
Knowledge Reformulation and Deception as a Defense Against Automated Cyber
Adversaries

Ron Alford
The MITRE Corporation

McLean, VA
ralford@mitre.org

Lukáš Chrpa
Czech Technical U. in Prague

Prague, Czech Republic
chrpaluk@fel.cvut.cz

Mauro Vallati
U. of Huddersfield
Huddersfield, UK

m.vallati@hud.ac.uk

Andy Applebaum
The MITRE Corporation*

McLean, VA
applebau@ucdavis.edu

Abstract

Leveraging automated planning has been shown to be
advantageous for automating network penetration test-
ing, providing a foundation to generate intelligent ap-
proaches to attacking a target system. Unfortunately,
this same technology has the potential to be abused by
actual attackers, presenting a challenge to defenders. In
this paper, we investigate how we can leverage ideas
from the deception community to reduce the automated
planning capacity of an actual attacker. Our extensive
experimental analysis sheds some light on the suscep-
tibility of planning-based attackers to knowledge modi-
fications, potentially yielding to new insights on future
techniques for cyber defense.

Introduction
Penetration testing, along with its sister fields of red team-
ing and adversary emulation, remains a staple for orga-
nizations looking to enhance their cybersecurity posture:
by executing a controlled attack against your own system,
you can identify and remediate gaps in your defenses be-
fore an actual adversary exploits them. Traditionally exe-
cuted manually, in more recent years the community has
started to shift towards more automated solutions; as it
stands, a manual test is time consuming and personnel de-
pendent, whereas an automated test can be quick, easily
repeatable, and requires less oversight. Among these auto-
mated testing approaches, those that use automated planning
have proven both adaptable and effective (Hoffmann 2015;
Applebaum et al. 2016), presenting as more intelligent and
dynamic than scripted or fixed approaches. Unfortunately,
these same automated planning technologies can be used for
both controlled penetration tests as well as actual adversarial
incursions; in doing so, an adversary could execute attacks
quicker and more stealthily, bypassing many of today’s mod-
ern defense-in-depth protections. It is not expressly clear
how we should defend against such an automated planning-
enabled adversary.

Automated planning approaches rely on models encoding
knowledge about actions and the effect these actions have on
a state of the world. This knowledge is to be used by a plan-
ning engine to generate plans, i.e. sequences of actions that

*Work performed while at The MITRE Corporation.
Copyright © 2022 by the authors. All rights reserved.

allow to reach a goal state given a predefined initial state.
The importance of such knowledge models for automated
planning approaches has been well argued by McCluskey,
Vaquero, and Vallati (2017), as well as the robustness of
state-of-the-art planning engines with regards to poorly en-
gineered knowledge models (Vallati and Chrpa 2019).

In this work, we seek to answer the following question:
How can a network be designed to reduce the automated
planning capacity of a prospective automated attacker? We
are interested in changes to the real-world that can result
in knowledge models that give a strategic advantage to the
“blue” (i.e., defensive) team, taking inspiration from the ex-
isting “cyber deception” community (Ferguson-Walter et al.
2021); while we argue for changes to actual systems, such
changes need not be made explicitly in the real-world, but
rather the adversary need merely to perceive them. Differ-
ing from existing work, where the knowledge models were
modified agnostic to the corresponding application scenario,
here we investigate if domain-specific expertise can also be
leveraged to reduce an attacker’s effectiveness.

This paper addresses the above question systematically,
by defining a set of hypotheses to be tested considering a
wide range of modifications that can be performed on a Win-
dows enterprise network. Our extensive experimental anal-
ysis shows that even minor modifications, such as adding a
fictional disconnected network or unusable users, can have
a dramatic impact on the planning abilities of an attacker –
and therefore can provide a remarkable strategic advantage
to the blue team. Besides being an interesting exercise for
testing the robustness of planning engines in a real-world
application scenario, our work lays the foundation for the
future of automated cybersecurity, where both red and blue
team exploit automated techniques to counteract each other.

