
Protein-Protein Interaction Extraction using Attention-based Tree-Structured
Neural Network Models

Sudipta Singha Roy and Robert E. Mercer
The University of Western Ontario

London, Ontario, Canada

Abstract

In order to comprehend underlying biological pro-
cesses, it is necessary to identify interactions between
proteins. It is typically quite difficult to extract a
protein-protein interaction (PPI) from text data as text
data is complex in nature. Unlike sequential models,
tree-structured neural network models have the ability
to consider syntactic and semantic dependencies be-
tween different portions of the text and can provide
structural information at the phrase level. This paper in-
vestigates tree-structured neural network models for the
PPI task and the results show their supremacy over se-
quential models and their effectiveness for this task.

Introduction
As the scientific literature grows at an exponential rate, the
vast majority of biological information is currently available
in text form residing in the scientific literature. MEDLINE
database’s size has grown by 4.2 percent annually during
the last two decades and currently it contains approximately
26,000,000 records extracted from 5639 publications which
is 23% more than what it contained in 2014 (Yadav et al.
2020). This huge amount of unstructured text from biomed-
ical research articles is a valuable source of information for
the biomedical natural language processing (NLP) domain.

As the volume of biomedical data continues to grow ex-
ponentially and due to the inherent complexity in the textual
representations of these data, it is critical to pursue auto-
matic information retrieval techniques to aid biologists in the
detection and identification of useful information, and the ar-
ranging and maintaining of databases, as well as providing
automatically generated decision support systems for med-
ical professionals. Considering this issue, a lot of research
has been conducted for inferring information concealed in
these texts to assist health care and biomedical people, such
as protein-protein interactions (PPIs), chemical-disease rela-
tion extraction, clinical relation extraction, drug-drug inter-
actions, etc., as retrieving important information manually
from this large volume of texts is both time consuming and
expensive (Peng, Wei, and Lu 2016).

The majority of biological activities inside a cell, such as
immune response, signal transduction, cellular organization,

Copyright © 2021by the authors. All rights reserved.

etc., are caused by different interactions between various
proteins (Sledzieski et al. 2021). So, identifying the protein-
protein interactions (PPIs) provides a better understanding
of the functionalities, regulations, and communication be-
tween different proteins (Yao et al. 2019). Identifying PPIs
entails figuring out how different proteins mentioned in a
text are connected (Krallinger et al. 2008). This information
may spread out through different parts of the whole docu-
ment, however, the current work is restricted to identify PPIs
present only inside single sentences (Pyysalo et al. 2008;
Tikk et al. 2010). For instance, “LEC induced maximal mi-
gration of CCR1 and CCR8 transfected cells at 89.3 nmol/L
and cell adhesion at 5.6 nmol/L.” (Howard et al. 2000) re-
flects two PPI relations: LEC-CCR1 and LEC-CCR8 and no
association between CCR1 and CCR8.

For such tasks, sequential deep learning-based models
have been used in multiple research works (Hsieh et al.
2017; Yadav et al. 2019). However, if the data is struc-
tured rather than presented sequentially, these models are
more likely to miss the underlying semantic composition-
ality (Ahmed, Samee, and Mercer 2019a) as they consider
word order only but no linguistic structure (Li et al. 2015).
By contrast, Recursive neural networks, commonly known
as tree-structured neural network models, work over parsed
tree representations of the sentences and thus preserve both
the syntactic and semantics in a better way.

In this paper, we investigate six tree-structured neural net-
work models for the PPI identification task. For working
with dependencies between words in different portions of
the sentence, we investigate dependency tree-structured neu-
ral nets, whereas to work with the phrase level informa-
tion, constituency tree-structured neural nets are explored.
Finally, two ensembles of these models are used for retriev-
ing the PPIs present in the sentences. We provide an am-
ple analysis of these models’ performances over the bench-
mark PPI datasets which evince the supremacy of using tree-
structured neural networks over sequential ones for this task.

