exploit the supported queries and transformations
not supported by the other representation languages.

Queries
Standard queries considered in the Knowledge compilation
map (Darwiche and Marquis 2002) are:
CO Consistency - test whether sentence S has a model
VA Validity - test whether sentence S is a tautology
CE Clausal Entailment - test S |= C for S and clause C
IM Implicant Check - test T |= S for S and term T

EQ Equivalence - for sentences S, S′ test S ≡ S′

SE Sentential Entailment - for sentences S, S′ test S |= S′

CT Model Counting - output the number of models of S
ME Model Enumeration - output all models of S

CO VA CE IM EQ SE CT ME
NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF X ◦ X ◦ ◦ ◦ ◦ X
d-DNNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
CARD ◦ X ◦ X ◦ ◦ ◦ ◦
PBC ◦ X ◦ X ◦ ◦ ◦ ◦
BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD X X X ? ◦ ◦ X X
OBDD X X X X X ◦ X X
OBDD< X X X X X X X X
CNF ◦ X ◦ X ◦ ◦ ◦ ◦
DNF X ◦ X ◦ ◦ ◦ ◦ X
IP X X X X X X ◦ X
SL X X X X X X X X
SL< X X X X X X X X
MODS X X X X X X X X

Table 1: Xmeans “can be answered in poly-time” and ◦
means “cannot be answered in poly-time unless P=NP”.

Table 1 summarizes the complexity of all standard queries
for languages considered in (Darwiche and Marquis 2002)
as well as those added to KCM by (Le Berre et al. 2018)
and (Čepek and Chromý 2020) where the order of languages
in the table roughly corresponds to their positions in the
succinctness diagram in Figure 1. The proofs of all results
presented in Table 1 can be found in the three papers cited

above. Notice that SL and SL< allow answering all queries
in polynomial time so these languages are just as good for
query answering as MODS despite the fact that for certain
Boolean functions the SLR representation (sentence) is ex-
ponentially smaller than the list of models. When compared
to more succinct languages SL and SL< are much better
than CNF and DNF (which support very few queries in
polynomial time) but also better than IP and PI which do
not support model counting. This immediately suggests a
scenario in which SL and SL< are good target languages.

Scenario 1: The input representation is a DNF or a CNF
and we want to answer a number of queries not supported in
polynomial time, e.g. implicant checks or clausal entailment
checks for a number of terms or clauses. Then it would make
sense to first compile the input into a SLR and answer all
queries using this SLR. For a large number of queries (large
number of different terms or clauses for the same function)
this approach may pay off even if the compilation is expen-
sive. However, this approach is not usable if the compila-
tion step leads to an exponential blow-up of the representa-
tion, which must happen for some functions due to the strict
succinctness relation, but may not happen for many others.
To test this approach in practice a compiler from CNF (or
DNF) to SL which currently does not exist is needed.

The languages based on SLRs are also slightly better than
the OBDD language which does not support sentential en-
tailment if the two input OBDDs respect different orders of
variables. The only language considered in (Darwiche and
Marquis 2002) with the same set of supported queries is
OBDD<. Hence, the advantage of SL is that it does not
require the same order of variables for all inputs to guar-
antee polynomial time bounds on all queries. This may be
important when we have no control on variable order during
the process of generating the representation, or the input rep-
resentations come from different sources. However, queries
alone would not justify the use of SLR based languages in-
stead of OBDD based languages which are almost as good
in query answering (sentential entailment check being the
only exception) while being strongly more succinct. To see
more important advantages of SL and SL< over OBDD
and OBDD< we have to look at transformations.

Transformations
Standard transformations considered in the Knowledge
compilation map (Darwiche and Marquis 2002) include:

CD Conditioning of sentence S by term T , i.e. a partial
assignment of values forced by satisfying all literals in T .

SFO Singleton forgetting which transforms S into ∃xS for
a variable x.

