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Abstract

A shared mental model (SMM) is a foundational struc-
ture in high performing, task-oriented teams and aid
humans in determining their teammate’s goals and in-
tentions. Higher levels of mental alignment between
teammates can reduce the direct dialogue required for
team success. For decision-making teams, a transactive
memory system (TMS) offers team members a map of
specialized knowledge, indicating source of knowledge
and the source’s credibility. SMM and TMS formula-
tions aid human-agent team performance in their in-
tended team types. However, neither improve team per-
formance with a project team–one that requires both be-
havioral and knowledge integration. We present a hy-
brid cognitive model (HCM) for machine agents that
subsumes the integrated portions of a team’s transac-
tive memory in an SMM. The unified structure of the
HCM enables contextual switches during execution for
machine agents, over the two cognitive formulations
with comparable computational complexity of a single
cognitive model. Results in a multi-agent project envi-
ronment demonstrates how the HCM provides machine
agents with a generalizable cognitive structure that is
able to maintain fully factored belief states with mini-
mal inter-agent communication.

Studies in the human factors and cognitive psychology disci-
plines provide details with regard to high performing teams.
Effective teams transcend complex domain uncertainty by
achieving an emergent state of shared cognition, in which
knowledge is organized, represented, and distributed to
team members for rapid execution (DeChurch and Mesmer-
Magnus 2010). Much of the work in modeling shared cog-
nition leverages either the concept of a share mental model
(SMM) (Cannon-Bowers, Salas, and Converse 1993) or a
transactive memory system (TMS) (Wegner, Giuliano, and
Hertel 1985; Moreland, Argote, and Krishnan 1996). SMMs
are joint understandings of tasks (e.g., temporal sequenc-
ing of actions, arrangement of materials, or resource inter-
dependencies) shared among team members. Alternatively,
a TMS offers team members a global context of informa-
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tion, mapping where knowledge resides and credibility of
the knowledge holder.

Team types are usually categorized as either action teams,
decision-making teams, or project teams (DeChurch and
Mesmer-Magnus 2010). Action teams coordinate and per-
form physical tasks such as a sports team or first respon-
ders. Decision-making teams (e.g., company boards, med-
ical diagnostic panels, or financial planners) process infor-
mation and provide expert opinions. Project teams incorpo-
rate both action and decision-making teams. In the project
team setting, human agents perform contextual switches be-
tween processing tasks and processing information. Project
teams include research and development centers, military
task forces, and disaster recovery teams. This work focuses
on the mental models of machine agents in project teams.

This work investigates foundational characteristics of the
HCM that incorporates aspects of both SMMs and TMSs,
enabling emergent states (i.e., shared cognition) for machine
agents. The HCM forms an SMM by subsuming only the
integrated portions of the TMS and treating the differenti-
ated portions as auxiliary knowledge. The multi-agent de-
cision problem (MADP) framework (Oliehoek and Amato
2016) enables generalizations elusive in more rigid models.
The HCM’s embedded cognitive elements augment internal
state updates with intent projections—inferences about team
member intentions formulated by attending over elements in
the TMS and SMM.

Evaluation of the HCM is conducted through direct com-
parison with a decentralized partially observable Markov de-
cision process (Dec-POMDP)1 (Bernstein et al. 2002). The
performance of the HCM and Dec-POMDP are first evalu-
ated in terms of average cumulative reward over concurrent
trials. Subsequently, the accuracy of machine agents with
factored belief states in the HCM are assessed against the
joint beliefs of Dec-POMDP agents.

Related Work
Investigations into the procedural, psychological, and strate-
gic factors of high performing teams are conducted from
numerous perspectives. Those relevant to the formulation

1 Equivalently referenced as a multi-agent POMDP
(MPOMDP) (Oliehoek and Amato 2016) or multi-agent team
decision problem (MTDP) (Pynadath and Tambe 2002)



of the HCM are shared cognition (Wegner 1987; Cannon-
Bowers, Salas, and Converse 1993) and multi-agent sys-
tems (MAS) (Wooldridge 2009; Weiss 2013; Shoham and
Leyton-Brown 2008). This sections presents a brief intro-
duction to the foundational perspectives used to formulate
the HCM for machine agents.