Related Works
Numerous NLP methods have been developed for deter-
mining the associations between protein entities. In the ini-
tial stages, pattern-based techniques were widely used. In
these approaches, on the basis of syntactic as well as lexi-
cal features, pattern-based rules were designed for extracting



the relationship (Blaschke et al. 1999; Leeuwenberg et al.
2015). However, these models were not capable of handling
complex relationships specified in relational and coordinat-
ing clauses appropriately. In contrast to naı̈ve pattern-based
methods, dependency-based methods are more syntax atten-
tive and offer a wider range of application coverage (Erkan,
Özgür, and Radev 2007; Miyao et al. 2009).

Another prominent approach for extracting such rela-
tionships is to use kernel-based methods. These models
learn profuse structural information by means of depen-
dency structures and syntactic parse trees (Miwa et al. 2009;
Kim et al. 2010). Some noteworthy methods use bag-of-
words kernel (Sætre, Sagae, and Tsujii 2007), tree kernel
(Zhang et al. 2006), convolution tree kernel (Chang et al.
2016), neighbourhood hash graph kernel (Zhang et al. 2011),
and walk-weighted kernel (Kim et al. 2010).

With the recent blossoming of deep learning-based mod-
els, a lot of experiments have been conducted to extract PPI
relations (Quan et al. 2016; Zhao et al. 2016). Peng and Lu
(2017) deployed a double-channel convolutional neural net-
work (CNN) for feature extraction. The first channel utilizes
syntactic features like named entities, parts of speech, syn-
tactic dependencies, chunk parsing information, distances
from each word to the two interacting protein candidates,
and the word itself. The second channel applies a convo-
lution operation over each word’s parent word information.
Zhang et al. (2018) applied a three channel CNN for this
task. The first, second, and third channel apply convolutional
operations over original words in addition to the positional
encoding, shortest dependency path information, and depen-
dency relation encoding features, respectively. Zhao et al.
(2016) trained an auto-encoder on the unlabelled training
data for parameter initialization of a multi-layer perceptron
(MLP) model which is then trained utilizing gradient de-
scent for the PPI relation extraction task.

Following this, several research works have been con-
ducted for this task using recurrent neural networks (RNNs)
as these models perform better with sequential data. Hsieh
et al. (2017) applied only a bi-directional long short term
memory network (Bi-LSTM) on the sentences, and the vec-
tors concatenated from the left and right-most LSTM output
vectors are used as the feature vectors for the classification
task. Yadav et al. (2019) utilized structured attention over the
sequential Bi-LSTM which is fed with the shortest depen-
dency path information between the unit pairs. In their fol-
lowing work, Yadav et al. (2020) utilized the self attention
mechanism for multi-task learning incorporating both PPI
and drug-drug interaction relation extraction. Ahmed et al.
(2019) used a dependency tree-structured LSTM with struc-
tured attention for the same task and outperformed all of the
above-stated sequential models.

The Model
This section describes our work in detail. Our investiga-
tion of the PPI relation extraction task examines four tree-
structured neural network models: dependency and con-
stituency tree-LSTMs with a self attention mechanism and
tree-transformers. Their working principles are discussed
first. Two ensembles of these models are then discussed.

Tree-LSTMs
A sentence can be represented by two tree-structured rep-
resentations: constituency and dependency trees (Chen and
Manning 2014). These representations provide syntactical
information about the sentence by preserving word to word
dependencies (dependency tree) and phrase level informa-
tion (constituency tree). To utilize these structural syntactic
information sources, Tai, Socher, and Manning (2015) intro-
duced dependency (child sum tree-LSTM) and constituency
(N-ary tree-LSTM) tree-LSTMs.