FO Forgetting which transforms S into ∃XS for a subset
X of variables.

∧C Conjunction of any finite number of sentences.

∨C Disjunction of any finite number of sentences.

¬C Negation of a sentence.

CD FO SFO ∧C ∨C ¬C
NNF X ◦ X X X X
DNNF X X X ◦ X ◦
d-DNNF X ◦ X X X X
CARD X ◦ ? X • •
PBC X • • X • •
BDD X ◦ X X X X
FBDD X • ◦ • • X
OBDD X • X • • X
OBDD< X • X • • X
CNF X ◦ X X • •
DNF X X X • X •
IP X • • • • •
SL X X X • • X
SL< X X X • • X
MODS X X X • • •

Table 2: Xmeans “can be done in poly-time”, •means “can-
not be done in poly-time” and ◦ means “cannot be done in
poly-time unless P=NP”

Table 2 summarizes the complexity of transformations
for languages considered in (Darwiche and Marquis 2002)
as well as those added to KCM by (Le Berre et al. 2018)
and (Čepek and Chromý 2020). Once again, the order of lan-
guages in the table roughly corresponds to their positions in
the succinctness diagram in Figure 1. All results for SL and
SL< are due to (Čepek and Chromý 2020) except of∧C and
∨C for SL which are due to (Mengel 2022). The results for
all other languages can be found in (Darwiche and Marquis
2002) and (Le Berre et al. 2018).

If we think of a list of models as a compressed truth ta-
ble and of a SLR as an even more compressed truth table, it
is quite remarkable that SL actually supports more transfor-
mations than MODS, in particular it supports negation (in
fact, negation takes constant time on a SLR !!!) while the list
of models may grow exponentially when a negation is taken.
Given that the set of supported queries is the same, SL is in
all aspects a better language than the strictly less succinct
MODS language.

When we compare SL (and SL<) to the languages on the
same level of the succinctness diagram, i.e. to IP (and PI)
we see that SL vastly outperforms IP as it additionally sup-
ports both general and singleton forgetting and negation. A
more interesting comparison is with the strictly more suc-
cinct languages. When compared to CNF and DNF the
number of supported queries is almost the same: SL (and
SL<) additionally support negation while CNF addition-
ally supports conjunction and DNF additionally supports
disjunction (those two properties are obvious as CNFs and
DNFs are ”custom made” for those operations). Recall, how-
ever, that SL (and SL<) significantly outperform CNF and
DNF in query answering which balances out the fact that
they are strictly less succinct.

SL and SL< also support forgetting (the general case,
not just singleton forgetting) which distinguishes them from
OBDD and OBDD< that do not support general forget-
ting. An additional advantage is that SLRs also support con-

junction and disjunction under the restriction that all con-
juncts (disjuncts) are defined on the same set of variables
and with the same order of variables, i.e. all switches are
vectors of the same length with individual coordinates in-
dexed by the same variables for all input SLRs (this is not
shown in Table 2 where only the general forms of conjunc-
tion and disjunction are tabulated). It should be noted here
that both OBDD and OBDD< fail to support conjunc-
tion and disjunction even in this restricted case which may
appear very naturally in practical applications.

Scenario 2: The collection of supported queries and
transformations suggests that SL (and SL<) may be a good
choice for a target compilation language in cases when many
queries (such as model counting) have to be answered under
many different additional assumptions such as a partial sub-
stitution of binary values to subsets of variables (i.e. condi-
tioning) or existential quantification of subsets of variables
(i.e. forgetting). None of the strictly more succinct repre-
sentation would support such a scenario in polynomial time.
Again, an obvious problem for this approach is a lack of
compilation algorithms with SL as the target representation
language.

Compilation into the SL language
Given a truth table or a list of models, it is obviously trivial
to compile such a representation into a SLR in polynomial
time, often getting an exponential compression. This is un-
fortunately not a very interesting case, as truth tables and
lists of models are rarely used in practice because of their
size. It follows, that such compilation may be useful only for
small data. However, in such a case it makes perfect sense to
do this compression step as no polynomial time properties
(queries and transformations) will be lost. In fact, just the
contrary will happen - recall the discussion about the supe-
riority of SL to MODS).

