
Contradiction Detection and Repair in a Large Theory

Adam Pease and Stephan Schulz
Articulate Software, San Jose, CA USA DHBW Stuttgart, Stuttgart, Germany

apease@articulatesoftware.com schulz@eprover.org

Abstract

As with any software, the challenges of developing large and
manually-created axiomatizations in an expressive logic such
as first order logic with equality can be very different from
those found in comparatively small theories. We present some
of the tools and practices that have supported development of
a logical theories with tens of thousands of statements, and
ensured that they are free of logical contradiction, and suit-
able for automated theorem reasoning.

Introduction
Large theories in an expressive logic have the potential for
powerful reasoning, but that can come at the cost of com-
plexity. Large theories that use less expressive logics, such
as taxonomies or description logics, can have relatively sim-
ple methods for determining, for example, that there are no
type conflicts in a class hierarchy or property signatures.

First-order logic with equality is a lot more expressive,
and supports complex mathematical and practical reasoning.
However, once first order logic with equality is used, reason-
ing tools have more difficult problems to solve. Since first-
order logic is only semi-decidable, consistency can be im-
possible to establish in general, and even inconsistency can
only be proven in the limit, i.e. with unrestricted resources in
time and memory. Still, automated methods can help main-
taining the consistency of such a theory.

Our use case is the continued development of the Sug-
gested Upper Merged Ontology (SUMO) (Niles and Pease
2001; Pease 2011)1, a comprehensive ontology of around
20,000 concepts and 80,000 hand-authored logical state-
ments in a (mildly) higher-order logic. SUMO has an as-
sociated integrated development environment called Sigma
(Pease and Schulz 2014)2 that interfaces to leading theorem
provers such as E (Schulz 2002; Schulz, Cruanes, and Vuk-
mirović 2019), Vampire (Kovács and Voronkov 2013) and
LEO-II (Benzmüller et al. 2008). As the SUMO language
has no native implementation in a theorem prover for its lan-
guage, we rely on provers that support different subsets of its
language. We have automatic translations (Pease and Schulz

1https://www.ontologyportal.org
2https://github.com/ontologyportal/

sigmakee

2014) to the strictly first order language of TPTP (Trac, Sut-
cliffe, and Pease 2008), as well as the TF0 language (first
order logic with typed arithmetic) (Pease 2019) and THF
(Benzmüller and Pease 2010). The recent development of
our TF0 translator means that we can reason with numerical
measures in a truth-preserving representation (Read 2003).

Using an expressive logic allows us to state knowledge
about the world that could not be expressed in weaker logics.
In order to state general rules, we must have variables, ruling
out use of a propositional logic. For example

(=>
(and
(instance ?PROC IntentionalProcess)
(agent ?PROC ?AGENT))

(exists (?PURP)
(hasPurposeForAgent ?PROC ?PURP ?AGENT)))

we need to be able to state that when an Agent conducts
an IntentionalProcess, that agent has some intended
purpose that process fulfills or contributes to. This is an es-
sential part of the definition of an intentional process. In or-
der to apply this to a particular instance, such as that of a
carpenter “John” building a house, we need variables to al-
low a theorem prover to substitute the instance John for
variable ?AGENT and then conclude that there exists some
purpose ?PURP held by John for the process. Use of true
negation, predicates of arity greater than two, and full first
order quantification all require at least first order logic. An
even more expressive logic however is desirable in order to
reason with a larger subset of SUMO.

Numerical reasoning is very common in practical reason-
ing problems over world knowledge. For example, a robot
may need to know its capacity to carry heavy objects in or-
der to respond effectively to human commands. It may have
to calculate weight or dimensions, and possibly do unit con-
versions.

