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Abstract

Renal tumor malignancy classification is one of the cru-
cial tasks in urology, being a primary factor included
in the decision of whether to perform kidney removal
surgery (nephrectomy) or not. Currently, tumor malig-
nancy prediction is determined by the radiological di-
agnosis based on computed tomography (CT) images.
However, it is estimated that up to 16% of nephrec-
tomies could have been avoided because the tumor that
had been diagnosed as malignant, was found to be be-
nign in the postoperative histopathological examination.
The excess of false-positive diagnoses results in unnec-
essarily performed nephrectomies that carry the risk of
periprocedural complications. In this paper, we present
a machine-aided diagnosis system that predicts the tu-
mor malignancy based on a CT image. The prediction
is performed after radiological diagnosis and is used to
capture false-positive diagnoses. Our solution is able to
achieve a 0.84 F1-score in this task. We also propose a
novel approach to knowledge transfer in the medical do-
main in terms of colorization based pre-processing that
is able to increase the F1-score by up to 1.8pp.

Introduction
Renal cancer is a serious disease with a predicted incidence
of more than 73,000 new cases in America in 2020 and its
number increasing every year (Cokkinides 2020). Currently,
the decision on whether to perform kidney removal surgery
(nephrectomy) or segmentectomy (surgery to remove part of
a kidney or tumor) is primarily based on radiological diag-
nosis of the tumor. In most cases, the decision is reduced to
identifying whether the tumor is malignant or benign, based
on, among others, its density and type of attenuation ob-
served in CT images. However, 13%-16% of removed tu-
mors can in fact be benign despite having been marked as
malignant during radiological diagnosis (Kay and Pedrosa
2018). With the increased false-positive malignancy predic-
tion comes the lack of the ability to accurately assess the
benefit-risk ratio between conducting nephrectomy or seg-
mentectomy and leaving the tumor under observation. If a
tumor turns out to be malignant, it increases the risk of fur-
ther surgeries and can even cause a patient’s death. If, how-
ever, it is indeed benign, it is often safer not to perform
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the operation and leave the tumor intact. This is especially
the case with elderly patients, as the risk of the surgery in-
creases and potential time for the tumor to grow decreases
with age. A study has shown that for patients over the age
of 65, radical nephrectomy was significantly associated with
death from any cause (Thompson et al. 2008). Those patients
are in fact the majority of renal tumor cases; therefore, there
is an especially high need for limiting the false-positive ma-
lignant tumor diagnoses.

In our work, we show how reduction of false-positive pre-
dictions can be achieved using a deep learning-based solu-
tion, where the model’s intent is to serve as a second opinion
system employed in addition to the radiological diagnosis.
Such a model, providing its high specificity, should function
as a stimulus to raise doctors’ awareness of cases that might
be misclassified as malignant and, therefore, limit the num-
ber of false-positive examples. Its role is to reassure doctors
in their diagnosis or warn them of a possible mistake. A pro-
posed implementation of the system is shown in Figure 1.
Physicians can subsequently perform additional tests, such
as biopsy, or seek other experts’ opinion on the case to con-
firm or contradict the diagnosis. Biopsy, although considered
a gold standard in renal tumor classification, is also associ-
ated with an additional risk and extra costs (Yu et al. 2017).

In the paper, we present a deep learning model trained to
distinguish malignant and benign tumors based on the CT
image. The model is able to achieve the accuracy of 86%,
while also having high recall. We also test the performance
of popular pre-trained neural networks in the tumor malig-
nancy prediction task. Furthermore, we show that image col-
orization results in better knowledge transfer between pre-
training and fine-tuning phases, improving accuracy in the
medical image classification task.

Related work
Deep learning has shown a promising performance in the
field of biomedical imaging. With the release of an open-
source dataset KiTS19 (Heller et al. 2019), we have ob-
served a growing interest in kidney tumor classification and
segmentation. The majority of approaches involved deep
learning with convolutional neural networks pretrained on
ImageNet dataset (Deng et al. 2009), however, some studies
used methods such as adaptive neuro fuzzy inference system
(ANFIS) (Nikita, Sadawarti, and Singla 2020) or random



Figure 1: Proposed implementation of the system.

forest (Erdim et al. 2020). The task of kidney tumor malig-
nancy identification has been narrowed to the classification
of only specific subtypes in some works, e.g. clear cell re-
nal cell carcinoma (ccRCC) / oncocytoma (Nikpanah et al.
2021), chromophobe RCC (chRCC) / oncocytoma (Bagh-
dadi et al. 2020), ccRCC / chRCC / papillary RCC (pRCC)
(Han, Hwang, and Lee 2019).