Background
Cybersecurity and Deception Cybersecurity is a fertile
ground for artificial intelligence (AI) research, posing chal-
lenges across many aspects of automated perception and de-
cision making. Indeed, cybersecurity has long been a target
domain for automated planning, with early work including
attack graphs (Sheyner et al. 2002) and defensive course of
action generation (Boddy et al. 2005), and more recently on
use for automated penetration testing (Hoffmann 2015).

Cyber deception – wherein a defender plants false infor-



mation on a network to throw off adversaries – is a key com-
ponent of network defense, and its development is a bur-
geoning field of research. Deceptions include network-level
emplacements, such as honeypot hosts (Provos and others
2004) and network tarpits (Hunter, Terry, and Judge 2003),
and host-level deceptions, such as fake user credentials (Her-
ley and Florêncio 2008) and generated content (Chakraborty
et al. 2019). Automated design of deception operations re-
quires defenders to choose an objective. Some design mech-
anisms are oblivious to the particulars of an adversary, such
as obscuring the structure of a network for all hosts (Achleit-
ner et al. 2017), or blending deceptive services into an envi-
ronment so that they match surrounding services (Fraunholz
and Zimmermann 2017). For tasks with a fixed adversary,
such as in malware analysis and explosion, toolkits such as
Dodgetron (Sajid et al. 2020) can leverage static analysis and
repeated experimentation. For learning adversaries, Walter,
Ferguson-Walter, and Ridley (2021) show the effectiveness
of deception on the default reinforcement learning strategies
of CyberBattleSim1 high-level simulation environment.

Automated Planning Automated planning is a field of AI
that deals with finding a sequence of actions transforming
the environment from an initial state to a desired goal state
(Ghallab, Nau, and Traverso 2004). Classical planning con-
siders static and fully observable environments, as well as
deterministic and instantaneous action effects. The environ-
ment is described by first-order logic predicates. States are
defined as sets of atoms that are grounded predicates whose
variable symbols are substituted by constants – problem-
specific objects. An action is specified via its unique ac-
tion name, variable symbols (parameters) appearing in the
action, a formula over predicates representing its precondi-
tion and a formula over predicates representing its effects.
Action effects, roughly speaking, represent how the state
of the environment will change after the action is applied.
Grounded instances of an action are obtained by substituting
action’s parameters for constants – problem-specific objects.
A grounded action is applicable in a given state if and only
if the precondition of the action holds in that state. Applica-
tion of a grounded action in a given state (if possible) results
in a state where the effects of the action becomes true.

In classical planning, a planning task is composed by two
models: a domain model is specified via sets of predicates
and actions. A problem instance is specified via objects (that
are substituted for free variables in predicates and actions),
an initial state, and a set of goal atoms. A solution plan for a
planning task is a sequence of grounded actions such that its
consecutive application (starting in the initial state) results
in a state in which all the goal atoms are true.

Considered Cybersecurity Scenario
We focus our analysis on the well-known cybersecurity sub-
problem CALDERA (Miller et al. 2018),2 used as a bench-
mark in the 2018 International Planning Competition (IPC).
The domain model is encoded in PDDL, and features a rep-

1https://github.com/microsoft/cyberbattlesim
2shorturl.at/yCIQU

resentation of an adversary looking to compromise a Win-
dows enterprise network by leveraging credential re-use to
laterally move and propagate to each of the hosts in the net-
work. This domain is both simple and realistic: the encoded
tradecraft of credential re-use is used frequently by adver-
saries in the wild, whereas typical cybersecurity planning
domain models by contrast focus on exploitation, which is
only a small piece of most adversary toolkits. Additionally,
the CALDERA model is built from open-source software3

that can run fully automated red team exercises, helping to
establish a level of realism.