The alternative to having arithmetic as part of the logical
language has been procedural attachment. Provers such as
SNARK (Stickel, Waldinger, and Chaudhri 2000) have sup-
ported procedural attachment as a way to handle arithmetic.
This means that during the course of theorem proving, an ar-
bitrary procedure can be called, implemented in a program-
ming language such as Lisp or C, that takes the arguments
to a logical function and uses them as parameters to a pro-
cedural function call, after which the logical function can be

1

replaced with the returned value. This is simple and expedi-
ent, but it removes the logical definition of the function call
from the domain of theorem proving. If the semantics of the
function and its values during proving are inconsistent with
the rest of the logical theory, that fact cannot be detected
unless the semantics of the function are part of the logical
language and theory. Procedural attachment takes theorem
proving back partly into the realm of procedural program-
ming and testing through debugging, rather than mathemat-
ical proof.

A different issue is that of efficiency. One would not want
to conduct mathematical operations in logic, such as with
Peano arithmetic, as that would be computationally ineffi-
cient. But we can have the best of both worlds by supporting
arithmetic calculations in the theorem prover, implemented
efficiently, while also having the logical specification of such
operations in the logical theory, so that they entire system
can be subject to verification. The TFF family of languages
(Sutcliffe et al. 2012) addresses these issues.

In an ideal world, all specifications would be correct, all
software would be bug-free, and all logical theories would
be consistent. However, in practice, these are large and com-
plicated systems, and they are built by imperfect human be-
ings. Thus, some errors are probably unavoidable. However,
we can use automated reasoning tools to minimize both the
likelihood of errors, as well as their impact.

Unfortunately, the size of SUMO is well beyond what
model finders (such as Paradox (Claessen and Sörensson
2003)) are capable of handling. Thus, we do not have a way
to prove that all of SUMO is consistent. With respect to in-
consistency, nearly all current automated theorem provers
are built on a refutational paradigm. At the core of the prover
is an algorithm that tries to show that a set of formulas (or
clauses) is inconsistent. In classical theorem proving, this
is used to derive an explicit contradiction from the axioms
and the negated conjecture, thus proving the original goal.
However, it also gives us a tool to possibly detect (and then
repair) inconsistencies in the knowledge base.

A challenge is that proofs of any given contradiction can
be large, easily running to 100 steps for recent ones that have
been found. Finding a contradiction is just part of the prob-
lem. Repairing the contradiction while not unduly reducing
the inferential power of the theory is also important.

Contradiction Detection
In principle, it would be possible to run a refutational theo-
rem prover on all of SUMO with the aim of finding possible
contradictions. Most theorem provers are able to output a
proof object, the analysis of which would allow us to iden-
tify an inconsistent subset. However, in practice, most theo-
rem provers are not able to find such a contradiction under
reasonable resource constraints.

In 2009, the CADE ATP System Competition
(CASC) (Sutcliffe 2007; 2019), one of the major drivers
of ATP development, introduced the Large Theory Batch
(LTB) division, in which large theories like SUMO are used
as the base for reasoning problems. One of the interesting
observations of LTB was that provers that were unable
to find inconsistencies in the full theories nevertheless

managed find inconsistent subsets of the axioms when
focused by the presence of a conjecture.

The explanation for this is that the successful systems ei-
ther before or during proof search identify parts of the theory
likely relevant to the conjecture, and focus on this coherent
subset of axioms. Thus, they are able to find contradictions
in these much smaller sets that would be lost in the full the-
ory.

We can utilize this observation and the mechanisms be-
hind it in several ways.

Local Contradictions
Without infinite resources, it is in general impossible to
show if an FOL theory is contradictory. This has historically
been thought to be a major obstacle, and still is if the goal
is, for example, proving the consistency of a mathematical
theory. However, for common sense reasoning, the goal is
closer to “utility”.

As stated above, nearly all current ATP systems perform
proof by contradiction. The system negates the conjecture,
and then tries to find an inconsistency from axioms and
negated conjecture. If such a contradiction is found, we can
be in one of two situations. First, the derivation of the incon-
sistency does involve the negated conjecture. In this case, the
assumption is that the subset of axioms used is consistent,
and the conjecture is logically implied by the axioms. In the
second case, the negated conjecture is not involved in the in-
consistency. In that case, we have uncovered a local contra-
diction in the theory. We can easily distinguish the two cases
if the prover provides a suitable proof object (Schulz and
Sutcliffe 2015), as done by most state-of-the-art systems.