For the child sum tree, the internal gates of a component
node are updated by the summed hidden state values of its
child nodes. Then, using this updated hidden state value the
other intermediate gates are updated as follows:

h̃j =
X

2Cj

hj (1)

ij = �(Wixj + Uih̃j + bi) (2)

oj = �(Woxj + Uoh̃j + bo) (3)

c̃j = tanh(Wcxj + Uch̃j + bc) (4)
Here, W s and bs are weights and bias values, and Cj is the
set of child nodes. In the child sum tree-LSTM, for each
child node, there is a separate forget gate (fj) which al-
lows the model to selectively incorporate information for the
parent node from the child nodes. For each child node, the
corresponding cell state and forget gate values are then mul-
tiplied and finally all of these values are combined together
to compute the forget gate value of the parent node. Then,
the cell state (cj) and hidden state (hj) values of the parent
node are computed using this forget gate value as follows:

fj = �(Wfxj + Uf h̃j + bf ) (5)

f̃j =
X

2Cj

fj · c (6)

cj = ij · c̃j + f̃j (7)
hj = oj · tanh(cj) (8)

In the N-ary tree-LSTM, each parent node contains iden-
tical cell and hidden states for each of its children. The in-
ternal gate values and forget gates are computed as follows:

ij = �(Wixj +
NX

◆=1

Ui ◆h̃j l + bi) (9)

oj = �(Woxj +
NX

◆=1

Uo ◆h̃j l + bo) (10)

c̃j = tanh(Wcxj +
NX

◆=1

Uc ◆h̃j l + bc) (11)

fjk = �(Wfxj +
NX

◆=1

Uf j◆hj l + bf ) (12)

Just like in the child sum tree-LSTM, the final forget gate of
the parent node is computed by multiplying the correspond-
ing forget gate and cell state values and then summing them



(Eq. 13). The cell state (Eq. 7) and new hidden state (Eq. 8)
values are computed as before.

f̃j =
NX

◆=1

fj◆ · cj◆ (13)

Ahmed, Samee, and Mercer (2019a) introduced self atten-
tion for such tree structured recursive neural networks. It in-
corporates three matrices: query, key, and value. They are
calculated as follows:

key = !kMk s.t. !k 2 Rd⇥d (14)

value = !vMv s.t. !v 2 Rd⇥d (15)

query = !qMq s.t. !q 2 Rd⇥d (16)

For the child sum tree, the Ms are the concatenations of all
of the child nodes’ word vectors for a corresponding par-
ent node, whereas in the N-ary tree-LSTM the word vectors
under a constituent are concatenated. Then these key, value,

and query matrices are aligned considering the representa-
tion’s dimension (Eq. 17).

align 2 Rn⇥n = (query)T key · (1/
p
d) (17)

where n is the number of offspring nodes under any par-
ticular parent node and d is the normalizing factor. Then,
softmax is applied over this align matrix to compute the
attention probability matrix ↵ 2 Rn⇥n. Finally, batch-wise
matrix multiplication is applied between the attention matrix
↵ and the matrix value to compute the attentive hidden states
h̃ 2 Rn⇥d. Rows of this matrix are concatenated to produce
the final hidden representation of the parent node for both
the child sum and N-ary tree-LSTM.

Tree-Transformers
Ahmed, Samee, and Mercer (2019b) applied the concept
of transformer (Vaswani et al. 2017) over the constituency
and dependency trees, and introduced two tree-transformer
models: constituency tree-transformer and dependency tree-
transformer. Both of these models apply multi-branch atten-
tion over the child nodes’ representations. Just like the self
attention mechanism, this approach also uses key, query, and
value matrices as follows:

↵ = softmax(
query key

T

p
dk

)value (18)

where dk is the dimension of the key. For the multi-branch
attention (�i), n copies of key, query, and value matrices are
created with the appropriate weight matrices !i, where n is
the number of branches, and finally a scaled dot product at-
tention (Eq. 18) is applied over each branch (Eq. 19).