The CALDERA model also offers two other interesting
nuances. First, it encodes a mixture of “discovery” and “act-
ing,” where the planning engine needs to explicitly discover
an object before it is able to use it. This adds realism, as an
adversary never walks into a network knowing what that net-
work consists of and needs to discover it through the course
of compromising it. Second, the domain model is mono-
tonic and without dead-ends; a planning engine could even-
tually achieve all objectives simply by making random ac-
tion choices at any given time. While this seems unrealistic,
indeed it is the case that for the given tradecraft that there
are no necessarily “wrong” decisions.

The CALDERA domain model features eight actions.
Each action has an analog to real adversary behavior, and
is intended to model the real constraints of an adversary ex-
ecuting the behavior in the wild. The actions each take a
variable amount of parameters, ranging from only two for
the simplest (“Get Computers”) to 11 for the most complex
(“Net Use”). The domain models also features 30 predicates,
used to describe the state of the network.

Ransomware Domain Model
As part of this paper we extend the CALDERA domain
model to include the case of “ransomware.” This entails
three changes: adding a predicate to mark that a host is ran-
somed, adding a precondition of “not ransomed” to existing
actions, and adding a new action to allow the adversary to
ransom a host. This new action requires the adversary to al-
ready have a foothold on the host and results in that host
being inoperable – i.e., no more actions can be run on it.

These changes add complexity (specifically dead-ends) as
a planning engine needs to make sure that it does not ransom
a host before using it to propagate to the next host. The pres-
ence of dead-ends means that there are areas of the search
space that do not have a path to reach a state where the goal
conditions are satisfied, which can make the search process
particularly challenging.

Analysis
For the sake of clarity, the analysis is designed around eight
hypotheses, divided into two classes. The first class, domain-
independent hypotheses, considers the perspective of an au-
tomated planning expert with no knowledge about the spe-
cific application domain; this class gives us the opportunity
to investigate some general techniques that are agnostic with
regards to CALDERA and cybersecurity. The second class

3https://caldera.mitre.org



gives instead the point of view of an expert of cybersecurity,
with limited knowledge of automated planning. This second
class of hypotheses mostly leverages the characteristics of
the cybersecurity scenario to negatively affect the perfor-
mance of planning engines. Due to the different natures of
the perspectives, some hypotheses can be conflicting.

Domain-independent Hypotheses
Hypothesis 1 Adding objects that lead to a larger grounded
representation slows down the planning process and in-
creases memory requirements.
Hypothesis 2 Adding predicates that increase the branch-
ing factor, particularly by forcing the planning engine to
take into account additional actions, increases memory re-
quirements and slows down the planning process.
Hypothesis 3 Adding predicates that introduce dead-end
states, or that introduce paths disjoint from the goal, slows
down the planning process as planning engines might get
trapped in a “dead-end part” of the search space.

Domain-specific Hypotheses
Hypothesis 4 Adding random stand-alone network objects
does not slow down the planning process significantly, as the
additions are irrelevant to reach the goal.
Hypothesis 5 Adding additional information immediately
accessible from the start host will cause a greater slowdown
than adding that same information to a randomly selected
host, as adding to the start host will require the planning
engine to interact with the information.
Hypothesis 6 Adding a network completely separated from
the original problem will significantly slow down the plan-
ning process as planning engines might be tempted to ex-
plore the fake part of the network.
Hypothesis 7 Adding a network with some overlap with the
real one slows down the planning process, as the engine has
to figure out if there are some ways to exploit the overlap.
Hypothesis 8 Adding credential overlap, i.e., by making
more users, admins or caching additional credentials, will
speed up the planning process as this makes it easier to lat-
erally move. Conversely, adding users in a way that avoids
credential overlap will slow the planning process down, as
there is more user accounts to investigate.

