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Abstract 

Pipelines failure often caused by corrosion may result in 

safety, environmental and economic issues. In this study, an 

unsupervised neural network, Self-Organizing Maps (SOM), 

is applied to create clusters representing the corrosion impact 

assessed with ultrasound periodic inspections. Based on this 

work, it is expected that the new insight into thickness data 

representation using unsupervised neural network will 

facilitate planning of corrosion mitigation activities through 

risk-based inspections of mining slurry pipelines. As a result, 

SOM led to the reduction of the variables in two-dimensional 

space nodes. Hierarchical ascending classification (HAC) was 

then used to classify these nodes regrouping thickness loss 

measurements. The proposed method by combining both SOM 

and HAC succeeded in detecting the extent of corrosion in a 

mining pipeline. 

Introduction 

Globally and domestically the long-term sustainability and 

viability of both the mining industry and its related 

communities are of the utmost importance. Improving 

environmental performance and mitigating environmental 

impacts of mining are critical to ensure the social health and 

welfare of associated communities. In regard to their safety, 

efficiency and low cost, pipelines are widely used in 

transporting large quantities of oil and gas, minerals or oil 

sands slurry over long distances (Okonkwo and Adel 2014). 

As such, pipelines are critical assets of our civil 

infrastructure. Pipelines may suffer from different types of 

defects such as corrosion, fatigue cracks, stress corrosion 

cracking (SCC), bacterial corrosion, slurry erosion-

corrosion, etc. (Raheem 2020). These defects, if not properly 

managed, may result in the asset failures including leak or 

rupture, which could lead to environmental hazards and very 

expensive downtime.  

The overall annual corrosion cost (direct and indirect) in 

Canada was estimated to be approximately $46.4 billion in 

2003 (Lou and al. 2003) which accounts for about 2.5% of 

the GDP. Furthermore, the impact study published by NACE 

International in 2016 estimated the global cost of corrosion 

to be $2.5 trillion, or 3.4% of the GDP by country (Koch and 

al. 2006). Most important was that it was demonstrated that 

15 to 35% of the cost of corrosion could be saved using 

currently available corrosion control technologies and 

practices.  

Corrosion is a very complex phenomenon based on the 

degradation of a material or its properties due to its reaction 

with the environment (Ahmad 2006). This degradation 

involves multiple factors (Chico and al. 2017), particles (Yin 

and al. 2020) and variables. It is a general understanding that 

facility piping should be inspected for in-service damage 

such as corrosion. Estimation of pipeline corrosion is 

fundamental to the analysis of pipeline reliability (Ossai 

2013). To do so, a methodology that compromises the 

American Petroleum Institute (API) Piping Inspection Code 

and the National Association of Corrosion Engineers 

(NACE) Direct Assessment Process is applied since 2005 

(Kowalski 2012). The corrosion of pipelines can be 

described as a systematic degradation of the pipeline wall 

due to the actions of operating parameters on the pipeline 

material (Ossai 2013). Most of the existing methods employ 

non-destructive evaluation techniques such as ultrasound 

testing (UT) waves to detect wall thickness loss and thus to 

predict the remaining asset life. For effective monitoring of 

pipeline reliability and remaining life prediction therefore, 

corrosion risk assessment is necessary. The advancement of 

technology such as the use of new data collection tools has 

allowed researchers to develop many methods to better 

understand the behavior of the collected data. In the field of 

corrosion, many methods have been used in recent years 

either to predict the corrosion rate (Nikoo and al. 2017, 

Cristos and al. 2021), or to cluster data (Hassan and al. 2021) 

in order to detect corrosion (loss of thickness in a pipeline 

for example).  Roy and al. (2022) use the Gradient Boosting 

Regressor to predict corrosion resistance in multi-principal 

element alloys. 

Among the machine learning and deep learning methods, 

depending on the available data, a supervised or 

unsupervised learning (Cristos and al. 2021) can be done. In 

the literature, these two methods have been used to model 

corrosion (Taffese and Sistonen 2016). Cristos and al. 

(2021) develop various models for predicting galvanized 

coated steel corrosion damage of metal structures exposed to 

weathering. They use Multivariate Adaptive Regression 
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Splines (MARS) to complete data-processing and Self-

Organising Maps (SOM) (Kohonen 2013) including various 

layers (supersom) of both supervised and unsupervised 

learning to define the first-year corrosion loss of galvanized 

steel. A variant of SOM called Self-Organising Feature Map 

(SOFM) has been successfully used by Mohamed and al. 

(2015) as feature visualization tool for the purpose of 

selecting the most appropriate features produced by 

Magnetic Flux Leakage (MFL) in defect depth estimation of 

oil and gas pipelines. Later, Nikoo (2017) used SOFM to 

predict the corrosion current density in reinforced concrete. 