A local contradiction has two implications: First, the sta-
tus of the conjecture with respect to the user domain is open
- while it has been formally proved (by ex falso, quodlibet),
that proof is the result of a buggy formalisation, and hence
vacuous. Secondly, it should trigger the process of theory
repair.

A proof that does include the (negated) conjecture is valid
for the portion of the theory that is used in the proof. There
may be an undiscovered problem in the theory as a whole,
but the proof is still valid for the formulas that it contains.
This has been the case with SUMO. As SUMO has grown
over the last two decades, theorem proving has gotten more
powerful, especially with respect to large theories. We have
regularly found small numbers of contradictions, typically
just a few each year, which have been hidden in very deep
chains of reasoning that have only been encountered with
the continuous improvements in the provers used. SUMO
has been used productively and accurately even while some
of these deep contradictions remained undiscovered.

It should also not be surprising to find a problem occa-
sionally in a theory of this size. Just as with any large soft-
ware program, one would not expect it to be written from
the beginning completely free of bugs.

Sigma Diagnostics
Theorem proving can be time consuming, even though great
improvements have been made (Hoder and Voronkov 2011;
Pease et al. 2010). It’s efficient to implement the sort of fast

% SZS output start Refutation
fof(189,negated_conjecture,

(˜(?[X31]: s__member__02(X31,s__Org1_1__00))),
inference(’input’,[])).

fof(135,axiom,
(![X14]: (s__instance__02(X14,

s__Collection__00) =>
(?[X15]: (s__instance__02(X15,

s__SelfConnectedObject__00) &
s__member__02(X15,X14))))),

inference(’input’,[])).
fof(103,axiom, s__subclass__02(

s__Organization__00, s__Collection__00),
inference(’input’,[])).

fof(159,axiom,
(![X24,X25]: (s__subclass__02(X24,X25) =>
(s__instance__02(X25,s__SetOrClass__00) &
s__instance__02(X24,s__SetOrClass__00)))),
inference(’input’,[])).

fof(114,axiom, s__instance__02(
s__Organization__00, s__SetOrClass__00),

inference(’input’,[])).
fof(240,plain,

(![X0]: ((˜s__instance__02(X0,
s__Collection__00))

| (?[X1]: (s__member__02(X1,X0) &
s__instance__02(X1,

s__SelfConnectedObject__00))))),
inference(’ENNF transformation’,[206])).

fof(299,plain,
((˜s__instance__02(X0,s__Collection__00)) |
(s__member__02(sk_0(X0),X0) &
s__instance__02(sk_0(X0),

s__SelfConnectedObject__00))),
inference(’skolemization’,[240])).

cnf(525,plain,
s__instance__02(X2,X1)|˜s__subclass__02(X0,X1)
|˜s__instance__02(X2,X0)
|˜s__instance__02(X0,s__SetOrClass__00)
| ˜s__instance__02(X1,s__SetOrClass__00),
inference(’cnf transformation’,[330])).

fof(190,axiom,
s__instance__02(s__Org1_1__00,
s__Organization__00), inference(’input’,[])).

cnf(491,plain,
s__member__02(sk_0(X0),X0)
| ˜s__instance__02(X0,s__Collection__00),
inference(’cnf transformation’,[299])).

cnf(487,plain,
˜s__member__02(X0,s__Org1_1__00),
inference(’cnf transformation’,[295])).

cnf(861,plain,
˜s__subclass__02(s__Organization__00,X1)
| s__instance__02(s__Org1_1__00,X1),
inference(’resolution’,
[506,359,525,333])).

cnf(897,plain,
s__instance__02(s__Org1_1__00,
s__Collection__00),
inference(’resolution’,[414,861])).

cnf(1029,plain,
$false, inference(’resolution’,[487,491,897])).