Another representation that is also easy to compile into a
SLR is a binary decision tree with a fixed order of variables
on all branches. By traversing the leaves of such a tree from
left to right one can easily construct a logically equivalent
SLR. Such a compilation may make sense if we want to use
the BDT representation for query answering or manipulate
the BDT using some standard transformations. This will be
possible once a library of query and transformation routines
exists (it is now being written).

Let us finally consider the most interesting example of
a compilation algorithm with SL as a target language. Pa-
per (Čepek and Hušek 2017) studies k-switch functions (re-
call that function f is a k-switch function if there exists a
permutation of its variables for which the SLR of f consists
of at most k switches) given by DNFs from tractable classes.
In this context a class of DNFs is tractable if it admits poly-
nomial time validity check. The main result in (Čepek and
Hušek 2017) is a recognition algorithm that runs in polyno-
mial time in the length of the input DNF for any constant
k (the complexity is exponential in k) and either outputs a
k-switch SLR or fails, the latter meaning that no SLR of the
input function with at most k switches exists. This result can

be easily adapted to a compilation algorithm from tractable
CNFs (which admit polynomial time consistency check) to
SLRs as follows: take a negation of the input (which trans-
forms a tractable CNF into a tractable DNF), compile it into
a SLR using the algorithm from (Čepek and Hušek 2017),
and if the compilation step succeeds, take a negation of the
output SLR.

This algorithm is of course of a very limited interest in
practice because very few DNF (or CNF) encodings of prac-
tical problems fall into some known tractable class of DNFs
(or CNFS). Nevertheless, it leads to an interesting research
question. Can we extend the algorithm to DNF (or prefer-
ably CNF) inputs outside of tractable classes by running a
SAT solver whenever the algorithm from (Čepek and Hušek
2017) calls a dedicated polynomial time falsifiability algo-
rithm (here we use that the input is tractable)? This should
be possible since calling a dedicated polynomial time falsifi-
ability algorithm is equivalent to calling a dedicated polyno-
mial time satisfiability algorithm for tractable CNF inputs.
This should allow us to run the compilation algorithm on se-
lected benchmark CNFs, and by gradually increasing the pa-
rameter k test whether some benchmark CNFs have reason-
ably small switch list representations. This would allow us
to validate Scenarios 1 and 2 suggested above on real world
data and compare the properties of SL representations to the
properties of logically equivalent CNFs (especially with re-
spect to query answering).

Another research question independent of the one formu-
lated in the previous paragraph is whether there exist other
nontrivial special classes of CNF, DNF, OBDD, or other
common representations, which can be efficiently compiled
into SLRs by polynomial time compilation algorithms (sim-
ilarly to the algorithm from (Čepek and Hušek 2017).

Acknowledgements
The authors gratefully acknowledge a support by Czech
Science Foundation (Grant 19-19463S) and by TAILOR, a
project funded by EU Horizon 2020 research and innovation
programme under GA No 952215.

References
Čepek, O., and Chromý, M. 2020. Properties of switch-list
representations of boolean functions. Journal Of Artificial
Intelligence Research 69:501–529.
Čepek, O., and Hušek, R. 2017. Recognition of tractable
dnfs representable by a constant number of intervals. Dis-
crete Optimization 23:1–19.
Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal Of Artificial Intelligence Research
17:229–264.
Le Berre, D.; Marquis, P.; Mengel, S.; and Wallon, R.
2018. Pseudo-boolean constraints from a knowledge rep-
resentation perspective. In Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI’18,
1891–1897. AAAI Press.
Mengel, S. 2022. No efficient disjunction or conjunction of
switch-lists. arxiv.org/abs/2203.04788.