To prioritize inspection according to the permissible risk 

level involves the understanding of the consequences of 

failure of a component on a system and then predict the mean 

time for failure with numerical tools. Hatami and al (2016) 

consider temperature CO2 partial pressure, flow rate, and pH 

as inputs to study corrosion for oil pipelines using Support 

Vector Regression (SVR). Lunchun (2020) use machine 

learning method to simulate the marine atmospheric 

corrosion behavior of low-alloy steels. Abbas and al. (2018) 

applied the neural network method to the pipeline corrosion 

prediction. The prediction results were within the 95% 

confidence range, with the accuracy of ±3. Recently, Peng 

and al. (2020) proposed a new hybrid intelligent algorithm 

to predict the corrosion rate of the multiphase flow pipeline. 

The proposed model combines support vector regression 

(SVR), principal component analysis (PCA), and chaos 

particle swarm optimization (CPSO). Thus, PCA is utilized 

to reduce the data dimension and CPSO to optimize the 

hyperfine parameters in SVR.   

While recent corrosion studies focus on the prediction of 

the corrosion rate (thickness loss/year) in the presence of 

various operating conditions, the primary objective of this 

work is to combine SOM with Hierarchical Ascending 

Classification (HAC) to better visualize the corrosion impact 

assessed with ultrasound periodic inspections. This to render 

UT a more efficient cost-effective approach to corrosion risk 

assessment. In fact, the present study focuses on a single 

variable (pipeline thickness) which is measured on 125 

points of the pipeline representing sub-variables. SOM is 

used to aggregate the data obtained from the periodic 

nondestructive evaluation (NDE) of the pipeline, reduce the 

dimensionality to be able to represent these data on a space 

of dimension 2. Then, the unsupervised learning method 

HAC is used to create clusters at the nodes defined in the 

SOM. These nodes group the original data (rows 1-24 of the 

pipeline for each year) which are then grouped into clusters 

representing the corrosion level.  

 

 

 

 

 

Materials and Methods   

Data  

Data for this study were obtained from Agnico Eagle Mine 

Goldex. These are thickness measurements of a pipeline that 

is used to transport residue (pulp) from the concentrator to 

the Manitou Residue Park site owned by the MERN 

(Ministère de l’Énergie et des Ressources Naturelles). The 

pipeline is 23 km in total (14 km steel and 9 km HDPE). A 

yearly excavated 3m section of the pipeline has been used to 

assess the residual wall thickness by UT analysis since 2016. 

The measurements were made using an ultrasonic thickness 

gauge MMX-6 DL (Dakota Ultrasonics, USA). The gauge 

was primarily calibrated using a standard block at different 

thicknesses. To make the thickness measurements, the 

circumference of the pipeline section was subdivided into 24 

equidistant markers from which lines were drawn along the 

length of the pipeline. Marker points separated by 1 inch 

were marked along the 24 lines. Overall, 125 markers were 

marked on each line, ranging from 1 (start) to 125 (end) for 

a total of 3000 markers (125 x 24) on the pipeline surface for 

thickness measurements. Points 1 to 125 represent the 

variables and lines 1 to 24 are the observations. Indeed, all 

125 variables are thickness measurements. This work deals 

with the data collected from 2016 to 2019. 

Data Analysis  

Figure 1 shows the minimum thickness values measured for 

the different lines on the inspected pipeline. The dimensional 

control of the wall thickness is +15% to -12.5% of the 

nominal thickness, which is comprised between 7.3 and 5.6 

mm. The average nominal thickness is 6.25 mm. The 

minimum thickness value, which is the smallest of the 125 

values collected for a given line, is important for analyzing 

the severity of corrosion. Indeed, short-term and long-term 

corrosion rates are calculated between previous and actual 

inspections in accordance with API 570. Thus, the minimal 

value is used to assess the time to leak for a given pipeline. 

Although, all lines except L4, L5, L9, L10, L11 have 

minimum thickness values below the allowed limit (5.6 

mm), lines 18, 19 and 20 are more critical with minimum 

thickness values less than or equal to 4.4 mm. Hence, it will 

be expected for these lines to exhibit a short time to leak 

since there is a widely held belief that process is a simple 

one, where a pipeline corrodes to the point at which it can no 

longer withstand the applied internal and external forces, 

resulting in a main break. However, research has shown that 

the failure process is more complex than expected.  