% SZS output end Refutation

Figure 1: Selected steps of a simple TPTP proof - Vampire’s
output for CSR075+3 from CASC-22 (2009)

type-checking that is done in description logic systems on
the portion of the theory that is expressible in that language.
We implemented checking types (classes) for disjoint par-
ents. SUMO is a strongly typed system, in which all rela-
tions (including functions) have a required type signature,
so we can check whether arguments are in conflict with the
required types for given relations.

There are also many checks that can be done that are in-
dicative of problems even if they do not cause a logical con-
tradiction. This includes a term that does not have a docu-
mentation string. Another common problem is having a term
that does not ultimately have a root at Entity, which is the
parent class of all terms in SUMO. We can also find for-
mulas that have a quantified variable that is not used in the
formula.

These diagnostics have been integrated into a program-
mer’s text editor that can catch the most common mistakes
from SUMO developers (Pease 2020).

Theorem Proving
The most straightforward check one can do with a logical
theory and a theorem prover is to check for a contradiction
by asking the prover to prove falsehood. However, that pro-
vides no direction to the theorem prover for where to look
in a large theory for possible contradictions. Providing guid-
ance to a prover has been a recent fruitful approach.

Axiom Filtering
While issues can often be found simply by asking the
provers to prove “false” (i.e. to find a contradiction among
the axioms only), we can also employ an automated means
of focusing on different parts of the ontology. The E distri-
bution contains a tool (Schulz et al. 2017) (called EAXFil-
ter) for generating thousands of test problems that focus on
theories connected with certain function and predicate sym-
bols. These can be either picked at random by the system, or
provided by the user (e.g. symbols newly introduced when
extending the theory). The system uses different variants of
the SInE algorithm (Hoder and Voronkov 2011) to extract
relatively small and coherent subsets of the axiomatization.
These can then be handed to theorem provers to find pos-
sible contradictions. We employ the StarExec (Stump, Sut-
cliffe, and Tinelli 2014) server cluster to make such large
scale testing practical.

Contradiction Repair
Graphical Proofs
A traditional proof that one might find in a logic textbook is a
strictly linear presentation of deductions. However, a deduc-
tive proof in FOL is only partially ordered - different threads
of deduction can lead to a single conclusion. While a linear
proof can be created, it can often be confusing, and a graph-
ical presentation that shows parallel threads of deduction is
often much clearer.

The Interactive Derivation Viewer (IDV) (Trac, Puzis, and
Sutcliffe 2007) is an innovative proof viewer that allows the
user to select a varying degree of detail in the proof.

The Sigma Graph tool3 employs the GraphViz system to
generate aesthetically appealing graph of proofs. It has a
simpler version of IDV’s detail control. It can either display
the entire proof, or just the human-authored formulas used
in the proof, or an intermediate alternative that only shows
deductive steps that follow from two or more premises.

Proof Ablation
A recent addition to Sigma4 is what we are calling Proof Ab-
lation. It iterates through a proof of a contradiction, remov-
ing human-authored formulas one by one, and then attempt-
ing to re-derive the contradiction. This allows the system to
identify a minimal inconsistent core of axioms, or, in other
words, to expose (one of) the smallest subsets that is contra-
dictory. It is often the case that several different instances of
local inconsistency can thus be traced to the same problem-
atic axioms - and can be fixed by repairing this small set.

Example
We now examine a contradiction that was recently found by
Vampire, using the test files created by EAXFilter. The the-
ory used was the full SUMO, including the top, mid-level
and all domain ontologies. SUMO was first converted to
TPTP format by Sigma. The result was 2,094,675 TPTP for-
mulas. EAXfilter generated 45,387 test theories, each with
anywhere from a few hundred to tens of thousands of fomu-
las, and each comprising a different subset of the formulas
in the full TPTP SUMO theory. Generating these problems
took a few hours on a modern laptop. We then ran Vampire
on each of those problems. That step took over a day. The
most recent test found a contradiction with a 120-step proof
in one of the test theories.

