A Simple Direct Uncertainty Quantification Technique Based on Machine Learning Regression

Katherine E. Brown and Douglas A. Talbert
Department of Computer Science
Tennessee Technological University
1 William L. Jones Drive
Cookeville, TN 38505

Abstract
Epistemic uncertainty quantification provides useful insight into both deep and shallow neural networks’ understanding of the relationships between their training distributions and unseen instances and can serve as an estimate of classification confidence. Bayesian-based approaches have been shown to quantify this relationship better than softmax probabilities. Those approaches to uncertainty quantification, however, require multiple Monte-Carlo samplings of a neural network, augmenting the neural network to learn distributions for its weights, or utilizing an ensemble of neural networks. Current research has yielded several techniques that estimate uncertainty deterministically but tend to struggle in independent evaluation using real-world data and tasks compared to stochastic, or variational, techniques such as dropout. In this work, we propose a technique that allows Bayesian dropout uncertainty to be estimated using learned regression models. We find that, once trained, this allows dropout uncertainty to be effectively and efficiently predicted.

Introduction
Neural networks have produced state-of-the-art results in a variety of domains; however, their use in safety-critical domains is limited due to their black-box nature and complex architectures (Begoli, Bhattacharya, and Kusnezov 2019). This has paved the way for research in uncertainty quantification and explainable artificial intelligence. These techniques strive to improve trust between human practitioners and their artificial intelligence counterparts.

Epistemic uncertainty provides a numerical measure of how similar an input instance is to the data on which the neural network has been trained and can be used to effectively indicate to human practitioners which instances should be referred to domain experts (Brown and Talbert 2019; Leibig et al. 2017). This comes at the cost, however, of augmenting neural network architectures and requiring multiple, expensive inferences using a large neural network. This underlies the motivation for more efficient epistemic uncertainty estimates that can be ascertained in production. Current research has yielded several techniques that estimate uncertainty deterministically (Jain et al. 2021; Van Amersfoort et al. 2020) but tend to struggle in independent evaluation using real-world data and tasks compared to stochastic, or variational, techniques such as dropout (Postels et al. 2021). This work presents a simple (but effective) regression-based technique for modeling the epistemic uncertainty produced by dropout (Gal and Ghahramani 2016).

Background

Uncertainty Quantification
Uncertainty quantification is a growing field of study that provides information related to the reliability of neural networks in safety-critical tasks (Begoli, Bhattacharya, and Kusnezov 2019) and can provide insight into the robustness of the model given its training distribution or the data input to the model for inference (Gal and Ghahramani 2016; Kendall and Gal 2017). In deep learning, two types of uncertainty are considered, epistemic and aleatoric. Aleatoric uncertainty is beyond the scope of this work.

Epistemic uncertainty is a measure of how confident the model is inferring for a data point given the model’s training
data (Gal and Ghahramani 2016). This encompasses suitability of the training data at representing the decision space and the suitability of the model at determining classification boundaries within the training data (i.e., is the model complex enough?).

A common and accessible technique to measure epistemic uncertainty is Bayesian dropout (Gal and Ghahramani 2016). Dropout is a regularization technique that prevents overfitting in a deep neural network by zero-ing out, or removing, weights. When a neural network is sampled several times, this creates an ensemble effect by which epistemic uncertainty can be measured. Bayesian dropout has been applied in various critical fields (Leibig et al. 2017; Brown and Talbert 2019; Michelmore, Kwiatkowska, and Gal 2018).

Uncertainty quantification has been used to improve machine learning performance when paired with a human expert (Leibig et al. 2017; Brown and Talbert 2019). This task uses an uncertainty quantification technique to identify predictions that are most likely to be wrong. These predictions are referred to as uncertainty rejection calibration. Brown and Talbert (Brown and Talbert 2019) demonstrated that Bayesian dropout identifies likely incorrect predictions better than softmax probabilities.

Direct Uncertainty Measures

One shortcoming of Bayesian dropout (and other “variational inference” techniques) is the computational overhead required. To ascertain uncertainty, multiple inferences are typically required leading to a high computational cost for inferring uncertainty. This has led to the rising studies of Direct Uncertainty Methods (DUM). DUM techniques attempt to ascertain uncertainty using less computational complexity, typically through a single inference of a proxy algorithm. A comprehensive survey of current DUM techniques is given in (Postels et al. 2021); however, we briefly summarize selected techniques. First, Van Amersfoort et al. used radial basis function networks to identify when data cannot be easily clustered among known classes (Van Amersfoort et al. 2020). Jain et al. models epistemic uncertainty by modeling predictive error. Postels et al. notes that such techniques struggle with potentially erroneous datapoints in real-world scenarios with a significant drop in performance compared to variational inference techniques including dropout.