 

 

 

Figure 1: Minimal thickness values distribution 

Figure 2 represents the whisker box of the pipeline thickness 

measurements in 2019. To study the distribution of thickness 

values on each line, the database is transposed to have rows 

(1 to 24) as columns and points 1 to 125 as rows 

(observations). Some lines will be chosen according to their 

minimum and average value to study their distribution. 

These are lines L4, L6, L15, L17, L19 and L20. Lines L4 

and L6 have average thicknesses equal to 5.9 mm and 

minimum thicknesses of 5.4 mm. The average thickness of 

lines 15 and 17 are around 5.7 mm and the minimum 

thicknesses are 4.8 mm. While the average thickness of lines 

19 and 20 are less than 5.6 mm and respectively equal to 5.5 

mm and 5.4 mm, the minimum thicknesses are less than or 

equal to 4.4 mm. Lines 4 and 6 have 50% of their value 

between 5.8 and 5.9 mm. The loss of the thickness is almost 

non-existent. Line 4 has 75% of its values above 5.9 mm 

(value above the minimum allowed). Similarly, line 6 has 

the same proportion of values above 5.8 mm. While, line 20 

has 50% of its values of thickness between 5.2 and 5.6 mm. 

Also, 75% of its values are less than or equal to the minimum 

allowed value indicating a high corrosion at this line. Line 

19 is somewhat identical to line 20, with 50% of the values 

between 5.4 and 5.6 mm. The thickness at lines 15 and 16 

remains normal with respectively 75% of the values between 

5.6 and 5.9 mm. 

After performing descriptive analyses of the pipeline data, 

machine learning models will be used to better understand 

the data and extract useful information. One of the 

unsupervised learning methods will be used along with other 

data mining methods. These are SOM and HAC. SOM is a 

neural method used to represent high-dimensional data into 

low-dimensional data. It is a powerful tool for data 

visualization and summarization. Like Principal Component 

Analysis (PCA), SOM allows for dimensionality reduction. 

It produces a mapping from the input space X to the reduced 

space Y (most common is a 2D network, creating Y a 2-

dimensional space). 

Pipelines fail due to factors that are operationally, 

structurally and environmentally induced. The operational 

factors are associated with the components of the fluid 

flowing through while the environmental factors deal with 

the electrochemical and mechanical interactions of the 

pipeline material and the immediate surroundings. 

 

Figure 2: Box plot thickness in 2019  

Figure 3 highlights the correlations that could be made 

between the annual average values of the pipeline operating 

conditions and the thickness average values of lines L2, L10, 

L20 and L16. A strong negative correlation was noted 

between parameters such as calculated residual TPH, 

pressure at Km0 and temperature at km 0 and thickness 

values at line 2. Similarly, the thickness at line 10 is 

correlated with Sag tonnage and temperature at km 0. 

Residue flow, solid residue percentage and calculated 

residue TPH are also negatively correlated with the 

thickness at line 16. However, the thickness at line 20 is 

positively correlated with the flotation pulp temperature. 

Although the observed correlations are indicative of the 

influence of operating conditions on the corrosion rate, the 

nature of the computed data (yearly averages) hinders the 

development of a corrosion predictive model.   

 

Figure 3: Correlation between process variables and pipe 

thicknesses 



 

 

In this study, SOM will be used to reduce the dimensionality 

of the data and make an easier representation by taking into 

account the different dimensions. Thus, with the graphical 

representation, it will be possible to highlight the similarities 

in the data based on the similar thickness measurements. 

Then, the extracted code vectors will allow a classification 

with HAC.  

SOM Algorithm  

The SOM (Kohonen, 2013) is an unsupervised learning 

method based on the idea of competitive learning. It is 

mostly used as a tool for visualization by mapping a high-

dimensional data onto a regular low-dimensional 

representation. The SOM algorithm is as follows (figure 5)  

a) Initialize the weights 𝒘𝒊𝒋 randomly for each node 

with standardized values. Initialize the learning rate 

α SOM.  

b) Calculate the squared Euclidean distance between 

the input vector 𝒙𝒊 and the weight vector 𝒘𝒊𝒋 for 𝒋𝒕𝒉 

node on the SOM grid:  

a.   

where 𝒏 is the amount of input vectors and 𝒕 corresponds to 

iteration number.  

c) Find a winning node (BMU) with following 

condition:  

BMU=𝒂𝒓𝒈𝒎𝒊𝒏𝒊 𝑫(𝒋)  

d) Adjust the weights of BMU and neighbourhood 

nodes in the given radius for all input vectors by 

updating new weights as follows:  

𝒘𝒊𝒋(𝒕 + 𝟏) = 𝒘𝒊𝒋(𝒕) + 𝜶(𝒕)(𝒙𝒊(𝒕) − 𝒘𝒊𝒋(𝒕)) 

  

 

Figure 4. SOM Algorithm (Kumar & Saini, 2020)  

Results  

The result of the SOM model is a mesh of 5 × 5 hexagonal 

neurons trained with the Kohonen algorithm. The mesh 

provides a good representation of the sample space. There 

are no very dense areas or empty cells; at least each cell 

contains an element. The resulting trained map contains all 

the data in a vector structure so that the training data falls on 

each of the neurons (Figure 5). 