Shared Cognition
A phenomena in high performing teams is how individu-
als transform into more than the sum of individual skill and
knowledge (Corning 2002). This transformation is typically
detailed by an integration of individual minds which form
a shared cognitive state. Two prominent theories of cogni-
tion and group mind are the SMM (Cannon-Bowers, Salas,
and Converse 1993) and TMS (Wegner, Giuliano, and Hertel
1985) respectively. These theories are differentiated by their
principal characteristics2 (see Table 1) overlapping only on
the concept of individual and team member intent. Both the-
ories have shown through independent studies (DeChurch
and Mesmer-Magnus 2010; Ren and Argote 2011) critical
contributions toward an understanding of the emergent state
of shared cognition between individual team members.

Table 1: Characteristics2 of SMMs and TMSs.

Characteristic2 Description Model

Task Knowledge
Known completion requirements (TR), skills
(TS), sequence (TQ), and constraints (TC)
required for success

SMM
ab

Goals (G) A shared understanding of what individ-
uals, teams, or coalition aim to achieve SMM

bc

Roles (R) How the team is led, organized, and currently
tasked SMM

bc

State (S)
Current understanding of the environment,
available resources, progress towards goals,
and limitations

SMM
bc

Shared Communication
(C)

A collection of methods for message passing
between members, including how and when to
employ each

SMM
bc

Plans (P) Proposals for action established for anticipated
events and dealing with uncertainty SMM

bc

Intentions (I) Next action, decision, or focused attention of
each team member Both

bcde

Knowledge Map
Direct elements of information (TR , TS , TQ ,
TC , G, R, S, P, and I) or a location (L) where
elements reside (or do not) within the team

TMS
cde

Credibility Map A knowledge map overlay assigning credibility
to a knowledge holder TMS

cde

Knowledge
Organization A schema for how information is stored TMS

cde

Knowledge
Accessibility

An understanding of who can acquire and the
process for acquiring information
internal/external to the team

TMS
cde

SMMs are explanatory mechanisms that unify team
understanding and ultimately improve team performance
(Cannon-Bowers and Salas 2001; DeChurch and Mesmer-
Magnus 2010). Cannon-Bowers, et al. (1993) showed men-
tal model alignment reduces direct dialogue and increases

2 The term characteristic is used to describe elements of either
model critical to functionality. The TMS knowledge map may sub-
sume items in an SMM, but the element types themselves are not
critical to knowledge map functionality and thus not considered
principal characteristics of TMSs.

communication efficiency in several studies (Cannon-
Bowers and Salas 2001). SMM alignment does not con-
sider levels of expertise. For SMMs, alignment is a binary
factor assessing whether or not a member posses the de-
sired task-focused or team-focused knowledge (DeChurch
and Mesmer-Magnus 2010). Task-focused knowledge in-
cludes skills and equipment employed by a team (e.g., Task
Skill (TS) or State (S) from Table 1). Team-focused knowl-
edge is concerned with team characteristics (e.g., Goals (G),
Shared Communications (C), Plans (P), and Intentions (I)
from Table 1). Fully aligned SMMs are similar in form to
fully integrated TMSs, where each member posses all rele-
vant knowledge independently. However, TMSs leverage the
intimate relationship context of a team.

Transactive memory theorists propose that memories are
first encoded in individual memory space and then re-
encoded into transactive memory space through interactions,
but only in the context of a unique small group of individ-
uals. The initial study of transactive memory (Wegner, Giu-
liano, and Hertel 1985) focused on human dyads in intimate
relationships, but later studies extended the theory to small
groups (Wegner 1987) and teams (Moreland, Argote, and
Krishnan 1996). Consider a team context where one member
with expert knowledge or in an established role may have ex-
perienced the same information differently than other mem-
bers. Through interaction and dialogue, team members re-
encode individual memories into a TMS, often generating
new, more complete representations, in the joint understand-
ing of all individual perspectives. Knowledge in a TMS can
be differentiated or integrated (Wegner, Giuliano, and Hertel
1985) both have beneficial contributions to shared cognition,
but Wegner (1987) regards both as important to teamwork.
A purely differentiated TMS would create information bot-
tlenecks or in the worst case, a single point of failure for the
team. On the other hand, a fully integrated TMS required
overhead proportional to team size and could foster inde-
cision (Wegner, Giuliano, and Hertel 1985). Striking a bal-
ance between integration and differentiation ensures a pru-
dent amount of knowledge duplication among members, en-
abling simultaneous tasks work and multilateral decisions.