Methodology

In this section, we present our technique for approximating dropout-based epistemic uncertainty using machine learning regression.

Dropout Uncertainty Estimation

Let \(f \) be a machine learning regression algorithm, either multi-class regressor or multiple single-class regressors. To infer epistemic uncertainty using \(f \), we use the original input features into the classification neural network and the output probability vector of predictions from the classification neural network. Thus, for an \(m \)-class classification problem, if \(\vec{x} \in \mathbb{R}^n \) is the input vector of \(n \) features, \(\vec{p} \in [0,1]^m \) the vector of output probabilities from classification network, then the vector of uncertainty estimates \(\vec{u} \in \mathbb{R}^m \) is calculated as \(\vec{u} = f(\vec{x}, \vec{p}) \). We include \(\vec{p} \) since uncertainty estimates should be conditioned on both the input data and the classification probabilities produced by the classification neural network.

Successfully training the uncertainty regression model requires augmenting the classification neural network’s training data. When training the classification neural network, we use a classification training set to determine model weights through backpropagation, a classification validation set for model selection, and a test set. The regression-based uncertainty estimator is trained on the regression training set and evaluated using the test set. The regression training set combines both the classification training set and the classification validation set along with their classification probability vectors. These are then labeled with their dropout uncertainty. This enables the regression model to learn from examples outside of the classification training set’s data distribution. The regression test set uses the same data as the classification test set.

Experimental Methodology

Datasets and Classification Models

We use three datasets in our experiments. Two datasets (Adult Income and MNIST) are classic benchmarking datasets for machine learning algorithms, and the third dataset is real-world critical-care dataset. We detail each dataset below as well as the classification models trained for their respective classification tasks.

Adult Income The first dataset is a modified version of the Adult Income dataset from the University of California at Irvine (UCI) Machine Learning Repository (Dua and Graff 2017). This dataset reflects a binary classification task to predict whether a person has an income greater than or less than $50,000. Features in this dataset include population demographics including age, gender, race, and marital status as well as occupation information including level of education, occupation type, work class (e.g., government, private, self-employed), and hours per week. Categorical features are represented using one-hot encoding. Continuous features are normalized using z-values. The hidden layer architecture for the classification task consists of a single hidden layer with a width of 128 neurons and is trained for 50 epochs.

MNIST The second dataset is the MNIST dataset (Deng 2012), which contains images of size \(28 \times 28 \) that depict handwritten numerical digits between 0 and 9. The multi-class classification task is to determine which digit is depicted per image. The features used by the classification neural network are the pixels of the \(28 \times 28 \) image that are converted into a one-dimensional vector of length 784. The pixel values are normalized by dividing each by 255 (the maximum pixel value). The hidden layer architecture for the classification task consists of 2 hidden layers of width 75 neurons each and is trained for 100 epochs.
Trauma Triage Registry The final dataset is a subset of a trauma registry from a Level 1 Trauma Center that uses 32 features to determine if a patient has an Injury Severity Score (ISS) of at least 15. An ISS \(\geq 15 \) indicates the patient is severely injured and should be triaged as such (Sasser and others 2012). Features include physical parameters (e.g., systolic/diastolic blood pressures, heart rate, Glasgow Coma Scale score), anatomical criteria, mechanism of injury, age, and multiple computed injury scores (e.g., Revised Trauma Score and the Air Medical Prehospital Transport Score). Categorical features are represented using one-hot encoding. Continuous features are normalized using z-values. The hidden layer architecture for the classification task consists of two hidden layers with 75 neurons each and is trained for 100 epochs.

Classification Models For each classification task, we train a fully-connected neural network to learn a predictive model. Each dataset is split into 10 cross-validation folds with 10% of the training data in each fold used as a validation set during training of the neural network. Hidden layers use the Rectified Linear Unit (ReLU) as their activation functions, and each output layer uses the softmax function as its activation function. Dropout is applied before each hidden layer to calculate epistemic uncertainty (Gal and Ghahramani 2016). The ADAM optimization algorithm (Kingma and Ba 2014) is used for the MNIST dataset while the RMSprop optimization function (Hinton, Srivastava, and Swersky 2012) is used for the Adult Income and Trauma Triage Registry datasets. We use the Keras API (Chollet and others 2015) with Tensorflow (Abadi and others 2015) to implement all neural networks in this work.