 

Figure 5: Node count  

Figure 6 is the neighbour distance plot called Umatrix. The 

unified distance matrix (U-matrix) is a representation of 

SOM where the Euclidean distance between the codebook 

vectors of neighboring neurons is depicted in a range of 

colors. It shows the degree of similarity or difference 

between the samples through the distance between adjacent 

map units. At the same time, the distance between adjacent 

units can be indicated by the color gradient. Therefore, nodes 

that are close to each other are dark in color. It can be 

observed that they are concentrated at the right end of the 

map, the darker the color, the greater the loss of thickness. 

This suggests a good separation of groups in the topology.  

 

 

Figure 6: SOM Neighbour distance  



 

 

Figure 7 represents the heatmap of the variable P3 chosen at 

random to analyze its distribution. A heatmap shows the 

distribution of a variable in the SOM. The high value areas 

are colored in red and the low value areas in blue. The 

southwestern zone is a high value zone. The low value areas 

(corrosion phenomenon) are located in the northeast. By 

doing the analysis combined with figure 5, it appears that the 

high value areas contain more observations than the low 

value areas.  

 

Figure 7: Heatmaps: Areas for high values (red) and low 

values (blue) for each variable  

The third, fourth and fifth nodes each contain a sample with 

thickness values of about 6 mm and contain about 4 to 6 

observations (third and fourth nodes) and more than 10 

observations (fifth node). Therefore, the loss of the thickness 

is noticed on few lines. 

Cluster analysis from the map  

In order to classify the lines according to their loss of 

thickness, an HAC was performed after calculating the 

codebook vectors with the SOM. The classification will be 

done first on the nodes (25 in total). Each node contains 

observations (the lines delimited on the pipeline). The 

dendrogram (figure 8) suggests the repartition in 3 classes. 

In addition, other indices were calculated (kl, ch, Hartigan 

index, etc.) (Charrad and al 2014) and 3 clusters remains the 

best partition. Nodes V11, V16, V17, V21 and V22 are 

classified together in cluster 3. The first cluster contains 

many more nodes (13) compared to 7 for the second cluster. 

In figure 8, the nodes of the third cluster are located in the 

low value areas (blue color) which shows that this cluster 

contains the lines that were attacked by the corrosion 

phenomenon. Thus, the clusters can be categorized into high 

thickness loss (cluster 3), medium thickness loss (cluster 2) 

and very low thickness loss (cluster 1).  

Figure 9 represents the different clusters with the number 

of observations in each node. Note the low value nodes are 

shown in the northeast and have a total of 16 observations 

(the thickness loss lines between 2016 and 2019).  

 

Figure 8: Cluster dendrogram  

 

Figure 9: Representation of the clusters into the map  

Table 1 represents the distribution of lines according to 

clusters for 2019. Lines 18 to L21 are the lines most affected 

by the thickness loss phenomenon.  

Table 1 : Distribution of lines according to clusters for 2019 

Cluster  1  (No  

thickness loss)  

Cluster 2 

(Medium 

thickness  

loss)   

Cluster 3 

(Important loss of 

thickness)  

L1 ; L2 ; L13 ;  

L16 ; L17 ; L22 ;  

L23 ; L24  

L3 ; L4 ; L5 ;  

L6 ; L7; L8 ; L9 ;  

L10 ; L11 ; L12 ;  

L14 ; L15  

L18 ; L19 ; L20 ; 

L21  

 

 



 

 

Conclusion and future work  

In this paper, a new data representation is proposed to 

identify clusters representing corrosion levels in a pipeline 

based on ultrasound inspections. The neural method (SOM) 

is used to reduce the dimensionality and then represent the 

data in a smaller two-dimensional space. To identify the 

clusters, hierarchical ascending classification is applied on 

the nodes, resulting in three clusters representing the 

corrosion levels of the pipeline. This information is useful to 

pipeline corrosion experts who consistently plan corrosion 

mitigation activities through risk-based inspections. Future 

work will focus on the prediction of pipeline corrosion and 

failure rates by using in-line corrosion monitoring (ER and 

real-time erosion-corrosion probes) combine with models 

such as Random Forest, SVM, Multilayer Perceptrons or 

Convolutional Neural Networks will be used. 
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