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Abstract

New drug discovery is a time-consuming and costly
process. Several drugs have been in clinical trials for
a very long period. Finding a new target for existing
medications can be an effective strategy to reduce the
lengthy and costly drug development cycle. Drug re-
purposing (or repositioning) is a cost-effective approach
for finding drugs that can treat diseases for which those
medications are not currently prescribed. Drug repur-
posing to treat both common and rare diseases is be-
coming an attractive option because it involves using
already approved drugs. Through drug repurposing, we
can identify promising drugs for further clinical inves-
tigations. This paper presents machine learning tech-
niques for drug repurposing to find existing drugs as
an alternate medication for other diseases through drug-
drug, drug-genes, drug-enzymes, and drug-targets inter-
actions. We develop a model to find similar drugs that
can treat similar diseases. We then use the model to pre-
dict potential candidate drugs for rare orphan diseases.

Introduction
Drug discovery is a time-consuming and costly process. By
conservative estimates, a single drug takes about 15 years
and more than 800 million dollars to get approved. Because
the cost and time for new drug development are so high, it
is estimated that for every dollar spent on the research and
development of a new drug, less than a dollar of value is re-
turned on average (Berger et al. 2014). Thus in recent years,
drug repurposing is becoming more popular. Drug repurpos-
ing (or repositioning) is a cost-effective approach for finding
drugs that can treat diseases for which they are not currently
prescribed. Using drug repurposing as a basis for drug dis-
covery can reduce the search space and expedite the discov-
ery process. There are several advantages of drug repurpos-
ing over the traditional drug discovery process. First, since
the repurposed drug has already been clinically approved
and found to be sufficiently safe in humans, it is unlikely
to fail from the safety point of view. Secondly, the cost of
repurposing is low with minimum investment. (Pushpakom
et al. 2019).

Computational methods are becoming a popular choice
for drug repurposing. Computational methods require exten-
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sive knowledge about a drug like its chemical composition,
gene expression, side-effects, the interaction between a drug
and its associated target, relationships between targets, and
relationships between those targets and diseases for drug re-
purposing. Although it is difficult to understand the overall
picture because of heterogeneous information sources and
data unavailability (March-Vila et al. 2017), computational
methods are still helpful for identifying promising drugs for
further clinical investigations.

In this work, we use a similarity-based technique with
different machine learning algorithms to discover potential
drug-target interaction. First, we use different drug informa-
tion like side effects, gene expression, enzymes, etc., to find
similar drugs. Then, based on the notion that similar drugs
may treat similar diseases, we focus on a smaller group of
similar drugs to experiment with different machine learn-
ing models. After that, we select the best machine learning
(ML) model based on performance metrics. Finally, we use
the best model to predict potential existing drugs that might
treat some rare orphan diseases.

The rest of this paper is organized as follows: the next sec-
tion presents related works on computational methods for
drug repurposing. Then, in other sections, we discuss the
data sets used for experiments, experimental setup, perfor-
mance analysis, conclusion, and future works.

Related Works
Since drug repurposing is an attractive option for drug dis-
covery or for finding drug substitutes, there is prior work
in this field. In addition, research involving computational
methods are becoming popular because they are less expen-
sive, and the experiments are fast. Therefore, this section
discusses some existing research for drug repurposing using
computational methods.

There are different computational methods for drug repur-
posing like molecular docking, network-based mapping, and
machine learning-based methods (Pushpakom et al. 2019).
Molecular docking is a structure-based computational strat-
egy that predicts the binding of a ligand (for example, a
drug) with a target protein and exploits the prior knowledge
of drug-target interaction to find potential interaction of drug
with a particular target. While there has been some work us-
ing this method (Dakshanamurthy et al. 2012), there are is-
sues with it. For example, getting 3D structures of protein



targets of interest is not easy.
Network-based methods involve creating networks of var-

ious entities associated with drugs and targets. In these mod-
els, the nodes in the network represent either drugs, dis-
eases, targets, side effects, or gene expressions, and edges
represent the interactions (or relationships) between them.
Among the works based on network-based methods, Chen
and Liu (Cheng et al. 2012) computed drug-based similar-
ity, target-based similarity, and network-based similarity to
predict drug-target interaction.

Machine learning-based methods typically use feature ex-
traction and model fitting and evaluation. Several works us-
ing machine learning techniques for drug repurposing are
reported in the literature. Machine learning-based methods
can also be divided into feature vector-based approaches
and similarity-based approaches (Ding et al. 2013). In fea-
ture vector-based approaches, feature vectors are generated
using information like drugs’ chemical descriptors, target
sequences, etc. Any standard machine learning model can
be used to predict drug-target interaction. Similarity-based
methods typically integrate drug-drug similarity and target-
target similarity information into features and use standard
machine learning algorithms for predicting drug-target in-
teractions. PREDICT (Gottlieb et al. 2011) is a similarity-
based machine learning framework that applies logistic re-
gression to features based on drug-drug similarity (using
drug-protein interaction, sequence, and gene-ontology) and
disease-disease similarity (using disease-phenotype and hu-
man phenotype ontology).

Data
We use the drug and drug-related information from het-
erogeneous sources for our experiments. For example, we
use drug-target interactions, drug-gene associations, drug-
enzyme associations, and drug-side effect information from
the different sources as mentioned in Table 1.