Proof by refutation can be challenging to explain in
common-sense language, which has motivated work on nat-
ural deduction (Prawitz 1965). However, there is still no
general and automatic method for doing natural deduction
on theories in FOL that is sound, complete and of compara-
ble performance. So, we will give an approximation of the
line of reasoning here and the interested reader can refer to
both the full linear proof 5 and graphical proof6 available on-
line (see Figure 2 for a small section of the graphical proof).

We can group the proof into several sections, which even-
tually come together to produce a contradiction. The domain
of the proof is primarily weather, with formulas primar-
ily from the Weather.kif domain ontology file of SUMO7.
Constant names below shown in typewriter font are

3https://github.com/ontologyportal/
sigmakee/blob/master/src/java/com/
articulate/sigma/Graph.java

4See https://github.com/ontologyportal/
sigmakee/blob/master/src/java/com/
articulate/sigma/KB.java#L3660.

5https://www.ontologyportal.org/
FLAIRScontra.txt

6https://www.ontologyportal.org/
FLAIRSproof.gif

7 r̆lhttps://github.com/ontologyportal/sumo/blob/master/Weather.kif

terms with definitions in SUMO and their associated formu-
las can be viewed online8.

1. • naturalHazardTypeInArea means there exists
an instance of the hazard in that area (at some point)

• CyclonicStorm is WeatherSystem and is a nat-
ural hazard in the SouthernOcean

• A WeatherSystem has an AirStream
• So, there is or has been a CyclonicStorm with an
AirStream

2. • anything (everything) located in an AirStream is a
Gas (has the attribute of being a Gas)

• an AirStream is a Region
• WindFlow is an AirStream
• Every Region has something Physical in it (at

least another Region)
3. • Substances have PhysicalState(s) and anything

with a PhysicalState is a Substance
• UnitedNations is a Collection and therefore

not a SelfConnectedObject (or an Object)
since those classes are disjoint

• UnitedNations is a Physical thing
• UnitedNations can’t have a PhysicalState as

an Attribute so it’s not a Gas
4. • So from list 2 above, the thing in an AirStream could

be the UnitedNations because that’s a Physical
thing

• But from list 3 UnitedNations can’t be a Gas and
anything located in an AirStream is a Gas

• contradiction
Distilling this explanation from such a long and

complicated proof is quite challenging, but proof
ablation quickly narrows the search for a fix by
determining that UnitedNations is not central
to the proof, as any other Collection such as
UnitedStatesMinorOutlyingIslands would
contribute to the contradiction. The fact that cyclones
are a hazard in the Southern ocean is also incidental, but
proof ablation can’t determine that, since the only chain
of reasoning that creates an instance of an airflow results
from a statement in the Geography.kif domain ontology that
(naturalHazardTypeInArea SouthernOcean
CyclonicStorm). In contrast, the following formula is
essential:
(=>

(and
(instance ?AS AirStream)
(located ?AIR ?AS))

(attribute ?AR Gas))

The error in this formula is using located when the
relation part should have been used. A Bird could be
located in the AirStream and it wouldn’t be a Gas.
With that change to the formula, E and Vampire no longer
find this contradiction.

8For example, https://sigma.ontologyportal.
org:8443/sigma/Browse.jsp?kb=SUMO&term=
CyclonicStorm

Figure 2: A section of a graphical view of a proof by contradiction

Workflow
A typical workflow for SUMO-based theory development
makes use of all the tools described above. The ontol-
ogist authors a theory using the SUMOjEdit text editor,
which provides immediate feedback to the author with syn-
tax checking and spell checking of theory symbols. A menu
option executes a set of static tests that looks for missing
variables, incorrect arity for existing relations, type check-
ing and disjointness violations. After completing a first draft
of a substantial new theory, the user can then test it by asking
a theorem prover to prove falsehood, without the presence
of a negated conjecture. To perform this step, the Sigma sys-
tem is first called to translate a subset of the theory that is
either FOL (the TPTP language), or FOL with typed arith-
matic (the TF0 language). If an undirected search for a con-
tradiction does not succeed, the user can apply EAXFilter
to conduct a more extensive search, asking a prover to look
for a contradiction in each of tens of thousands of generated
subsets of a theory.