Multi-agent Systems
SMMs are ubiquitous throughout MAS implementations
(Wooldridge 2009; Weiss 2013; Shoham and Leyton-Brown
2008) as Fan and Yen (2004) detail. While the TMS lit-
erature spans several scientific disciplines (Ren and Ar-
gote 2011), there remains a dearth of implementations
for machines agents in a MAS (Corbett 2012). Existing
MAS algorithmic model types often incorporate communi-
cation and cognitive elements as auxiliary observations in
fully defined multi-agent MDP variations (e.g., Dec-MDP,
MPOMDP, and Dec-POMDP-COM) (Oliehoek and Am-
ato 2016). Multi-agent models that construct and maintain

a(Cannon-Bowers, Salas, and Converse 1993)
b(Fernandez et al. 2017)
c(DeChurch and Mesmer-Magnus 2010)
d(Wegner 1987)
e(Moreland, Argote, and Krishnan 1996)



full joint action-observation histories, become intractable for
problems with large observation spaces and infinite horizons
(Oliehoek and Amato 2016; Murphy 2002; Boutilier 1996).
It is also understood that Dec-POMDPs preclude agents
from accessing a Markovian signal during operation and in
turn preventing them from forming individual beliefs.

The Markov Multi-Agent Environment (MME) (Oliehoek
and Amato 2016) enables a solution analogous to the
human-agent cognitive models. The MME is a generalized,
partially defined Markov model that provides researchers
flexibility in completing the MAS model definition with dy-
namically defined agent models. By decoupling machine
agents from the environment, the MME reaps the bene-
fits of Dynamic Bayesian Network (DBN) representations.
The HCM defines machine agent models as fully factored
DBNs (Murphy 2002) with an additional visible layer for
the TMS, and by subsumption the SMM, between the hid-
den and belief states (Åström 1965). Within the HCM op-
timal action selection and intent projection policies for ma-
chine agent teams are constructed with temporal difference
learning (Sutton and Barto 2018) algorithms.

Methodology

This research proposes that for a machine agent within
a task-oriented team, the SMMs act as a filter for team-
relevant items within a TMS. Common knowledge items
(e.g., Task Skills (TS), State (S), Goals (G), Shared Com-
munications (C), Plans (P), and Intentions (I) from Table
1) are collected in the intersections of transactive memory
as shown in Figure 1. Essentially, knowledge in the TMS
is known by one (fully differentiated), some (partially inte-
grated), or all (fully integrated) of the team members. When
the team is presented with task work, the fully integrated
portion of the TMS is an SMM. Alternatively, if the team
is presented knowledge work (i.e., an expert opinion or de-
cision), the differentiated and integrated portions are lever-
aged.

Consider a three member team as illustrated in Figure
1. The basis for this cognitive model is a TMS with both
integrated and differentiated portions. Each member pos-
sesses knowledge and credibility maps as well as infor-
mation on how offline or external knowledge is organized
and accessed. These elements are trainable parameters and
are updated as new knowledge is learned or team mem-
bers change. For instance, the credibility rating of a mem-
ber could decrease if that member’s input results in a poor
decision. Likewise, a member’s credibility rating could in-
crease as they are observed to successfully complete tasks.
An SMM is formed by elements (TR, TS, TQ, TC, G, R, S,
C, P, and I) in the integrated and partially integrated portion
of the TMS, which can be thought of as an intersection of
the team’s transactive memory. The differentiated portion of
the TMS is not used during task work, but is fully utilized
in decision making. Artificial agents may transfer learned
parameters as individual memory when instantiated within
other teams, analogous to a human agent being assigned to
another team.

