Reinforcement learning algorithms for the Untangling of Braids

Abdullah Khan*, Alexei LisitsaT, Alexei Vernitski *

* University of Essex, Colchester CO4 3SQ, United Kingdom. (ak20749,asvern)@essex.ac.uk

TUniversity of Liverpool, L69 3BX, United Kingdom. A.Lisitsa@liverpool.ac.uk

Abstract

We use reinforcement learning algorithms (Q-Learning and
Deep Q-Learning) to tackle the problem of untangling braids
and to compare the results of both algorithms. The idea is
to use multi-agent (two competing players) based approach
to tackle the problem of untangling braids. We interface
the braid untangling problem with the OpenAl Gym envi-
ronment, a widely used way of connecting agents to rein-
forcement learning problems. The results provide evidence
that the more we train the system, the better the untangling
player gets for both approaches at untangling braids. The
comparison of both approaches produces interesting results,
where Q- learning performs better while dealing with braids
of shorter length, whereas DQN performs slightly better
while dealing with braids of longer length.

Introduction

Braids are mathematical objects from low-dimensional
topology which can be successfully encoded with se-
quences of letters and, therefore, studied using algebra
or, as we do in this study, using some computer-scientific
approach. A braid on n strands consists of n ropes whose
left-hand ends are fixed one under another and whose right-
hand ends are fixed one under another; you can imagine that
the braid is laid out on a table, and the ends of the ropes
are attached to the table with nails. Figures 1, 2, 3 show
examples of braids on 3 strands.

oSS

Figure 1: Braid aabaBBAB

Few of the interesting application of braids, e.g., in
the field of biology they can be used to examine the
ability of enzymes to add or remove tangles from DNA; in
chemistry, they allow us to describe the structure of topo-
logical stereoisomers, or molecules with the same atoms but
different configurations; whereas in physics, graphs used in
braids to create interesting models for examining the way in

Copyright © 2021by the authors. All rights reserved.

A\ /N
VA

Figure 2: Braid ba BABaBb

which particles interact. In the context of the current study,
untangling braids with reinforcement learning is important
as a step towards using reinforcement learning to solve a
more general mathematical problem known as the word
problem in groups; making progress in this direction is
generally useful for training computers to prove theorems
and conduct mathematical research.

Two braids are equivalent to one another if they can be
transformed into one another by shifting and twisting the
middle parts of the ropes (without touching the ends of
the ropes). For example, the two braids in Figures 1, 2 are
equivalent to one another, although it is difficult to see it.
They are also what is called trivial braids, in the sense that
they are equivalent to the braid without any intersections
of ropes, shown in Figure 3.

Figure 3: The trivial braid without intersections

Now let us explain how braids can be represented conve-
niently in the computer. A braid is considered as a sequence
of its simple fragments; for braids on 3 strands, these are
the fragments shown in Figure 4, which we denote by
A,a,B,b,1 (and which in mathematical papers are usually
denoted by o7, 01_1, o9, 02_1, 1).

Using this convenient notation, we can now say that the
braids in Figures 1, 2 are aaba BBAB and baBABaBb.
This notation is useful not only for describing braids, but
also for checking if two braids are equivalent. Indeed, it is
known that two braids are equivalent if and only if one can
be transformed to the other using rules called the second

XX
XX

Figure 4: Braid fragments A, a, B, b, 1

Reidemeister move and the third Reidemeister move. The
second Reidemeister move is the rule stating that Aa and
aA are equivalent to 11, and Bb and bB are also equivalent
to 11. (An algebraist studying braids in the context of group
theory would also add that 11 is equivalent to 1; however,
we felt that the performance of our Al will be best if we
omit this non-essential rule). The third Reidemeister move
is the rule stating that AB A is equivalent to BAB. A recent
study (Gukov et al., 2021) uses RL to untangle knots using
a version of Reidemeister moves known as Markov moves.
The novelty of our approach is the use two agents: one for
tangling and one for untangling.

Recent success of reinforcement learning (RL) in many
interesting problems, such as playing the game of Go
(Silver et al.,, 2017), playing card games (Brown and
Sandholm, 2019), and autonomous driving (Shalev-Shwartz
et al., 2016) mostly involve the participation of more than
one single agent/player, and such problems are modeled as
multi-agent RL. (MARL) problems. MARL addresses the
autonomous agents that operate in a common environment,
each of which aims to optimize its own long term return
by interacting with the environment. Multi-agent systems
can be placed in different groups e.g., cooperative, com-
petitive depending on the types of settings. In particular,
in the cooperative setting, agents collaborate to optimize a
common long-term return; while in the competitive setting,
they have opposite goals with reward of one agent is the
loss of the other.