In our work, we employ colorization, which is rare for
a medical deep learning pipeline. However, image coloriza-
tion was implemented as a preprocessing step before seg-
mentation in (Attique et al. 2012) and (Khan, Gotoh, and
Nida 2017). Authors show that colorized medical images
improve the contrast of anatomical structures and there-
fore facilitate precise segmentation and convey more precise
anatomical information.

The key motivation for our study was decreasing the num-
ber of false-positive malignancy cases. An example of a
study tackling a similar problem – achieving high recall rate
in mammography is (Aboutalib et al. 2018). In this paper,
the authors introduce a new class of “recalled-benign” tu-
mors that represent cases referred for biopsy (i.e. previously
assumed malignant) that were consequently labeled benign.
It is also worth mentioning that the authors, despite the intro-
duction of the third class, treat this as a binary classification
problem. In our research, we used tumors from nephrectomy
cases along with cases that did not require nephrectomy, so
our classes can be seen as ”true-benign”, ”recalled-benign”
and ”true-malignant”.

Dataset
We collected 15485 CT images coming from 383 individual
cases. These data came from two sources. 173 of the cases
were collected by us, using historical data of the patients that
had undergone the nephrectomy. Every single case, in addi-

Figure 2: Visualization of the area cropped from full abdom-
inal CT image.

tion to CT images, was paired with histopathological results
from the postoperative biopsy. The usage of histopathologi-
cal data instead of radiological diagnosis was motivated by
its greater accuracy and reliability as it is considered the gold
standard in renal tumor identification. Moreover, using data
from patients on whom nephrectomy had already been per-
formed, allowed us to focus on the false-positive results of
radiological diagnosis, and therefore teach the network to
correctly label such cases. We collected images from dif-
ferent phases of CT study, including non-enhanced, arterial,
nephrogenic, and delayed. After the selection of the cases,
each of them was anonymised, cropped, and labeled using
a custom-build system. The crop size was selected to be
130x130 pixels as this area was considered to be sufficient
to capture a kidney and a tumor. The example of an image
and its cropped area is given in the Figure 2. In addition to
the histopathological subtype, each image was labeled with
the tumor size and patient’s weight and height.

To increase the amount of data, we also added 210 cases
from the openly available dataset KiTS19 (Heller et al.
2019). This dataset was primarily designed for semantic seg-
mentation challenge; however, in addition to the segmen-
tation data, the authors have provided surgical outcome of
the cases, including histopathological subtype of the tumors.
Those images were collected only from the arterial phase of
CT study. Since the images contained overlay data for tu-
mors and kidneys, we chose the center of the tumor overlay
as the center of the 130x130 crop to adjust it to our format.
Detailed dataset description, distinguishing histopathologi-
cal subtypes has been provided in the Table 1.

Next, we grouped the histopathological subtypes together
into malignant and benign binary classes - ccRcc, chRcc
and pRcc tumors were marked as malignant, and onco-
cytoma, angiomyolipoma (AML) and bening-other tumors
were marked as benign.

As the KiTS19 dataset contained only the arterial phase
of the study, we decided to use the very same phase during
training and classification. This was also motivated by the
fact that the arterial phase shows attenuation of tumors and,
therefore, is suitable for malignancy prediction.



Tumor type No. of cases No. of images
ccRCC 214 10193
chRCC 26 1590

pRCC-type-1 10 488
pRCC-type-2 3 324

pRCC 27 769
malignant-other 1 75

oncocytoma 20 702
AML 78 1221

benign-other 4 123
malignant tumors 281 13439

benign tumors 102 2046
total 383 15485

Table 1: Dataset with respect to different phases.

In our baseline experiments, we use a single 2D slice per
case where the visible tumor area is the largest (as such im-
ages are the best reference for the case). We test the effect
of using all the available 2D slices per case, utilizing the full
dataset.

Our Solution
Pre-processing
The images themselves were firstly processed in DICOM
format, where image data is presented as a 2D array of
Hounsfield units (HU). Those units, ranging from -1024
to 3071, represent the attenuation coefficient measurement
(with respect to water and air) during a CT scan 1.

HU = 1000× µx − µwater

µwater − µair
(1)

In line with the current standard for viewing abdominal
CT scans, we cropped this range with a window center of 60
HU and window width of 400 HU. After cropping the val-
ues, we scaled them to represent grayscale pixel values rang-
ing from 0 to 255. The images were also resized to 256x256
pixels to fit the size of popular pre-trained architectures.

Colorization
Currently, ImageNet is the most popular dataset for pre-
training large convolutional models. Results show that de-
spite the significant differences in modality, models pre-
trained on ImageNet can still achieve better results in med-
ical image classification than models trained solely for this
task. However, medical images such as CT, MRI or X-ray
are processed in grayscale format and must be converted
to a 3-channel format in order to be processed by a pre-
trained network. The most common technique for doing
this is to copy the grayscale values across different chan-
nels. This can, however, lead to a sub-optimal utilization of
filters learned from color images in transfer learning (Xie
and Richmond 2018). In our solution, we tackled this prob-
lem by pre-processing the images using colorization models.
Those models deal with image-to-image prediction prob-
lems by reconstructing the image in RGB color space based

on its grayscale equivalent. Most of the popular models are
based on pre-trained image classification models that are
later adopted to the colorization task by conversion to fully
convolutional networks.