Member A's TMS

Member B's TMS

Member C's TMS

Fully Differentiated TMS**

Partially
Integrated TMS*

Fully Integrated TMS = SMM

Member A's Knowledge
Member B's Knowledge
Member C's Knowledge

* Shared conception of current goals, tasks, roles, state, plans, and intent among members.
** Includes knowledge credibility and how to access it.
*** Larger radius of the knowledge bubble indicate higher levels of credibility or expertise.

Radius Of Knowledge Bubble
Increases With Higher Credibility***

Figure 1: The SMM is formed in the intersections of the TMS.
Task skill knowledge (TS), Goals (G), Plans (P), and Intentions
(I) are may be common to some or all team members, especially
when training occurred prior to teamwork execution. Knowledge
map location information (L) is present in transactive memory, but
not contained in the intersection and thus not a part of the SMM.
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Figure 2: The HCM as a DBN for multiple agents. The joint
environmental state transitions are indicated by the sequence
st-1, st, st+1, .... Agent one’s observations are the sequence
o1t-1, o1t , ..., and actions a1

t-1, a1
t , ..., while agent two’s observa-

tions are indicated by the sequence o2t-1, o2t , ..., and actions by
the sequence a2

t-1, a2
t , .... Agent TMSs are denoted z1 and z2 for

agents one and two respectively. The dotted edges denote internal
state transition, while the dashed lines between observation and ac-
tion nodes are used to indicate that observations are replicated into
the agent model and actions from the agent model into the MME.

Model Formulation
The hybrid cognitive model is a joint, event-driven state
space represented as a DBN, shown for the two agent case in
Figure 2. Each agent maintains a fully factored TMS (zn),



which is integrated through agent action and communica-
tion and subsumed in an SMM. Eight types of information
are specified for this DBN:
1. The prior internal state distribution over the state variables, I(t = 0) = P (i0)

2. The state transition model, T (st, st−1, at) = P (st | st−1, at)

3. The observation model,O(ot, st) = P (ot | st)

4. The internal state model, I(it, it−1, ot) = P (it | it−1, ot)

5. The reward function,R(st, at+1)

6. The stochastic action selection policy πA : I → ∆(Ai)

7. The stochastic intent projection policy πI : I → ∆(Zi)

8. The off-policy learning function, Q(st, at, zt−1) = Q(st, at, zt−1) +

α[R(st, at) + γmax
a′∈A

Q(st+1, a
′, zt) -Q(st, at, zt−1)]

For smaller state spaces the MME, utilizing the HCM’s
agent model, is solvable directly as detailed in (Oliehoek and
Amato 2016)—requiring only minor algorithmic changes to
incorporate the TMS. However, as Dec-POMDP complex-
ity is exponential in both the number of agents and length
of horizon, a direct solution becomes intractable for real-
istic state spaces. This work instead employs Bayesian fil-
tering techniques to approximate internal state. Algorithm 1
presents the generalized form of the HCM.

Algorithm 1 Direct inference with discrete Bayesian filter
Function HYBRIDCOGNITIVEMODEL():
Variables:

{M}: A set of m machine agent
{z0}: The TMS containing a priori knowledge for m agents
s0: The initial state of the domain
{i0}: The set of prior belief distribution over st
πA: The action selection policy
πI : The intent projection policy
imt : The predicted internal state distribution
imt : The corrected internal state distribution

t← 0

st-1 ← s0

imt-1 ← i0

zmt-1 ← z0

repeat
t← t+ 1

immax ← argmax
t-1

(imt-1))

Select amt from π(immax a
m
t )

Transition to st, and observe omt
imt ←

∑
t-1
P (imt | a

m
t , i

m
t-1)P (imt-1)

imt ← αP (omt | i
m
t )P (imt )

πA ← Q(st, at, zt−1)

πI ← Q(st, at, zt−1)

until Execution phase is terminated

Evaluation
The first experiment evaluates the performance of two mod-
els with average cumulative reward as the optimality crite-
rion. Fully factored HCM agents and a Dec-POMDP are in-
stantiated over identical MMEs for an equivalent number of
training episodes. Three team configurations are considered
in both models; (1) homogeneous agents with no specializa-
tion, (2) heterogeneous agents where a single member has

A

Treat

A

TransportDirect

Evaluate

Figure 3: A two agent visualization of the Triage problem domain

specialization, and (3) homogeneous agents with special-
ization. After training the performance of both models are
recorded and analyzed.