Experimental Approach
In our analysis, we use the following workflow: (i) Identify
a set of problems to focus on; (ii) Run each planning engine
on the original problems; (iii) For each deception scenario,
apply the needed modifications to the problems, and run the
planning engines 25 times to account for stochasticity; (iv)
Compare the results for each planning engine under each
deception scenario against that engine’s performance in the
unmodified case. In following this process, our aim is to pro-
vide empirical results backing up our hypotheses.

We focus our analysis on three problems, having a ver-
sion of each for both the CALDERA and the ransomware
domain. All problems feature one Windows domain and an
initial state of the adversary having a foothold on one of the
hosts; for the CALDERA model, the goal is to compromise
all hosts, and for the ransomware model the goal is to ransom

Figure 1: The network for the Manual problem. A blue arrow from
host A to host B implies that a foothold on A will enable lateral
movement to B.

all hosts. The first two problems are taken from the IPC sub-
mission: Problem 3 consists of two hosts and two users and
is intended to be “easy,” while Problem 8 consists of three
hosts and six users and is slightly more complex, as each
host only has one admin and one user account with cached
credentials, and each user is an admin on at most one host.

We also introduce a new problem not part of the IPC
benchmark, which we refer to as the Manual problem, visu-
alized in Figure 1. This problem features five hosts and six
user accounts, all part of the same Windows domain. The
initial state features the adversary having a compromise on
Host 1, with the goal of compromising Hosts 2 through 5 in
the CALDERA model, and ransoming all hosts in the ran-
somware one. The problem is slightly more complex than
the other two, offering different paths and more variability.

Deception Scenarios
Our goal is to present to a set of planning engines a set of
different network scenarios, with the idea of tripping up the
engine before it even gets into the acting stage of attacking
the environment. In practice, the changes that we explore
could be implemented as deceptions or as actual network
modifications. Our scenarios furthermore follow two main
guidelines: (1) we try to make as few changes as possible
to the original problem and the optimal solution plans, and
(2) we focus on modifications that can be realistically im-
plemented within a Windows environment. We ultimately
designed 26 different scenarios each fitting into one of five
categories, summarized in Table 1.

Adding Random Objects. In these scenarios, we add a
random number of objects disconnected from the original
problem. This type consists of six scenarios. random-objects
will add an assortment of objects, whereas random-defined-
objects will add an assortment of objects and also proper-
ties for said objects. As an example, adding a “user” ob-
ject in the random-objects case simply adds the user, but in
the random-defined-objects case adds a user and assigns it
a string username. This type of modification tests two hy-
potheses that are somewhat at odds: we would expect Hy-
pothesis 1 to suggest a slowdown due to general planner
properties, but Hypothesis 4, from a domain-specific per-
spective, would suggest no change as the planning engine
would not consider such additions as relevant.



Name 1 2 3 4 5 6 7 8 Description

random-objects X X Add random objects without properties.
random-defined-objects X X Add random objects with properties., but no connection to other objects.
random-defined-cred X X Add credentials with properties but no connection to other objects.
random-defined-domain X X Add domains with properties but no connections to other objects.
random-defined-host X X Add new hosts with properties but no connections to other objects.
random-defined-user X X Add users with properties but no connections to other objects.

first-noncached-admin-user X X Add a new user as admin on the start host.
random-noncached-admin-user X X Add a new user as admin on a random host.
random-new-user X Add a new non-admin user and do not cache it.
first-cached-nonadmin-user X X Add a new non-admin user and cache it on the first host.
random-cached-nonadmin-user X X Add a new non-admin user and cache it on a random host.
new-multicached-user X Add a new non-admin user and cache it on multiple random hosts.
multi-new-multicached-user X Add multiple non-admin users and cache them on multiple random hosts.

first-dual-homed-host X X Add a new domain and join the start host to it.
random-dual-homed-host X X Add a new domain and join a random existing host to it.
random-dual-homed-user X Add a new domain and join a random existing user to it.
dual-homed-multicached-users X Add a new domain with new users, cached randomly.
dual-homed-host-and-users X Add a new domain with new users and add an existing host to it.