�i = ↵i2[1,n](queryi !
query

i , keyi !
key

i , valuei !
value

i ) (19)

A residual connection is then employed over these ten-
sors followed by a layer-wise batch normalization layer. A
scaling factor ⌧ is applied in the end to produce the branch
representation (Eq. 20). Following this, position-wise CNN
(PCNN) is applied over every �̃i (Eq. 21). The attention-
encoded representations of these semantic subspaces are

computed by applying weighted summation where each
�i 2 Rn is a hyperparameter (Eq. 22). In the end, with
BranchAttn, another residual connection is employed.
This is then fed to a tanh layer and an element-wise sum-
mation (EWS) is performed to generate the parent node rep-
resentation (Eq. 23). Here, � and �̃ represent the input and
the outcome of the attention module, respectively.

�̃i = LayerNorm(�i!
b
i + �i)⇥ ⌧i (20)

PCNN(x) = Conv(Relu(Conv(x) + b1)) + b2 (21)

BranchAttn =
nX

i=1

�iPCNN(�̃i) (22)

ParentNodeRep = EWS(tanh((�̃+ �)! + b)) (23)

Ensemble Architecture
After exploring the tree-structured LSTMs and transformer
models, we investigated two ensemble models. In the first
approach, we train all the models, and then, when testing,
each sentence is fed to all of the models. All of the models
predict the class label individually. Finally, a winner takes
all method (Roy et al. 2018) is applied over these individ-
ual models’ selections for the final class prediction. In our
second approach, we utilize only the dependency and con-
stituency tree-transformers. Each sentence is fed to both of
the tree-transformers and then the sentence representations
are concatenated and then fed to the following MLP for
class label prediction. The intention behind investigating this
model is to find out what happens if features containing both
word-level dependencies and phrase-level information are
used for the PPI relation extraction task. Figure 1 provides a
sketch of this ensemble architecture.

Experiments and Performance Analysis
This section reports the results found for the tree-structured
neural network models and the ensemble architectures with
F1-score as the performance evaluation metric. It also pro-
vides a statistical description of the five standard benchmark
PPI corpora for this task along with the pre-processing steps.
The PPI problem has been formulated as a classification
task. Finally, the performance of the tree-structured models
are compared against the most prominent sequential and the
previous tree-structured architectures used to solve this task.

For evaluating the investigated tree-structured neural net-
works, the models are tested on the five standard PPI cor-
pora: AIMed (Bunescu et al. 2005), BioInfer (Pyysalo et al.
2007), IEPA (Ding et al. 2001), HPRD50 (Fundel, Küffner,
and Zimmer 2007), and LLL (Nédellec 2005). For all the ex-
periments, the converted version of the corpora are used as
mentioned by Ahmed et al. (2019). All of the protein names
in all five corpora are substituted with three special symbols:
PROT0, PROT1 and PROT2. If any two proteins in a sen-
tence are being considered as interacting with each other,
they are replaced with PROT1 and PROT2. All the men-
tioned proteins in the sentence which are not being consid-
ered for interaction identification are replaced with PROT0.
As an example, the sentence “LEC induced maximal migra-
tion of CCR1 and CCR8 transfected cells at 89.3 nmol/L and



Sentence

Protein names replaced by generic names

Dependency 
Tree-Transformer

Constituency 
Tree-Transformer

Sentence
Representation 

(RepDT)

Sentence
Representation 

(RepCT)

Concatination 
(RepDT, RepCT)

Classification

Extracted Relation

Figure 1: Working procedure of the ensemble architecture
combining features from the dependency and constituency
tree-transformers.

cell adhesion at 5.6 nmol/L.”, the protein names LEC, CCR1
and CCR8 are replaced by PROT1, PROT2 and PROT0 ac-
cordingly as this time the intention is to retrieve the relation
between LEC and CCR1. When the target proteins are LEC
and CCR8, then these two protein names are replaced by
PROT1 and PROT2 accordingly, and CCR1 would be re-
placed with PROT0. The nature of an interaction between
two proteins can be positive or negative. For the above men-
tioned two examples, the interactions are positive whereas
the interaction between CCR1 and CCR8 is negative as there
is no interaction between them. There are three possible in-
teractions present in this example sentence. So, the mod-
ified corpora contains three variants of this sentence with
two positive and one negative interaction. In a similar way,
for every sentence in the corpora with ⌘ proteins present in
it, there are ⌘C2 variants in the modified corpora. The de-
mographics of these five modified corpora are presented in
Table 1. In addition, representing the protein names by a few
generic names enhances the data further by having multiple
samples for these generic names rather than a few samples
for each real protein name. For the evaluation of these mod-
els, we used 10-fold cross validation using StratifiedK-Fold
from the scikit-learn package.