The second experiment considers the accuracy of the fac-
tored belief states of HCM with regard to the joint belief
states of a Dec-POMDP. The HCM agents are instantiated
alongside a collective entity that has visibility over joint ac-
tions and observations (i.e., a Dec-POMDP). Belief state his-
tories for both agents and the agent collective are extracted
for analysis. This experiment also utilizes the three team
configurations specified above.

The Triage Domain
The Triage problem draws inspiration from the Decen-
tralized Tiger problem (Nair et al. 2003). Two or more
machine agents must triage victims of a natural disaster
and determine the best method for getting them safely
to the Rendezvous location. The state variable, st ∈
{Fair, Serious, Critical, T erminal} represents the
victims condition. Machine agents have four actions at ∈
{Evaluate, Direct, T reat, T ransport} and four obser-
vations (ot ∈ {Minor, Moderate, Serious, Critical})
over the severity of injuries.

Agents in this domain are presented with victims and must
make repetitive life or death decisions as illustrated in Fig-
ure 3. Victims in fair condition can safely walk to the Ren-
dezvous location, but those in serious conditions may incur
further injuries. The walk is fatal to victims in critical con-
dition. Treating a victim in fair condition has no effect on
their state and wastes resources. A victim in serious condi-
tion may have their state transition to minor with treatment.
Treatment may improve the state of a victim in critical con-
dition, but it may also be fatal. Transporting victims in fair
or serious condition makes the resource unavailable for un-
triaged victims in critical condition. Transporting Victims
in critical condition increases their probability of survival.
When victims are evaluated jointly, the knowledge and cred-
ibility maps for all agents involved are leveraged in the de-
cision. However, divergent actions may cause confusion in
the victim leading to undesirable behavior. Repeated evalua-
tions may improve accuracy of diagnosis, but the delay may
be fatal to victims in critical condition.

The Triage domain’s state transition model is captured in
Table 2. The direct and transport actions result in a termi-
nal state; either the victim perishes or makes a full recovery.
Other actions can upgrade or downgrade a victims condition.
Victims in critical conditions may perish during treatment or



Table 2: Triage domain state transition probabilities.

State Transitions

Joint Action S
C
r
it
→
S
T
e
r
m

S
C
r
it
→
S
C
r
it

S
C
r
it
→
S
S
e
r

S
S
e
r
→
S
C
r
it

S
S
e
r
→
S
S
e
r

S
S
e
r
→
S
F
a
ir

S
S
e
r
→
S
T
e
r
m

S
F
a
ir
→
S
F
a
ir

S
F
a
ir
→
S
T
e
r
m

A
ll
O
th
er
s

〈evaluate− evaluate〉 0.25 0.75 0.00 0.10 0.90 0.00 0.00 1.00 0.00 0.00
〈evaluate− treat〉 0.25 0.25 0.50 0.00 0.50 0.50 0.00 1.00 0.00 0.00
〈treat− evaluate〉 0.25 0.25 0.50 0.00 0.50 0.50 0.00 1.00 0.00 0.00
〈treat− treat〉 0.05 0.25 0.70 0.00 0.30 0.70 0.00 1.00 0.00 0.00

otherwise 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00

Table 3: Triage domain reward function.