first-cached-credentials X X X Cache a random user’s credentials on the start host.
random-cached-credentials X X X Cache a random user’s credentials on a random host.
first-user-admin X X X Make a random user admin on the start host.
random-user-admin X X X Make a random user admin on a random host.

small-disconnected-domain X X X X Add an unreachable network with 1 host and its own domain and user.
medium-disconnected-domain X X X X Add a network of 3 hosts but unreachable from the original hosts.
first-medium-connected-domain X X X X X Add a network with 3 hosts reachable from the start host.
random-medium-connected-domain X X X X X Add a network with 3 hosts reachable from a random original host.

Table 1: Description of each deception scenario; columns labeled “1-8” denote hypotheses 1-8.

Adding Unusable Users. Here we add new users in a way
that makes them “unusable” – i.e., they are an admin on a
host but have no active sessions, or have an active session but
are not an admin on a host. Within this type, we have seven
different scenarios to test, ranging from adding a new user as
an admin on the start host to adding multiple new users and
storing their credentials on multiple hosts. For some of these
scenarios, we offer placement variation, where we have one
scenario doing something on the start host and another doing
something on a randomly select host.

Adding a New Domain. The third type of scenario is to
add an additional Windows domain and connect some of the
original problem to it, in addition to being connected to the
original Windows domain. This type of scenario is perhaps
the most difficult to execute in the real world, but is not
impossible. In total, we test five different scenarios for this
type, two of which differ as to if they modify the start host
or a random host; these two both follow the idea of selecting
an existing host – start or random – and joining it to a new
Windows domain. The other three scenarios follow a similar
idea, but now focusing more on users.

Modifying the Topology. These four scenarios include
selecting an account at random and storing its credentials
on the start or a random host, and also selecting an ac-
count at random and making it an admin on either the start
or a random host. Unlike the other types of modifications,
these all do indeed have the potential to modify the topol-
ogy and change optimal plans. These scenarios test multiple
hypotheses. We note that here Hypothesis 3 and 8 disagree
and it might depend on a planning technique and a specific
problem instance which one of these hypotheses will prevail.

Adding a Network. Here we focus on adding a new net-

work – including at least one domain, host, user, and cre-
dential, all connected to each other – generating four sce-
narios in total. In the simplest, small-disconnected-domain,
we only generate one host (disconnected from the main net-
work) with one user being admin and having a session on
that host. Slightly more complex is medium-disconnected-
domain, where we add three hosts (disconnected from the
main network) and three users, where one of the hosts has
a session for an admin on the other; and that host has a ses-
sion for an admin on the third. The last two scenarios tweak
this medium idea slightly, by having one of the users being
added have a session on either the start host (first) or a ran-
domly selected host (random). Between these four scenarios
we test nearly every hypothesis.

Experimental Settings
For each scenario of the presented planning problems, a time
limit of 900 seconds and a memory limit of 4 GB is applied
for a planning engine to generate a solution. All the experi-
ments were conducted on Intel Xeon 2.10 GHz.4

We selected 5 state-of-the-art planning engines, namely:
FF (Hoffmann and Nebel 2001), LAMA (Richter and
Westphal 2010), Probe (Lipovetzky et al. 2014), FDSS
2018 (Seipp and Röger 2018) and Dual BFWS (Lipovetzky
et al. 2018). We aimed at including planning engines that
achieved good performance in IPCs while exploiting very
different planning techniques, to better capture the impact of
the modifications on a wide and diverse range of approaches.