Both of the tree-LSTM models are initialized with learn-
ing rate 0.1. For each iteration, if the validation accuracy
drops compared to the previous iteration, the learning rate is
reduced by 80%. The batch size is 10. The memory and at-
tention dimension is set to 150. The MLP hidden dimension
is 300. Training dropout is used with value 0.1. For the train-
ing of the tree-LSTM models the ‘SGD’ optimizer is used.

Table 1: Overall demographics of the modified corpora

Corpus Original Positive Negative
Sentences Interactions Interactions

AIMED 1,995 1,000 4,834
BioInfer 1,100 2,534 7,132

IEPA 486 335 482
HPRD50 145 163 270

LLL 77 164 166

For the tree-transformer models, the initial learning rate is
0.1 and the same learning rate decay approach is used. Six
PCNN layers are used in the multi-branch attention block.
For the experiments, six branches of attention layer are used.
Each PCNN layer is composed of 2 CNNs. The first CNN
layer employs 341-dimension kernels without any dropout
and 300-dimension kernels are used in the second layer of
the CNN. In the second layer, dropout 0.1 is used in all cases
just like Ahmed, Samee, and Mercer (2019b). The hyperpa-
rameters of the tree-transformers are updated using the ‘Ada-
grad’ optimizer. All of the models (both tree-LSTMs and
tree-transformers) are fed with Bio-RoBERTa (Gururangan
et al. 2020) word embeddings which are not updated during
training. We also tried fasttext (Bojanowski et al. 2017) and
Bio-WordVec (Zhang et al. 2019) embeddings. However, the
best results are with the Bio-RoBERTa embeddings.

Table 2 shows the performance of the tree-structured
LSTMs, transformers, and the ensemble architectures over
the five benchmark PPI corpora and some prominent sequen-
tial and tree-structured models for comparability. Among
these five, AIMed contains many erroneous annotations. In
addition, having nested named entities makes it more diffi-
cult to work with (Ahmed et al. 2019).

From this table it is clearly visible that all of the tree-
structured models outperform the sequential models for
this task. Among the two investigated tree-LSTM mod-
els (child sum and N-ary treeLSTM), the child sum tree-
LSTM with self-attention performs slightly better than the
N-ary tree-LSTM with self attention (average F1-scores are
84.67% and 84.28% accordingly). Overall, both of the inves-
tigated tree-transformer models perform better than the tree-
LSTM models. However, among the tree-transformer archi-
tectures, the dependency tree-transformer (DT-transformer)
performs better than the constituency tree-transformer (CT-
transformer) and it happens for all five corpora. So, these
two observations suggest that neural networks based on de-
pendency trees perform slightly better than the models built
on constituency trees. The reason behind this may be that be-
cause the sentences here are quite complex in nature, word-
level dependency provides more useful information.

For each dataset among these four standalone models, DT-
Transformer has the highest F1-scores (87.88%, 95.37%,
82.56%, 88.01%, and 91.46% for the AIMed, BioInfer,
IEPA, HPRD50, LLL datasets, accordingly). For the Ensem-
ble - Winner Takes All model, a little performance boost is
achieved for four datasets. For HPRD50, the F1-score is a
bit less than the two transformer models. It achieves a bet-
ter average F1-score compared to all of the standalone mod-



Table 2: Performance evaluation of the models by means of F1-score (in %). The sequential models are marked with †. Here,
NT-LSTM: 2-ary tree-LSTM over constituency tree, CT-LSTM: Child sum tree-LSTM over dependency tree, CT-Transformer:
Constituency tree-transformer and DT-Transformer: Dependency tree-transformer, DT+CT-Transformer: Combination of de-
pendency and constituency tree-transformers.