We experimented with braids with three strands using
(Q-Learning and Deep Q-Learning), where following trans-
formations are allowed, Aa=aA=11; Bb=bB=11; Al=1A;
al=1a; B1=1B; bl=1b, ABA=BAB. We approach the prob-
lem of untangling braids on 3 strands as a game played
between two players, player 1 (the tangling player) and
player 2 (the untangling player). Player 1 starts with an
untangled braid as in Figure 3 with specific length of the
input and applies Reidemeister moves to tangle the braid.
For example, braids in Figures 1, 2 were produced by player
1 after approximately 150 games against player 2. Once
player 1 has created a tangled braid after a fixed number
of steps, that would be the input for the player 2 (untangling
player); the task of player 2 is to apply Reidemeister moves
to reach a fixed target output, that would be all 1’s (untan-
gled state). We use OpenAl Gym (Brockman et al., 2016)
an interface which provides a number of environments to
implement reinforcement learning problems. The benefit
of interfacing with OpenAl Gym is that it is an actively
developed interface which allows to add environments and
features useful while training the model.

The paper is organized as follows: in the following sec-

tion we discuss the Background taking into consideration
basics towards Q-Learning and Deep Q-Learning, state-of-
the-art, setting up the environment to actions and rewards.
In Section 3, we mention about the experimental details
and results.

Background

In this section, we formally highlight the important con-
cepts for the understanding and development of the project,
and also highlight some of the relevant work in the domain
of reinforcement learning specifically for games.
Reinforcement learning is the training of machine learning
models to make a sequence of decisions, where the agent
learns to achieve a goal in an uncertain, potentially complex
environment(Kaelbling et al., 1996). In RL, there is a game-
like situation, where the computer employs trial and error
to come up with a solution to the problem. Basically, during
the whole learning process, the agent gets either rewards
or penalties for the actions it performs. The overall goal is
to maximize the total rewards.

Q-Learning

Maximum predicted reward, given
new state and all possible actions

—_——~
New Q(s,) = Q(s,) +0[R(s,a) + max Q'+ a) ~Q(s,a)
—_————— N——.— ——

Current

New Reward
Q-Value Q-Value

Learning Discount

As discussed in our p%g{/eious workra&:(han et al., 2021),
Q-learning makes use of the Bellman equation. Where the
first term, Q(s, a) is the value of the current action in the
current state, alpha is the learning rate that controls how
much the difference between previous and new Q-value is
considered. Gamma is a discount factor, which is used to
balance between immediate and future reward. The updates
occur after each step or action, and ends when an episode is
done (reaching the terminal point). The agent will not learn
much after initial episodes, but eventually with enough
exploring (steps and episodes) it will converge and learn
the optimal Q-values.

Algorithm 1: Q-learning (Sutton and Barto, 2018)

Initialize Q(s,a), for all s € ST, a € A(s).

foreach episode do

Initialize S;

foreach step of episode do

Choose A from S using policy derived from
Q (e.g., -greedy);

Take action A, observe R, S’;

Q(S,A) + Q(S,A) + «[R+
7 max, Q(S',a) — Q(S, A)];

S« S

until S is terminal
end foreach

end foreach

The pseudo code mentioned in the algorithm 1, the Q-
table is initialized to all zeros indicating that the agent

doesn’t know anything about the world. Then as the
episode begins, the agent performs an action from the
given state currently it resides, and observe the next state
with respective reward, the agent remains in the new state
and repeat the process until a terminal state is reached.
Instead of selecting actions based on the maximum future
reward it selects an action at random. Acting randomly
is important because it allows the agent to explore and
discover new states that otherwise may not be selected
during the exploitation process.

DQN

A core difference between Deep Q-Learning and Q-
Learning is the implementation of the Q-table. DQN re-
places the regular Q-table with a neural network. Rather
than mapping a state-action pair to a Q-value, a neural
network maps input states to (action, Q-value) pairs.

One of the property of DQN is that the learning process
uses 2 neural networks. These networks have the same
architecture but different weights. After every fixed num-
ber of defined steps, the weights from the main network
are copied to the target network, resulting towards more
stability in the learning process. Both the main and target
network maps input states to output actions. These output
actions actually represent the model’s predicted Q-value.
The action that has the largest predicted Q-value is the
best known action at that state.