Results are presented in terms of coverage, i.e., number

4Benchmark data are available at https://github.com/
lchrpa/CyberDeception.git



Type Scenario FF LAMA Probe BFWS FDSS
C P10 C P10 C P10 C P10 C P10

Control no-modifications 75.0 2.5 75.0 39.9 75.0 15.1 75.0 4.5 75.0 18.6
Adding Random Objects random-objects 55 2401.5 75 39.9 51 2883.7 50 3001.3 75 18.6

random-defined-objects 40 4201.8 75 40.0 39 4324.8 39 4322.1 75 18.7
random-defined-cred 75 2.6 75 39.9 75 14.4 75 4.6 75 18.6
random-defined-domain 75 2.7 75 39.9 75 14.9 50 3000.7 75 18.6
random-defined-host 50 3000.6 75 39.9 50 3002.3 50 3001.0 75 18.6
random-defined-user 75 2.7 75 40.1 75 14.5 50 3000.7 75 18.6
Average 61.6 1601.9 75.0 39.9 60.8 1709.1 52.3 2721.7 75.0 18.6

Adding Unusable Users first-noncached-admin-user 75 2.8 75 40.0 50 3001.7 50 3000.7 75 18.7
random-noncached-admin-user 75 2.8 75 39.8 50 3001.7 50 3000.7 75 18.6
random-new-user 75 2.8 75 39.8 50 3001.6 50 3000.7 75 18.6
first-cached-nonadmin-user 75 2.8 75 40.7 50 3001.7 50 3000.7 75 19.4
random-cached-nonadmin-user 75 2.8 75 40.6 50 3001.7 50 3000.7 75 19.3
new-multicached-user 75 2.8 75 40.5 50 3001.7 50 3000.7 75 19.3
multi-new-multicached-user 50 3000.6 75 40.7 50 3002.4 50 3001.0 75 19.4
Average 71.4 431.0 75.0 40.3 50.0 3001.7 50.0 3000.7 75.0 19.0

Adding a New Domain first-dual-homed-host 75 2.7 75 14.5 75 16.7 50 3000.7 75 18.8
random-dual-homed-host 75 2.7 75 14.1 75 15.0 50 3000.7 75 18.9
random-dual-homed-user 75 2.7 75 41.1 61 1687.9 50 3000.7 75 19.6
dual-homed-multicached-users 50 3000.4 75 41.6 50 3001.9 50 3000.8 75 20.3
dual-homed-host-and-users 50 3000.4 75 15.4 50 3001.9 50 3000.8 75 20.6
Average 65.0 1201.7 75.0 25.3 62.2 1544.6 50.0 3000.7 75.0 19.6

Modifying the Topology Average (4 hidden scenarios) 75.0 2.5 75.0 27.0 75.0 15.4 75.0 4.7 75.0 19.0
Adding an Additional Network Average (4 hidden scenarios) 50.0 3002.0 75.0 40.0 50.0 3006.1 50.0 3002.7 75.0 39.2

Table 2: (Average) results for the CALDERA problems. C and P10 stand for Coverage and PAR10 score, respectively.

FF LAMA Probe BFWS FDSS
C P10 C P10 C P10 C P10 C P10

no-modifications 75.0 2.9 75.0 70.7 75.0 14.6 75.0 26.9 75.0 26.4
Adding Random Objects 61.8 1582.2 75.0 77.6 61.0 1689.5 52.6 2686.5 75.0 26.4
Adding Unusable Users 71.4 431.4 75.0 71.9 50.0 3001.8 50.0 3001.8 75.0 26.8
Adding a New Domain 65.0 1202.0 71.6 512.2 60.4 1759.5 50.0 3001.8 75.0 34.7
Modifying the Topology 75.0 2.9 67.7 946.1 75.0 14.6 75.0 29.7 75.0 37.2
Adding an Additional Network 50.0 3002.3 75.0 110.5 50.0 3007.2 50.0 3006.1 75.0 43.3

Table 3: Average results for the “ransomware” problems. C and P10 stand for Coverage and PAR10 score, respectively.

of instances solved within the cutoff time, and Penalized av-
erage runtime 10, where the average runtime is calculated
by considering runs that did not solve the problem as ten
times the cutoff time. P10 provides a good tradeoff between
runtime and coverage.