Methods AIMed BioInfer IEPA HPRD50 LLL Avg.
Chang et al. (2016) † 60.6 69.4 71.4 71.5 80.6 70.7
Hsieh et al. (2017) † 76.9 87.2 76.31 80.51 78.3 79.84
Zhang et al. (2018) † 56.4 61.3 75.1 63.4 76.5 66.54
Yadav et al. (2020) † 77.33 76.33 - - - 76.83

Tai, Socher, and Manning (2015) 80.6 88.1 76.4 82.0 84.8 82.38
Ahmed et al. (2019) 81.6 89.1 78.5 81.3 84.2 82.94

NT-LSTM + Self Attn 82.99 90.87 78.2 83.22 86.14 84.28
CT-LSTM + Self Attn 83.06 91.01 78.9 83.59 86.78 84.67

CT-Transformer 87.51 94.95 82.5 87.73 91.32 88.80
DT-Transformer 87.88 95.37 82.56 88.01 91.46 89.06

Ensemble - Winner Takes All 87.94 95.48 82.63 87.95 91.49 89.09
DT + CT-Transformer 88.15 96.01 83.24 88.94 92.18 89.70

els. The DT+CT-Transformer model combines features from
both of the constituency and dependency tree transform-
ers. The reasons behind choosing only the tree-transformer-
based models are that both of the transformer-based models
perform better than the LSTM-based models and both the
word dependency-level and phrase-level information are al-
ready being provided by the transformer-based models. The
DT+CT-Transformer outperforms all other models for ev-
ery dataset with an average F1-score 89.70%. Furthermore,
this approach is computationally less expensive compared
to the previously mentioned ensemble model as that method
requires four models to be trained whereas for the DT+CT-
Transformer only two models and an additional MLP are
required to be trained. Additionally, the results can be ex-
plained by means of the attention value on each node as pre-
sented by Ahmed, Samee, and Mercer (2019b).

Conclusions
In this work, we have explored various tree-structured neural
network models for the PPI relation extraction task. The ex-
perimental results show that the tree-structured models, be-
cause of having additional syntactical information at word
dependency and phrase-level, perform better than the se-
quential models. Among all of the explored models, the
combined model with both the dependency and constituency
tree-transformers performs the best as it utilizes both the
word dependency and constituency information. However,
opportunities for improvement in this field remain. In the fu-
ture we want to explore graph-based neural network models
with attention mechanisms, and to leverage additional fea-
tures for this task. Further analysis of results based on AUC
and ROC curves can be performed.

Acknowledgments
We thank the reviewers for their constructive comments.
This research is partially funded by The Natural Sciences
and Engineering Research Council of Canada (NSERC)
through a Discovery Grant to R. E. Mercer.

References
Ahmed, M.; Islam, J.; Samee, M. R.; and Mercer, R. E.
2019. Identifying protein-protein interaction using tree
LSTM and structured attention. In 2019 IEEE 13th Int. Conf.

on Semantic Computing (ICSC), 224–231.
Ahmed, M.; Samee, M. R.; and Mercer, R. E. 2019a. Im-
proving tree-LSTM with tree attention. In 2019 IEEE 13th

Int. Conf. on Semantic Computing (ICSC), 247–254.
Ahmed, M.; Samee, M. R.; and Mercer, R. E. 2019b. You
only need attention to traverse trees. In Proc. 57th Ann.