Victim State

Joint Action S
C
r
it

S
S
e
r

S
F
a
ir

〈evaluate− evaluate〉 -2 -2 -2
〈evaluate− direct〉 -101 14 24
〈evaluate− treat〉 4 -6 -11

〈evaluate− transport〉 24 9 -26
〈direct− evaluate〉 -101 14 24
〈direct− direct〉 -100 30 50
〈direct− treat〉 -95 10 15

〈direct− transport〉 -75 25 0
〈treat− evaluate〉 4 -6 -11
〈treat− direct〉 -95 10 15
〈treat− treat〉 10 -10 -20

〈treat− transport〉 30 5 -35
〈transport− evaluate〉 24 9 -26
〈transport− direct〉 -75 25 0
〈transport− treat〉 30 5 -35

〈transport− transport〉 50 20 -50

evaluation. Finally, treatments and evaluations have no effect
on victims in fair condition.

All rewards in this domain are shared and cumulative. A
positive reward is generated when a victim is successfully
triaged as shown in Table 3. A comparable penalty is in-
curred for actions that put the victims at risk.

With no observations available at time t0 the ini-
tial agent actions a1

0 and a2
0 are conditioned upon

the elements of their HCM established a priori, z1
0

and z2
0 , respectively. For the initial instantiation of the

HCM, the knowledge elements within TMSs are lim-
ited to T S ∈ {diagnostics, treatments}, TC ∈
{transportAvailible, transportUnavailible}, and R ∈
{diagnosticSpecialist, generalist}.

The observation probabilities in Table 4 represent the like-
lihood of agents in a trained role observing an injury level,
based on a victims actual state.

Results
The Dec-POMDP team configurations outperformed the
HCM in pair-wise comparison of their average cumulative
reward as illustrated in Figure 4. However, this is expected as

Table 4: Observation probabilities for trained roles formatted as
[Critical, Serious, Moderate, Minor]. There are no observa-
tions over Terminal states since the domain resets.

Assigned Role
Victim Condition Diagnostic Specialist Generalist
Critical [0.90, 0.07, 0.02, 0.01] [0.55, 0.30, 0.10, 0.50]

Serious [0.09, 0.80, 0.09, 0.02] [0.10, 0.40, 0.40, 0.10]

Fair [0.01, 0.04, 0.35, 0.60] [0.05, 0.10, 0.03, 0.55]
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HCM Homogeneous (Specialists)
HCM Heterogeneous
HCM Homogeneous (Generalists)

Figure 4: Average cumulative rewards for Dec POMDP and HCM
agent configurations based on number of training episodes.

the Dec-POMDP models assume full joint knowledge over
the action-observation histories. The HCM configurations
with specialized homogeneous agents and heterogeneous
agents performed similarly to heterogeneous and general-
ized homogeneous Dec-POMDP agents, respectively. The
generalized homogeneous HCM agents displayed high lev-
els of variability and the agent’s policies did not converge
within 1000 training episodes.

Team configurations were then evaluated on their ac-
curacy of belief state tracking. Figure 5 shows the Dec-
POMDP team configurations were more accurate through
pair-wise comparison of team configurations, but the HCM
teams remained within a reasonable margin–often less than
ten percent. The overall performance by the HCM teams
demonstrates the efficacy of fully factored belief states on
cooperative MAS domains.
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Figure 5: Belief state tracking accuracy for Dec POMDP and HCM
agent configurations based on number of training episodes.

Conclusion and Future Work
This work introduced a cognitive model, leveraging char-
acteristics of both SMMs and TMSs, allowing cooperative
machine agents to form and maintain fully factored belief
states. Three HCM configurations were evaluated alongside
an equivalent Dec-POMDPs by comparing average cumula-
tive reward and accuracy of belief state tracking. The analy-
sis concluded that the HCM enables machine agents to op-
erate effectively in a purely decentralized capacity.

The next phase of research should test the HCM in
broader environments that incorporates knowledge work as
well as adversarial challenges. In the broader state spaces di-
rect Bayesian filtering is not tractable, but internal state ap-
proximations with particle filters (Thrun, Burgard, and Fox
2005; Russell, Norvig, and Davis 2010) are a promising al-
ternative. Future research should also include an evaluation
of the HCM’s efficacy in human-machine teams for both co-
operative and adversarial domains.
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