Hand-written tests can serve a function similar to EAX-
Filter in terms of focusing the attention of a prover on a por-
tion of the theory. Since 2007, SUMO has had such a set of
roughly 50 tests (Pease et al. 2008). Many more would be
desirable, but even this small set has helped to find contra-
dictions over the years. These tests also serve to alert the user
when a change to SUMO may have inadvertently removed
axiomatic support for a test that should succeed. These tests
are available online9.

If a contradiction is found, the user then employs Sigma
to translate the TPTP3 proof language back into SUMO’s
native SUO-KIF language. Sigma will generate a list of the
source axioms used in the proof, as well as a graphical proof.
The user can also run the proof ablation utility to get hints
on which axioms from the proof are always present when a
contradiction is found, and which are not found in all proofs,
thereby allowing the user to focus on critical axioms that
appear to be causing the problem.

Conclusion
Working with large theories in an expressive logic supports
rich and comprehensive modeling of the world. With that
power comes significant challenges. Tools and methods that

9https://github.com/ontologyportal/sumo/
tree/master/tests

address those challenges are needed and we have presented
some of them, and their implementation and use in the con-
text of the development of SUMO. Although currently us-
able, and released as open source, considerable effort re-
mains to make their implementation faster, and create mod-
ern user interfaces that make their employment simpler. Cur-
rently, the axiom filtering is only supported for TPTP and
not the TFF family of languages that support arithmetic,
or the THF higher-order logic language implemented in
provers such as Satalax (Brown 2013) and LEO-III (Steen
and Benzmüller 2020), but also increasingly supported by
E (Vukmirović et al. 2021). Use of THF will ultimately be
required to realize the full potential of SUMO in automated
theorem proving.

References
Benzmüller, C., and Pease, A. 2010. Progress in automat-
ing higher-order ontology reasoning. In Konev, B.; Schmidt,
R.; and Schulz, S., eds., Workshop on Practical Aspects of
Automated Reasoning (PAAR-2010). Edinburgh, UK: CEUR
Workshop Proceedings.
Benzmüller, C.; Paulson, L.; Theiss, F.; and Fietzke, A.
2008. (2008). LEO-II - A Cooperative Automatic Theo-
rem Prover for Higher-Order Logic. In Proceedings of the
Fourth International Joint Conference on Automated Rea-
soning (IJCAR’08), LNAI volume 5195:162–170.
Brown, C. E. 2013. Reducing higher-order theorem prov-
ing to a sequence of sat problems. J. Autom. Reason.
51(1):57–77.
Claessen, K., and Sörensson, N. 2003. New techniques that
improve mace-style finite model finding. In Proceedings of
the CADE-19 Workshop: Model Computation - Principles,
Algorithms, Applications.
Hoder, K., and Voronkov, A. 2011. Sine qua non for large
theory reasoning. In Proceedings of the 23rd International
Conference on Automated Deduction, CADE’11, 299–314.
Berlin, Heidelberg: Springer-Verlag.
Kovács, L., and Voronkov, A. 2013. First-order theorem
proving and vampire. In Proceedings of the 25th Interna-
tional Conference on Computer Aided Verification, volume
8044 of CAV 2013, 1–35. New York, NY, USA: Springer-
Verlag New York, Inc.
Niles, I., and Pease, A. 2001. Toward a Standard Upper