Meet. of the Assoc. for Computational Linguistics, 316–322.
Blaschke, C.; Andrade, M. A.; Ouzounis, C. A.; and Valen-
cia, A. 1999. Automatic extraction of biological information
from scientific text: protein-protein interactions. In Seventh

Int. Conf. on Intell. Systems for Molecular Biology, 60–67.
Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017.
Enriching word vectors with subword information. Trans. of

the Association for Computational Linguistics 5:135–146.
Bunescu, R.; Ge, R.; Kate, R.; Marcotte, E.; Mooney, R.;
Ramani, A.; and Wong, Y. W. 2005. Comparative exper-
iments on learning information extractors for proteins and
their interactions. Art. Intell. in Medicine 33(2):139–155.
Chang, Y.-C.; Chu, C.-H.; Su, Y.-C.; Chen, C. C.; and Hsu,
W.-L. 2016. Pipe: a protein–protein interaction passage ex-
traction module for biocreative challenge. Database 2016.
Chen, D., and Manning, C. D. 2014. A fast and accurate
dependency parser using neural networks. In Proceedings

of the 2014 Conference on Empirical Methods in Natural-

Language Processing (EMNLP), 740–750.
Ding, J.; Berleant, D.; Nettleton, D.; and Wurtele, E. 2001.
Mining medline: abstracts, sentences, or phrases? In Bio-

computing 2002. World Scientific. 326–337.
Erkan, G.; Özgür, A.; and Radev, D. 2007. Semi-supervised
classification for extracting protein interaction sentences us-
ing dependency parsing. In Proc. of the 2007 Joint Confer-

ence on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning, 228–237.



Fundel, K.; Küffner, R.; and Zimmer, R. 2007.
Relex—relation extraction using dependency parse trees.
Bioinformatics 23(3):365–371.
Gururangan, S.; Marasović, A.; Swayamdipta, S.; Lo, K.;
Beltagy, I.; Downey, D.; and Smith, N. A. 2020. Don’t stop
pretraining: Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, 8342–8360.
Howard, O. Z.; Dong, H. F.; Shirakawa, A.-K.; and Oppen-
heim, J. J. 2000. LEC induces chemotaxis and adhesion by
interacting with CCR1 and CCR8. Blood, The Journal of the

American Society of Hematology 96(3):840–845.
Hsieh, Y.-L.; Chang, Y.-C.; Chang, N.-W.; and Hsu, W.-L.
2017. Identifying protein-protein interactions in biomedical
literature using recurrent neural networks with long short-
term memory. In Proc. of the Eighth Int. Joint Conf. on

Natural Language Proc. (Vol. 2: Short Papers), 240–245.
Kim, S.; Yoon, J.; Yang, J.; and Park, S. 2010. Walk-
weighted subsequence kernels for protein-protein interac-
tion extraction. BMC Bioinformatics 11(1):1–21.
Krallinger, M.; Leitner, F.; Rodriguez-Penagos, C.; and Va-
lencia, A. 2008. Overview of the protein-protein interaction
annotation extraction task of BioCreative II. Genome Biol-

ogy 9(2):1–19.
Leeuwenberg, A.; Buzmakov, A.; Toussaint, Y.; and Napoli,
A. 2015. Exploring pattern structures of syntactic trees for
relation extraction. In International Conference on Formal

Concept Analysis, 153–168.
Li, J.; Luong, M.-T.; Jurafsky, D.; and Hovy, E. 2015. When
are tree structures necessary for deep learning of representa-
tions? arXiv preprint arXiv:1503.00185.
Miwa, M.; Sætre, R.; Miyao, Y.; and Tsujii, J. 2009. A rich
feature vector for protein-protein interaction extraction from
multiple corpora. In Proc. of the 2009 Conf. on Empirical

Methods in Natural Language Processing, 121–130.
Miyao, Y.; Sagae, K.; Sætre, R.; Matsuzaki, T.; and Tsu-
jii, J. 2009. Evaluating contributions of natural language
parsers to protein–protein interaction extraction. Bioinfor-

matics 25(3):394–400.
Nédellec, C. 2005. Learning language in logic-genic inter-
action extraction challenge. In Proceedings of the Learning

Language in Logic 2005 Workshop (LLL05), 31–37.
Peng, Y., and Lu, Z. 2017. Deep learning for extract-
ing protein-protein interactions from biomedical literature.
arXiv preprint arXiv:1706.01556.
Peng, Y.; Wei, C.-H.; and Lu, Z. 2016. Improving chemi-
cal disease relation extraction with rich features and weakly
labeled data. Journal of Cheminformatics 8(1):1–12.
Pyysalo, S.; Ginter, F.; Heimonen, J.; Björne, J.; Boberg, J.;
Järvinen, J.; and Salakoski, T. 2007. Bioinfer: a corpus
for information extraction in the biomedical domain. BMC