Results and Discussion
Table 2 shows the (average) performance achieved by the
considered planning engines on the normal CALDERA
problems. Results, for each of the scenarios, include all the
25 instances generated for each of the 3 tested problems. The
maximum coverage is therefore 75. When there is no sig-
nificant performance variance within a deception scenario,
we only present average results. From the presented results,
we can observe that in each category, except Modifying the
Topology, FF, Probe and BFWS failed to solve some prob-
lems because they ran out of memory during the grounding
stage. Note that all these planners are built on top of the ar-
chitecture of the FF planner and hence share the grounding
functionality. Interestingly, in problems which these plan-
ners managed to solve, the runtime difference to the orig-
inal encoding was negligible. The naive strategy of adding
random objects is not very effective in reducing the plan-
ning performance of the considered engines. Similarly, the
strategy of adding to the network unusable users shows a

very limited detrimental impact. Very interesting are the re-
sults produced on the scenario type of adding a new do-
main: FDSS’s performance is unaffected; the performance
of FF, Probe and BFWS are quite negatively affected; but
LAMA’s performance actually benefits from this useless ad-
dition. Notably, this scenario type is also one of the most
challenging to implement in an actual network. Our tests
on modifying the topology show that it does not negatively
influence engines’ performance. Instead, LAMA’s perfor-
mance actually improves – but that is due to the fact that the
modified topology allows the engine to find a shorter path
to the goal. Finally, adding an additional network has the
most remarkable impact on the performance of the consid-
ered engines: for all the considered planning engines except
LAMA, performances are reduced. On the one hand, this
behavior is highly expected, as the planning engine has a
larger search space to explore. On the other hand, in one sce-
nario (small-disconnected-domain) LAMA is again deliver-
ing better performance than those on the original instances.

Turning to the ransomware domain model results in Ta-
ble 3, we have a general remark: this class of problems is
more challenging for the considered planning engines, due
to the possibility of reaching dead-end states in the search
space. The observations made on the results of the normal
CALDERA problems, for most of the scenario types, still



hold when the ransomware model is used, and for this rea-
son, we only present averaged results for each deception sce-
nario. In particular, adding random objects and adding unus-
able users have a limited yet noticeable impact on the plan-
ning performance; and adding an additional network still
has a generally negative impact on all the planners. Con-
siderable differences in the performance can be found in the
adding a new domain and modifying the topology scenario
types. Adding a new domain has a negative impact on all
of the planners, with LAMA’s performance drastically re-
duced. Most notably, LAMA’s and FDSS’s performance are
also considerably affected by the modifying the topology
scenario type problem instances. On this class of problems,
LAMA delivers its worst performance, even though in the
normal domain this type of modification helped it to per-
form better. Our intuition is that the presence of dead-ends
is making these instances extremely challenging for LAMA
and FDSS, possibly due to the exploited heuristics.

Summarizing, the analysis provides evidence that sup-
ports hypotheses 2, 3 (in presence of dead-ends), 6, and 7.
In contrast, hypotheses 5, 8 have not been verified. Finally,
hypotheses 1 and 4 are neither fully supported nor fully re-
jected, as the evidence suggests that it strongly depends on
the pre-processing technique of the planning engine.

Conclusion
We investigated how to support deception against automated
adversaries by exploring the impact that modifications to a
Windows enterprise network can have on the planning capa-
bilities of an attacker. A concrete contribution of this work
is that we have been able to identify the most promising and
suitable strategies that can be put in operation to gain de-
fenders a strategical advantage against a red team exploiting
automated planning techniques to define how to attack a tar-
get network. Future work will focus on investigating how to
automatically lay effective honeypots in a network on the fly.

Acknowledgments
Mauro Vallati was supported by a UKRI Future Leaders Fel-
lowship [grant number MR/T041196/1].