After choosing an action, it’s time for the agent to per-
form the action and update the main and target networks ac-
cording to the Bellman equation. Deep Q-Learning agents
use Experience Replay to learn about their environment
and update the main and target networks. The main network
weights are then copied to the target network weights every
fixed number of defined steps.

Experience Replay is the act of storing and replaying
game states (current state, action, reward, next state) that
the RL algorithm is able to learn from. The use of Ex-
perience replay updates the parameters of the algorithm
using saved and stored information from previously taken
actions. It learns in small batches to avoid inaccurate
dataset distribution of different states, actions, rewards, and
next states that the neural network will see. Importantly, the
agent doesn’t need to train after each step.

From the pseudo code mentioned in algorithm 2, we first
Initialize main and target neural networks, also an empty
replay memory D. The agent selects and executes actions
according to an Epsilon Greedy Strategy. The algorithm
modifies standard Q-learning to make it suitable for training
large neural networks without diverging. It uses experience
replay in which we store the agent’s experiences at each
time-step (current state, action, reward, next state) in a
dataset, pooled over many episodes (where the end of an
episode occurs when a terminal state is reached) into a
replay memory. During the inner loop of the algorithm we
apply mini batch updates to sample experiences, drawn at
random from the pool of stored samples. DQN performs
rollouts in an environment, collects data and then uses this
data to train, by performing Stochastic gradient descent on
the Mean Squared Error Loss of the predicted Q values for

Algorithm 2: DQN Algorithm (Mnih et al., 2015)

Initialize replay memory D to capacity N
Initialize action-value function Q _
Initialize target action-value function)
while not converged do

Choose A from S using policy derived from @

(e.g., -greedy);

Agent takes action a, observes reward r, and
next state s’;

Store transition in the(s,a,r,s’,done) in the
experience replay memory D

if enough experiences in D then
Sample a random minibatch of N
transition from D
for every transition (s;,a;,7;,8;,done;) in
minibatch do
if done; then

| V=T
else ~
‘ Yi = 15 +ymazeeaQ(s), a’)
end if
end for

Calculate the]1\9551
L=1/N335(Q(si, ai) — i)

Update @ using the SGD algorithm by
minimising the loss £

Every C' steps copy weights from Q to Q
end if

end while

a given state. Slowly, after many iterations of training, both
neural networks will approximate the optimal Q values.

State-of-the-Art

Currently there is a lot of research going on towards
building hybrid solutions (Khan et al., 2019b,a) integrating
Deep Learning with rule-based reasoning. In our current
research we use rules discussed in Sectionl to implement a
Reinforcement learning based solutions taking into account
Q-Learning and Deep Q-Learning.

Q-learning was first proposed by Watkins in 1989
(Watkins and Dayan, 1992), since then it has become the
popular option for reinforcement learning-based agents,
however it is less effective for the complicated and high
state space problem. Whereas, comparatively the use of
DQN is more of a recent phenomena proposed by (Mnih
et al., 2015) which is more effective for high state space
problems. The extensions of DQN include double DQN
(Van Hasselt et al., 2016), dueling DQN (Wang et al.,
2016), deep recurrent Q-network (Hausknecht and Stone,
2015).

RL has had extensive success in complex control en-
vironments like Atari games(Mnih et al., 2013), Sokoban

planning (Feng et al., 2020). It is also applied to games
where there is real time strategy (RTS) such as bots
(Wender and Watson, 2014), another reinforcement learning
based approach (Amato and Shani, 2010) chooses from a
set of predefined strategies in turn based strategy based
games. In such approaches the training process is separated
into several stages, each of them responsible for different
aspects of the game (such as combat, movement and ex-
ploration). Other works in strategic fighting games (Graepel
et al., 2004) map the possible states of the game based on
low-level formations, such as distance between the fighters
and health points. The reward function used are simple: a
positive reward is granted every time the agent strikes the
opponent and a negative reward is given when the agents
gets hit. Moreover, Q-learning and DQN have been widely
applied to dynamic treatment regimes (DTR) (Chakraborty
and Moodie, 2013; Tsiatis et al., 2019), where the goal is
to find sequential decision rules for individual patients that
adapt to time-evolving illnesses.