Bioinformatics 8(1):1–24.
Pyysalo, S.; Airola, A.; Heimonen, J.; Björne, J.; Ginter,
F.; and Salakoski, T. 2008. Comparative analysis of five
protein-protein interaction corpora. BMC Bioinformatics

9(3):1–11.

Quan, C.; Hua, L.; Sun, X.; and Bai, W. 2016. Multichannel
convolutional neural network for biological relation extrac-
tion. BioMed Research International 2016.
Roy, S. S.; Hossain, S. I.; Akhand, M.; and Murase, K. 2018.
A robust system for noisy image classification combining
denoising autoencoder and convolutional neural network.
International Journal of Advanced Computer Science and

Applications 9(1):224–235.
Sætre, R.; Sagae, K.; and Tsujii, J. 2007. Syntactic features
for protein-protein interaction extraction. In 2nd Int. Sympo-

sium on Languages in Biology and Medicine (Short Papers),
volume 319 of CEUR Workshop Proceedings.
Sledzieski, S.; Singh, R.; Cowen, L.; and Berger, B. 2021.
Sequence-based prediction of protein-protein interactions: a
structure-aware interpretable deep learning model. bioRxiv.
Tai, K. S.; Socher, R.; and Manning, C. D. 2015. Improved
semantic representations from tree-structured long short-
term memory networks. arXiv preprint arXiv:1503.00075.
Tikk, D.; Thomas, P.; Palaga, P.; Hakenberg, J.; and Leser,
U. 2010. A comprehensive benchmark of kernel methods
to extract protein–protein interactions from literature. PLoS

Computational Biology 6(7):e1000837.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in Neural Information Pro-

cessing Systems 30.
Yadav, S.; Ekbal, A.; Saha, S.; Kumar, A.; and Bhat-
tacharyya, P. 2019. Feature assisted stacked attentive short-
est dependency path based Bi-LSTM model for protein–
protein interaction. Knowledge-Based Systems 166:18–29.
Yadav, S.; Ramesh, S.; Saha, S.; and Ekbal, A. 2020. Re-
lation extraction from biomedical and clinical text: Unified
multitask learning framework. IEEE/ACM Transactions on

Computational Biology and Bioinformatics.
Yao, Y.; Du, X.; Diao, Y.; and Zhu, H. 2019. An integration
of deep learning with feature embedding for protein–protein
interaction prediction. PeerJ 7:e7126.
Zhang, M.; Zhang, J.; Su, J.; and Zhou, G. 2006. A compos-
ite kernel to extract relations between entities with both flat
and structured features. In Proc. of the 21st Int. Conference

on Computational Linguistics and 44th Annual Meeting of

the Association for Computational Linguistics, 825–832.
Zhang, Y.; Lin, H.; Yang, Z.; and Li, Y. 2011. Neighborhood
hash graph kernel for protein–protein interaction extraction.
Journal of Biomedical Informatics 44(6):1086–1092.
Zhang, Y.; Lin, H.; Yang, Z.; Wang, J.; Zhang, S.; Sun,
Y.; and Yang, L. 2018. A hybrid model based on neu-
ral networks for biomedical relation extraction. Journal of

Biomedical Informatics 81:83–92.
Zhang, Y.; Chen, Q.; Yang, Z.; Lin, H.; and Lu, Z. 2019.
Biowordvec, improving biomedical word embeddings with
subword information and mesh. Scientific data 6(1):1–9.
Zhao, Z.; Yang, Z.; Lin, H.; Wang, J.; and Gao, S. 2016.
A protein-protein interaction extraction approach based on
deep neural network. International Journal of Data Mining

and Bioinformatics 15(2):145–164.