References
Achleitner, S.; La Porta, T. F.; McDaniel, P.; Sugrim, S.; Kr-
ishnamurthy, S. V.; and Chadha, R. 2017. Deceiving net-
work reconnaissance using SDN-based virtual topologies.
IEEE TNSM 14(4):1098–1112.
Applebaum, A.; Miller, D.; Strom, B.; Korban, C.; and Wolf,
R. 2016. Intelligent, automated red team emulation. In Proc.
of ACSAC, 363–373.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of action generation for cyber security using classi-
cal planning. In Proc. of ICAPS, 12–21.
Chakraborty, T.; Jajodia, S.; Katz, J.; Picariello, A.; Sperli,
G.; and Subrahmanian, V. 2019. Forge: A fake online repos-
itory generation engine for cyber deception. IEEE TDSC.
Ferguson-Walter, K. J.; Major, M. M.; Johnson, C. K.; and
Muhleman, D. H. 2021. Examining the efficacy of decoy-

based and psychological cyber deception. In Proc. of the
{USENIX} Security Symposium.
Fraunholz, D., and Zimmermann, M. 2017. Towards deploy-
ment strategies for deception systems. Advances in Science,
Technology and Engineering Systems Journal 2:1272–1279.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: theory and practice. Elsevier.
Herley, C., and Florêncio, D. 2008. Protecting financial
institutions from brute-force attacks. In IFIP International
Information Security Conference, 681–685.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Hoffmann, J. 2015. Simulated penetration testing: From”
dijkstra” to” turing test++”. In Proc. of ICAPS.
Hunter, T.; Terry, P.; and Judge, A. 2003. Distributed tarpit-
ting: Impeding spam across multiple servers. In Proc. of
LISA, 223–236.
Lipovetzky, N.; Ramirez, M.; Muise, C.; and Geffner, H.
2014. Width and inference based planners: Siw, bfs(f), and
probe. In Proc. of IPC.
Lipovetzky, N.; Ramirez, M.; Frances, G.; and Geffner, H.
2018. Best-first width search in the ipc2018: Complete, sim-
ulated, and polynomial variants. In Proc. of IPC.
McCluskey, T. L.; Vaquero, T. S.; and Vallati, M. 2017. En-
gineering knowledge for automated planning: Towards a no-
tion of quality. In Proc. of K-CAP, 14:1–14:8.
Miller, D.; Alford, R.; Applebaum, A.; Foster, H.; Little,
C.; and Strom, B. 2018. Automated adversary emulation:
A case for planning and acting with unknowns. In ICAPS
Workshop on Integrated Planning, Acting and Execution.
Provos, N., et al. 2004. A virtual honeypot framework. In
USENIX Security Symposium, volume 173, 1–14.
Richter, S., and Westphal, M. 2010. The LAMA planner:
guiding cost-based anytime planning with landmarks. JAIR
39:127–177.
Sajid, M. S. I.; Wei, J.; Alam, M. R.; Aghaei, E.; and Al-
Shaer, E. 2020. DodgeTron: Towards autonomous cyber de-
ception using dynamic hybrid analysis of malware. In Proc.
of the IEEE CNS, 1–9.
Seipp, J., and Röger, G. 2018. Fast downward stone soup
2018. In Proc. of IPC.
Sheyner, O.; Haines, J.; Jha, S.; Lippmann, R.; and Wing,
J. M. 2002. Automated generation and analysis of attack
graphs. In Proc. of the IEEE Symposium on Security and
Privacy, 273–284.
Vallati, M., and Chrpa, L. 2019. On the robustness
of domain-independent planning engines: The impact of
poorly-engineered knowledge. In Proc. of K-CAP, 197–204.
Walter, E. C.; Ferguson-Walter, K. J.; and Ridley, A. D.
2021. Incorporating deception into cyberbattlesim for au-
tonomous defense. In Proc. of the ACD Workshop.