A very recent study (Gukov et al.,, 2021) introduced
natural language processing into the study of knot theory,
and they also utilize reinforcement learning (RL) based
algorithms to find sequences of moves and braid relations
that simplify knots and can identify unknots by explicitly
giving the sequence of actions. Another study (Grannen
et al., 2020) proposed HULK a perception-based system
that untangles dense overhand and figure-eight knots in lin-
ear deformable objects from RGB observations. It exploits
geometry at local and global scales and learns to model
only task-specific features, instead of performing full state
estimation, to enable fine-grained manipulation.

Environment Settings

To use the Q-Learning and DQN algorithms, it is necessary
to setup the environment with which the agent interacts by
performing certain actions while being in a specific state.
We have used OpenAl Gym to setup the environment which
focuses on the episodic setting of reinforcement learning,
where the agent’s action chains are broken down into a
sequence of episodes. Each episode begins by randomly
sampling the agent’s initial state and continues until the
environment reaches a terminal state. We experimented
with different settings of the environment. For example,
reward shaping which is an effective technique for in-
corporating domain knowledge into reinforcement learning
(RL) algorithms. Using reward shaping the system would
like to accumulate positive rewards as much as possible,
whereas negative rewards encourage to reach a terminal
state as quickly as possible to avoid accumulating penalties.
The rewards mentioned in the table 1, table 2 are of the
type reward shaping. In the second setting, we explored
reward propagation. In this setting, rewards are assigned
at the end of episode, e.g. as the game is played between
the two agents, a positive reward is associated to the final
move for the agent which wins the game, and a negative
reward for the agents final move that loses the game. In
the final setting, we experimented with hybrid approach
reward shaping and propagation, where agentl is trained
using reward shaping and agent2 using reward propagation.

Action Reward

CARET_MOVE 0
ROTATE_TRUE 0
ROTATE_FALSE 0

REPLACE_TRUE 1

REPLACE_BACK -1
REPLACE_FALSE -1
ROTATE_REPLACE | 0

Table 1: Reward associated for each action for agent2

Action Reward
CARET_MOVE 0
ROTATE_TRUE 0
ROTATE_FALSE 0
REPLACE_TRUE -1

REPLACE_BACK 1
REPLACE_FALSE -1
ROTATE_REPLACE | 0

Table 2: Reward associated for each action for agentl

In this paper, we present results of the reward shaping, as
they were more encouraging as compare to the other two
settings we discussed.

Inside the environment for our use-case; we use caret
of a fixed length 5 which moves back and forth over the
string. The length of the caret represents a sub-string, where
the sub-string represents the state of the agents. The caret
moves over five characters at a time in the whole string and
the five characters inside the string would represent the state
of the agent. It is not feasible to consider the whole string,
as for each character of the string, there are 5 options:
[(a’, ’A’, °b’, ’B’, ’I’]. This setting would result in large
state-space representation, and not feasible for Q-learning
problem, as Q-table is constructed for each state-action pair.

Actions and Rewards

The table 1, shows the rewards associated with each action
for braids with 3 strands for the untangling agent, whereas,
table 2 shows the reward associated for each action of
the tangling agent. As we have already discussed all such
actions that bring us closer to the target output value will
have the higher rewards and all such actions which takes
us away from the target output will have lesser rewards.

The following actions does the following,
action_replace, replaces (Aa to 11, aA to 11, Bb
to 11, bB to 11), action_replace_back replaces (11 to
Aa, 11 to aA, 11 to Bb, 11 to bB), action_rotate_replace
moves the position of the strings (ABA to BAB, BAB
to ABA), action_rotate moves the position of the
strings (aA to Aa, aA to Aa, bB to Bb, Bb to bB). The
choice of the reward selection is inspired from few of the
works recently published (Gawlowicz and Zubow, 2018;
Mendonga et al., 2015).

Experiments and Results

All the experiments were performed in a system with
Nvidia Geforce GTX 1080Ti with 3584 cores running at

1583 MHz frequency on 11GB onboard GDDR5X memory.
We have used CUDA version 10.2 to compile the code. The
code was implemented in python using gym library. To
measure the performance, we utilize the metrics provided
by OpenAl Gym interface, namely rewards over episodes
of a particular environment. In each episode there are two
players (playerl = tangling player, player2= un-tangling)
the first player starts with a fixed length of the input tries
to tangle the braid during the fixed number of defined steps
applying the transformations discussed in Section 1, that
tangled state is the input for the second player which again
applies the same transformations to un-tangle the braid.