In the initial experiments, we tested 3 popular open source
image colorization models. The first model — Let there be
Color (LTBC) (Iizuka, Simo-Serra, and Ishikawa 2016) uses
an end-to-end network that jointly learns global and local
features of an image. This is done through utilization of 2
convolutional networks — one for detection of global fea-
tures and the other for detection of local features. These
network outputs are then concatenated and used by the de-
coder network to produce colorized versions of the image.
The second model, described in Learning Representations
for Automatic Colorization (LRAC) (Larsson, Maire, and
Shakhnarovich 2016), uses architecture based on a deep
convolutional network — VGG16. It takes spatially local-
ized multi-layer slices as per-pixel description, predicting
chroma distribution of pixels given its hypercolumn descrip-
tor. The third model — Colorful Image Colorization (CIC)
(Zhang, Isola, and Efros 2016) uses a VGG-styled network
with added depth and dilated convolutions to map a gray-
scale image to its colored version. It is also noteworthy
that this version of the network has no pooling layers and
changes in resolution are achieved through spatial downsam-
pling or upsampling between convolutional blocks.

Results of colorization of an abdominal CT scan using
different methods are shown in Figure 3. Figures 3d and 3e
show the original image in grayscale format, 3b, 3f show
the result of colorization using Let There Be Color method,
3c, 3g show results of Learning Representations for Auto-
matic Colorization model, while 3d, 3h show the output of
Colorful Image Colorization model. Having tested different
solutions through visual examination of how well they im-
prove the contrast of anatomical structures, we decided to
use the Colorful Image Colorization framework. The authors
claim that their model produces colorization that is more vi-
brant and perceptually realistic than the other approaches.
This can be particularly useful in our case, as seen in the
Figure 3. Other image colorization models produce results
that are much less vibrant and, therefore, there is no clear se-
mantic separation between different organs. Figure 3d shows
that this model colorizes the image in a way that clearly dis-
tinguishes kidney (orange), bones (white) and other organs
(red), while Figure 3h shows a separation between the tu-
mor(red) and the rest of the kidney. This is likely due to the
fact that authors show that their solution is suitable not only
for colorization but also for semantic segmentation task -
what we show is also true for the medical domain. In the
section , we show that this improves the classification per-
formance.

Architectures
Pre-trained networks. In our initial experiments, we
tested architectures using popular pre-trained convolu-
tional networks, including VGG16 (Simonyan and Zisser-
man 2014) networks that replace large kernel-sized filters
with multiple subsequent 3×3 kernel-sized filters, Xception
(Chollet 2017) based on pointwise convolution followed by



(a) Abdomen: Original Image (b) Abdomen: LTBC (c) Abdomen: LRAC (d) Abdomen: CIC

(e) Tumor: Original Image (f) Tumor: LTBC (g) Tumor: LRAC (h) Tumor: CIC

Figure 3: Comparison of different colorization models: Let There be Color! (Iizuka, Simo-Serra, and Ishikawa 2016) (b, f),
Learning Representations for Automatic Colorization (Larsson, Maire, and Shakhnarovich 2016) (c, g) and Colorful Image
Colorization (Zhang, Isola, and Efros 2016) (d, h). Models based on (b, f) and (c, g) show little color difference between
various parts of the CT scan, while the results based on Colorful Image Colorization (d) show clear distinction between bone
(white), kidney (orange) and the rest of the organs (red). In Figure (h), there can also be observed a separation between tumor
(red) and the rest of the kidney.

a depthwise convolution, ResNet (He et al. 2015) based
on deep residual connections and DenseNet (Iandola et al.
2014) based on connecting each layer to every other layer in
a feed-forward fashion.

All those models were pre-trained on ImageNet before
the fine-tuning task of tumor malignancy prediction. Addi-
tionally, we also used the CheXNet (Rajpurkar et al. 2017)
model based on DenseNet architecture and pre-trained on
NIH dataset containing 112 120 frontal-view X-ray images
that has also been proven to achieve accuracy in medical im-
age analysis higher than models pre-trained on natural im-
ages.

In all cases, the model’s classification layers were re-
placed by a custom unified classifier described in the fol-
lowing section.