Uncertainty Estimation Models We use Keras and Tensorflow (Chollet and others 2015; Abadi and others 2015) to implement the regression neural networks. For each dataset, we consider a network with hidden layers of width 512, 255, 128, 64 neurons. We used mean squared error as the regression loss function and the ADAM algorithm as the optimization function (Kingma and Ba 2014). Each network is trained for 50 epochs.

Experiments To evaluate uncertainty estimator effectiveness, we consider the following experiments. First, we evaluate our uncertainty estimator using following regression metrics: mean absolute error of the estimated uncertainty compared to the “true” dropout uncertainty and the \(R^2 \) coefficient of the estimated uncertainty compared to the “true” dropout uncertainty. Mean absolute error is defined as the sum of the absolute value of the difference between the true and predicted values divided by the total number of data points (De Myttenaere et al. 2016). The \(R^2 \) coefficient measures how predictable the dependent variable (e.g., predicted uncertainty) given the independent variables (e.g., input features and predicted probability variables) (Di Bucchianico 2008). These measures demonstrate the effectiveness of the regression-based estimation of Bayesian dropout estimation uncertainty.

To measure the efficacy of our estimation technique as an uncertainty measure, we compare the rejection classification results using both true dropout uncertainty and estimated uncertainty. Rejection classification refers to the shift in accuracy (or other desired classification metric) as the most “uncertain” predictions are removed from the calculation of the classification metric.

We perform these experiments using both multiple, single output regression models (“multi-single”) that estimate uncertainty per class as well as a single multi-output regression model that estimates uncertainty for all classes in a single model (“multi-output”).

Results Uncertainty Estimator Effectiveness Table 1 presents traditional regression metrics for estimating uncertainty on unseen evaluation data. Average \(R^2 \) is the average value of the \(R^2 \) correlation coefficient between true uncertainty and predicted uncertainty generated from our technique. We also report mean absolute error between true uncertainty and predicted uncertainty generated from our technique.

Table 1: Uncertainty regression results for Adult Income data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Uncertainty Output Type</th>
<th>Average (R^2)</th>
<th>Mean Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Income</td>
<td>Multi-Single</td>
<td>0.964</td>
<td>0.012</td>
</tr>
<tr>
<td>Adult Income</td>
<td>Multi-Output</td>
<td>0.966</td>
<td>0.011</td>
</tr>
<tr>
<td>Trauma Triage</td>
<td>Multi-Single</td>
<td>0.961</td>
<td>0.011</td>
</tr>
<tr>
<td>Trauma Triage</td>
<td>Multi-Output</td>
<td>0.963</td>
<td>0.010</td>
</tr>
<tr>
<td>MNIST</td>
<td>Multi-Single</td>
<td>0.730</td>
<td>0.022</td>
</tr>
<tr>
<td>MNIST</td>
<td>Multi-Output</td>
<td>0.665</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Figure 1 presents the uncertainty calibration results for each dataset, estimated uncertainty, and dropout uncertainty. These plots show the change in accuracy as the most uncertain predictions are removed from accuracy calculations.

To measure the efficacy of our estimation technique as an uncertainty measure, we compare the rejection classification results using both true dropout uncertainty and estimated uncertainty. Rejection classification refers to the shift in accuracy (or other desired classification metric) as the most “uncertain” predictions are removed from the calculation of the classification metric.

To measure the efficacy of our estimation technique as an uncertainty measure, we compare the rejection classification results using both true dropout uncertainty and estimated uncertainty. Rejection classification refers to the shift in accuracy (or other desired classification metric) as the most “uncertain” predictions are removed from the calculation of the classification metric.

To measure the efficacy of our estimation technique as an uncertainty measure, we compare the rejection classification results using both true dropout uncertainty and estimated uncertainty. Rejection classification refers to the shift in accuracy (or other desired classification metric) as the most “uncertain” predictions are removed from the calculation of the classification metric.

Figure 1: Uncertainty calibration of proposed technique compared to dropout uncertainty
Multi-class network and an R would like to explore how XAI could be applied to epistemic uncertainty associated with a prediction. Finally, we can also extend to other measures of uncertainty such as aleatoric uncertainty, to provide a more complete picture of the uncertainty associated with a prediction. Moreover, this technique can be extended to other measures of uncertainty such as aleatoric uncertainty, to provide a more complete picture of the uncertainty associated with a prediction. Finally, we would like to explore how XAI could be applied to epistemic uncertainty estimators to determine if it can provide insight into causes of epistemic uncertainty.

References