To implement the Q-Learning algorithm the idea is to
find the optimal action-selection policy using a Q function.
Our goal is to maximize the value function Q. The Q-table
helps us to find the best action for each state. It helps us
to maximize the expected reward by selecting the best of
all possible actions. Q(state, action) returns the expected
future reward of that action at that state. This function can
be estimated using Q-Learning, which iteratively updates
Q(s,a) using the Bellman equation. Initially the agents
explore the environment and update the Q-Table, over the
period of time agents will start to exploit the environment
and start taking better actions. We ran the experiments for
the braid length from 7 to 11 to observe the results for
1000 and 10000 episodes respectively. The choice of hyper-
parameters selection was looked from some of the work in
the literature (Gelana Tostaeva, 2020).

To implement the DQN algorithm we use the pyTorch
library, it is an open source machine learning library. The
idea behind the DQN algorithm is to use function approx-
imators (i.e. Neural Networks) in order to approximate
the action-values Q-values for any given state. The DQN
algorithm has 2 such networks: One is the train network
(i.e. the one that is being trained), and the other one is
the target network, which is what the train network is
trying to approximate. By using the bellman equation, we
approximate Q(s, a) with the train network and Q (s’,
a’) with the target network. This is essentially what DQN
does: It performs rollouts in an environment, collects data
and then uses this data to train, by performing gradient
descent on the Mean Squared Error Loss of the predicted
Q values for a given state and the same values but by
substituting Q(s, a) (for the action ‘a‘ that was taken) with
the bellman equation value. These training iterations take
place every fixed number of episodes e.g. in the current case
after (n=100) episodes, and after those the target network
copies the weights of the train network. Slowly, after many
iterations of training, both neural networks approximate
the optimal Q values. During evaluation, for any given
state, the algorithm will pick the action that corresponds
to the highest Q value, and this is how the agent interacts
with the environment. DQN uses the replay buffer, the
replay buffer is filled at each step during training in an
episode. For example, if the maximum number of steps in
an episode are 20, and agent trains every 100 episodes,
data stored in the replay buffer will be 100 *20 = 2000.
To balance exploration and exploitation, we are using the
epsilon-greedy strategy. We first promote full exploration

ep=1000 | ep=10000 | ep=1000 ep=10000
Input length steps=20 | steps=20 | steps=100 | steps=100
7 44.3% 71.9% 60.8 % 78.6%
8 32.1% 65.2% 35.6% 71.7%
9 32.3% 57.2% 33.7% 58%
10 25% 58.1% 21.9% 50.9%
11 25.2% 55% 26.9% 47.9%

Table 3: probability of player2 of winning the game,
ep=episodes using Q-Learning

ep=1000 | ep=10000 | ep=1000 ep=10000
Input length steps=20 | steps=20 | steps=100 | steps=100
7 18.9% 75.4% 36.9% 81%
8 15.6% 60.27% 26% 78.4%
9 10.6% 74.2% 19.7% 79.7%
10 10.% 61.9% 13.6% 77.1%
11 9.5% 54.5% 11.9% 75.9%

Table 4: probability of player2 of winning the game,
ep=episodes using DQN

by setting epsilon =1 and update it after each episode to
slowly decrease it to 0.05. We ran the experiments for the
braid length from 7 to 11 to observe the results for 1000
and 10000 episodes respectively.

In order to evaluate the performance of the RL agents,
we run them on braids with different lengths. It is observed
from Table 3 and 4, for lesser number of training episodes
and larger length of the input the probability of the tangling
player to win the game is more, whereas when we train
the system for higher number of episodes the probability
of the un-tangling player to win the game is more times
at the end of training. Looking at the respective tables 3
and 4, it can be observed the untangling player for Q-
Learning performs better with lesser number of episodes
and lesser number of maximum defined steps, on the other
hand with 10000 episodes and maximum number of steps
e.g., 100 the performance of DQN agent is more stable
and better then as compared to the Q-learning agent. To
sum up Untangling player for Q-learning agent performs
better when dealing with lesser number maximum defined
steps agent can take to perform transforms, whereas the
performance of DQN agent becomes more stable while
dealing with higher number of episodes and more steps
agent can take to untangle the braids.