Ontology. In Welty, C., and Smith, B., eds., Proceedings
of the 2nd International Conference on Formal Ontology in
Information Systems (FOIS-2001), 2–9.
Pease, A., and Schulz, S. 2014. Knowledge Engineering for
Large Ontologies with Sigma KEE 3.0. In The International
Joint Conference on Automated Reasoning.
Pease, A.; Sutcliffe, G.; Siegel, N.; and Trac, S. 2008. The
Annual SUMO Reasoning Prizes at CASC. In Proceedings
of IJCAR ’08 Workshop on Practical Aspects of Automated
Reasoning (PAAR-2008). CEUR Workshop Proceedings.
Pease, A.; Sutcliffe, G.; Siegel, N.; and Trac, S. 2010. Large
Theory Reasoning with SUMO at CASC. AI Commun.,
Special issue on Practical Aspects of Automated Reasoning
23(2-3):137–144.
Pease, A. 2011. Ontology: A Practical Guide. Angwin, CA:
Articulate Software Press.
Pease, A. 2019. Arithmetic and inference in a large theory.
In AI in Theorem Proving.
Pease, A. 2020. A programmer’s text editor for a logi-
cal theory: The sumojedit editor (system description). In
Peltier, N., and Sofronie-Stokkermans, V., eds., Automated
Reasoning - 10th International Joint Conference, IJCAR
2020, Paris, France, July 1-4, 2020, Proceedings, Part II,
volume 12167 of Lecture Notes in Computer Science, 472–
479. Springer.
Prawitz, D. 1965. Natural deduction: a proof-theoretical
study. Ph.D. Dissertation, Almqvist & Wiksell.
Read, S. 2003. Logical consequence as truth-preservation.
Logique and Analyse 183(4):479–493.
Schulz, S., and Sutcliffe, G. 2015. Proof generation for
saturating first-order theorem provers. In Delahaye, D., and
Woltzenlogel Paleo, B., eds., All about Proofs, Proofs for
All, volume 55 of Mathematical Logic and Foundations.
London, UK: College Publications. 45–61.
Schulz, S.; Sutcliffe, G.; Urban, J.; and Pease, A. 2017. De-
tecting inconsistencies in large first-order knowledge bases.
In Proceedings of CADE 26, 310–325. Springer.
Schulz, S.; Cruanes, S.; and Vukmirović, P. 2019. Faster,
higher, stronger: E 2.3. In Fontaine, P., ed., Proc. of the
27th CADE, Natal, Brasil, number 11716 in LNAI, 495–
507. Springer.
Schulz, S. 2002. E – A Brainiac Theorem Prover. Journal
of AI Commun. 15(2/3):111–126.
Steen, A., and Benzmüller, C. 2020. The higher-order prover
leo-iii. In ECAI, volume 325 of Frontiers in Artificial Intel-
ligence and Applications, 2937–2938. IOS Press.
Stickel, M. E.; Waldinger, R. J.; and Chaudhri, V. K. 2000.
A guide to SNARK. Technical report, SRI International,
Menlo Park, United States.
Stump, A.; Sutcliffe, G.; and Tinelli, C. 2014. Starexec: A
cross-community infrastructure for logic solving. In Demri,
S.; Kapur, D.; and Weidenbach, C., eds., Automated Reason-
ing, 367–373. Cham: Springer International Publishing.
Sutcliffe, G.; Schulz, S.; Claessen, K.; and Baumgartner, P.
2012. The TPTP Typed First-order Form with Arithmetic.

In International Conference on Logic for Programming Ar-
tificial Intelligence and Reasoning (LPAR 2012), 406–419.
Sutcliffe, G. 2007. TPTP, TSTP, CASC, etc. In Proceed-
ings of the Second International Conference on Computer
Science: Theory and Applications, CSR’07, 6–22. Berlin,
Heidelberg: Springer-Verlag.
Sutcliffe, G. 2019. The CADE-27 Automated theorem prov-
ing System Competition - CASC-27. AI Communications
32(5–6):373–389.
Trac, S.; Puzis, Y.; and Sutcliffe, G. 2007. An interac-
tive derivation viewer. Electron. Notes Theor. Comput. Sci.
174:109–123.
Trac, S.; Sutcliffe, G.; and Pease, A. 2008. Integration of
the TPTPWorld into SigmaKEE. In Proceedings of IJCAR
’08 Workshop on Practical Aspects of Automated Reasoning
(PAAR-2008). CEUR Workshop Proceedings.
Vukmirović, P.; Blanchette, J. C.; Cruanes, S.; and Schulz, S.
2021. Extending a Brainiac Prover to Lambda-free Higher-
Order Logic. International Journal on Software Tools for
Technology Transfer.