Classification layers. In each case, the base networks
were followed by the global average pooling layer with
dropout of 0.2 and batch normalization. Next, the inputs
were fed to two dense layers with 2048 neurons each and
ReLU activation function. Those layers were also regular-
ized with L2 type regularization. Subsequently, we applied
another dropout of 0.2. The dropouts were crucial in the ar-
chitectures in order to prevent the overfitting of the network
with the class imbalance in the dataset. Ultimately, after the

two hidden layers, there was a final classification layer with
softmax activation function to map the inputs into tumor ma-
lignancy. The visualization of the architecture is shown in
Figure 4.

We used a binary cross-entropy loss function as each im-
age should be mapped to exactly one tumor type. For the op-
timization, we used Adam algorithm (Kingma and Ba 2017).
To deal with the class imbalance problem, the dispropor-
tionate amount of malignant tumors in the dataset, we ap-
plied class weight of 0.1 to the malignant cases. This has
prevented the network from over-fitting and additional bias
towards malignant tumors.

Experiments and Results
Dataset
Motivated by the limited size of our dataset, to test our solu-
tion we constructed a 5-fold cross-validation set stratified by
the tumor malignancy. Cases were chosen from the historical
data of patients that underwent nephrectomy based on the
radiological diagnosis of the tumor being malignant. Each
of the cases was paired with the postoperative histopatho-
logical results (considered a gold standard in renal tumor
prediction) dictating whether the tumor was, as previously
assumed, malignant, or in fact benign.



Figure 4: Architecture of the network. DenseNet encoder is followed by a classification block consisting of global average
pooling, 2 hidden layers and the classification layer mapping the output to binary/malignancy prediction.

Pre-trained networks
In the initial experiments, we tested the performance of pop-
ular pre-trained architectures described in the previous sec-
tion. In each case, the hyper-parameters of the networks
were identical as described in the previous section. The re-
sults of the evaluation are shown in Table 2. The results show

Architecture F1-score
CheXNet 0.7233
ResNetV2 0.769
Xception 0.7772
VGG16 0.8011

DenseNet 0.8046

Table 2: Comparison of the pre-trained models.

that the best pre-trained network turned out to be DenseNet,
achieving the F1-score of 80%. Another noteworthy fact is
that CheXNet achieved the lowest score of all tests of pre-
trained encoders indicating that knowledge transfer from
chest X-ray images was not beneficial over Image-Net, de-
spite the fact that X-ray images and CT scans might be con-
sidered more similar than CT scans and natural images from
ImageNet.

Colorization
Based on the experiments described in the previous subsec-
tion, we chose DenseNet-based network as the baseline for
further experiments. Comparing its performance with and
without the colorization pre-processing (described in section
3), we can see in Table 3 that colorization improves the F1
score by 1.8 pp.

Model F1-score
DenseNet (without colorization) 0.8046
DenseNet (with colorization) 0.8228

Table 3: Effect of image colorization

Adding additional slices per tumor
Additionally, we also tested the effect of using additional
2D slices per single case in the training phase. This can be
seen as an augmentation method where instead of providing
the network with one reference image per case we use mul-
tiple CT slices per case depicting the tumor from different
depths. This increased our dataset size from 383 images to
15485 images. To test the effect of adding additional slices,
in the testing phase we used a single image per case where
the tumor is best visible, similarly to previous subsections.

Model F1-score
DenseNet (with colorization, single slice) 0.8228
DenseNet (with colorization, all slices) 0.8444

Table 4: The effect of adding additional CT slices per case.

In Table 4, we can see that providing the networks with
additional CT slices increases its F1-score by up to 2.2 pp.

Final Solution
For the final solution, based on the results obtained in sec-
tions above, we chose the pre-trained DenseNet network
fine-tuned on the colorized CT images from the full dataset.
This network is able to achieve 0.84 F1-score, 0.86 accuracy,
0.79 precision and 0.86 recall. The high recall is especially
important as it depicts the model’s ability to recognize cases
misclassified in the initial radiological diagnosis.

Conclusions and Future Work
In the paper, we present a deep learning model for kidney tu-
mor malignancy classification. This model’s role is to serve
as a second opinion system, catching incorrectly classified
malignant tumors in order to reduce the number of unnec-
essary surgeries. We show that medical image colorization
is able to increase the F1-score up to 1.8pp by improving
the knowledge transfer from pre-trained networks. We also
show using additional CT slices in the training phase can be
beneficial to the network’s performance improving its F1-
score by up to 2.2 pp.



Although our research is limited by the fact that our so-
lution is shown working in pair-with human diagnosis and
additional research would need to be done to test it in a
stand-alone fashion and compare it to radiological diagno-
sis directly, we show that such a system achieving high recall
score is suitable for post-radiological diagnosis reevaluation.

In the future, we are going to study further medical image
colorization and its influence on medical image classifica-
tion. We are also planning to extend the machine-learning
pipeline with segmentation pre-processing allowing us to
use multiple CT slices in the prediction phase which would
enable us to facilitate majority-voting based methods that
could further improve the network’s accuracy.
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