Conclusion

In this study the main focus is the comparison of the
results using Q-Learning and DQN for the problem of
untangling of braids. The problem of untangling of braids
was approached as a competitive game between two play-
ers, where the tangling agent starts with a fixed length
of input and applies certain rules to tangle the braid, that
tangled braid is the input for the untangling agent which
again applies the rules to untangle the braid, ultimately
if second agent successfully untangles the braid it wins
the round or vice versa. We observe the more we train
the model, the more is the probability of the second agent
to win the game. The results shows the performance of

Q-Learning is slightly better when compared with DQN
for the untangling of braids. In the future we would
like to do a more comprehensive comparative analysis of
other RL based approaches (Proximal Policy Optimization
(PPO), Asynchronous Advantage Actor Critic (A3C), Trust
Region Policy Optimization (TRPO)) with the mentioned
approaches in this paper.

References

C. Amato and G. Shani. High-level reinforcement learning
in strategy games. In AAMAS, volume 10, pages 75-82,
2010.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

N. Brown and T. Sandholm. Superhuman ai for multiplayer
poker. Science, 365(6456):885-890, 2019.

B. Chakraborty and E. Moodie. Statistical methods for
dynamic treatment regimes, volume 2. Springer, 2013.

D. Feng, C. P. Gomes, and B. Selman. Solving hard ai
planning instances using curriculum-driven deep rein-
forcement learning. arXiv preprint arXiv:2006.02689,
2020.

P. Gawtowicz and A. Zubow. ns3-gym: Extending ope-
nai gym for networking research. arXiv preprint
arXiv:1810.03943, 2018.

Gelana Tostaeva. Introduction
to g-learning with openai gym.

A. Khan, A. Vernitski, and A. Lisitsa.
braids with multi-agent g-learning.
arXiv:2109.14502, 2021.

M. R. Mendonga, H. S. Bernardino, and R. F. Neto.
Simulating human behavior in fighting games using
reinforcement learning and artificial neural networks. In
2015 14th Brazilian symposium on computer games and
digital entertainment (SBGames), pages 152—159. IEEE,
2015.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529-533, 2015.

S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe,
multi-agent, reinforcement learning for autonomous driv-
ing. arXiv preprint arXiv:1610.03295, 2016.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354-359, 2017.

R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction. MIT press, 2018.

A. A. Tsiatis, M. Davidian, S. T. Holloway, and E. B.

Untangling
arXiv preprint

https://medium.com/swlh/introduction-to-g-leduabémdynamic Treatment Regimes: Statistical Methods

-with-openai-gym-2d794dal0£3d, April 2020.

T. Graepel, R. Herbrich, and J. Gold. Learning to fight.
In Proceedings of the International Conference on Com-
puter Games: Artificial Intelligence, Design and Educa-
tion, pages 193-200. Citeseer, 2004.

J. Grannen, P. Sundaresan, B. Thananjeyan, J. Ichnowski,
A. Balakrishna, V. Viswanath, M. Laskey, J. E. Gonzalez,
and K. Goldberg. Learning robot policies for untangling
dense knots in linear deformable structures. In Confer-
ence on Robot Learning (CoRL), 2020.

S. Gukov, J. Halverson, F. Ruehle, and P. Sulkowski.
Learning to unknot. Machine Learning: Science and
Technology, 2(2):025035, 2021.

M. Hausknecht and P. Stone. Deep recurrent g-learning for
partially observable mdps. In 2015 aaai fall symposium
series, 2015.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Re-
inforcement learning: A survey. Journal of artificial
intelligence research, 4:237-285, 1996.

A. Khan, L. Bozzato, L. Serafini, and B. Lazzerini. Visual
reasoning on complex events in soccer videos using
answer set programming. In GCAI, pages 42-53, 2019a.

A. Khan, L. Serafini, L. Bozzato, and B. Lazzerini. Event
detection from video using answer set programing. In
CILC, pages 48-58, 2019b.

for Precision Medicine. CRC press, 2019.

H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement
learning with double g-learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 30,
2016.

Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot,
and N. Freitas. Dueling network architectures for deep
reinforcement learning. In International conference on
machine learning, pages 1995-2003. PMLR, 2016.

C. J. Watkins and P. Dayan. Q-learning. Machine learning,
8(3-4):279-292, 1992.

S. Wender and I. Watson. Combining case-based reasoning
and reinforcement learning for unit navigation in real-
time strategy game ai. In International Conference on
Case-Based Reasoning, pages 511-525. Springer, 2014.