Table 1: List of sources for data related Drug, Target, Gene,
Side Effects and Enzyme

Type Source Data
Drug-Target DrugBank 12,148
Drug-Gene DGIdb 22,000

Drug-Side Effects Stanford 433,000
Drug-Enzyme NCBI 4,300

The DrugBank database (Wishart et al. 2017) is a unique
bioinformatics and cheminformatics resource that combines
detailed drug data with comprehensive drug target informa-
tion. We deduce drug-target relationship data from the Drug-
Bank database from 12,148 drug entries, including 2,556 ap-
proved small molecule drugs, 1,285 approved biotech (pro-
tein/peptide) drugs, 130 nutraceuticals, and over 5,865 ex-
perimental drugs.

Drug-gene interaction data were obtained from DGIdb
(Coffman et al. 2017). DGIdb provides links between genes
and their known or potential drug association. In addition,
the Stanford Digital repository (Stanford Digital Repository
2005) was used to obtain drug-side effects data.
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Figure 1: Architecture of Experimental Setup

Drug-enzyme interaction data were obtained from NCBI
(National Library of Medicine 1996) (National Center
for Biotechnology Information). The National Center for
Biotechnology Information provides access to biomedi-
cal and genomic information. We also used the ChemBL
(Gaulton et al. 2016) database to review genomic data and
chemical compounds information.

Orphan data was used to collect data related to different
categories of rare diseases and their associations with genes.
The Orphanet Rare Disease Ontology (ORDO) (Kibbe et al.
2014) was jointly developed by Orphanet and the European
Bioinformatics Institute (EMBL-EBI). It provides informa-
tion on rare diseases like relationships between diseases,
genes, other relevant features, etc. and serves as a useful re-
source for the computational analysis of rare diseases. Ta-
ble 2 shows the number of rare diseases that were chosen
for testing the trained model.

Table 2: List of rare diseases collected from Orphan data

Disease class Data
Eye-related 30

Gene-related 16,253
Lung-related 131

Abdomen-related 193
Skin-related 766

Experimental Setup
Our experiments trained and compared different machine
learning models to see which performed best. Then, we use
the best model to predict drugs for rare orphan diseases. The
architecture of the experimental setup is shown in Fig. 1.

Data Pre-processing
The data collected from the different sources had more in-
formation than was needed. We had to filter them to get only
the data related to drugs, targets, genes, enzymes, and side
effects. Some filtered fields included drug synonym names
for the Spanish language, dosage information, drug manu-
facturer information, and PubMed information. We also re-
moved duplicate records. Any drug that has missing data
was removed from the training set. DrugBank data was the
primary source for matching drugs based on drug names ob-
tained from other resources. The DrugBank ID was used as
the primary identifier of any particular drug. After filtering



Figure 2: Elbow Plot

the data, we saved data from each source into a separate CSV
file.

Merging

This step merged the data from all the CSV files contain-
ing drug-target information, drug-gene associations, drug-
enzyme associations, and drug-side effects information into
a single CSV. We used a python-based Pandas (McKinney
and others 2010) library for this task. At the end of this step,
we had a single drug dataset file having targets, genes, en-
zymes, and side effects as its features.

Clustering

Based on the notion that similar drugs might treat similar
diseases, we sought similar drugs based on associated tar-
gets, enzymes, genes, and side effects. To find similar drugs
based on those associations, we used clustering. We chose
k-means as our clustering algorithm. We used the elbow
method to identify the value of k (number of clusters). The
elbow plot obtained is shown in Figure 2. We chose eight as
the number of clusters. After getting the clusters, we focused
on only one of the clusters as each cluster represented col-
lections of similar drugs based on targets, enzymes, genes,
and side effects. We chose the cluster with the maximum
number (277) of drugs. We used this cluster (277 drugs) to
experiment with different machine learning models.

Prediction

We split the dataset obtained from the clustering into train-
ing and test datasets. Then, we trained five different pre-
diction models: Decision Trees, Random Forest, Support
Vector Machines, Naive Bayesian classifier, and K-Nearest-
Neighbor on target, gene, side effects, and enzyme features
to predict the drugs they associate. Next, we used 10-fold
cross-validation to assess the predictive performance for
each model. Third, we used the test data to calculate the
performance score. Fourth, we compared the test results of
these models using different evaluation metrics and chose
the best model as our prediction model. Last, we used this
best model to predict which existing drugs are candidates
to treat rare diseases. While predicting, we repeated our ex-
periment many times for each rare disease and kept records
of the predicted drugs. Later, we considered the top 5 most
frequently predicted drugs as candidate drugs for that rare
disease.

Figure 3: Comparison of AUROC

Performance Analysis
Evaluation Metrics
The evaluation metrics typically used in the analysis of ML
models are recall, precision, F1-score, and area under the
ROC curve. We use the same for our experiments. In gen-
eral, high values of recall, precision, F1-score, and area un-
der the ROC curve are desired. Similarly, we plot True Pos-
itive Rate against False Positive Rate to get the Receiver
Operating Characteristic (ROC) curve. The area under the
ROC curve (AUROC) is a standard measure of comparison
between models.

Experimental Results
We experimented with different ML models, and the results
for all models are shown in Table 3. As shown in Table 3,
Random Forest outperformed all other models in all four
evaluation metrics.

Table 3: Comparison of classifiers

Classifier Precision Recall F1-Score AUROC
Decision Tree 0.610 0.593 0.579 0.593

Random Forest 0.827 0.826 0.826 0.827
K-NN 0.809 0.809 0.809 0.809

Naive Bayes 0.537 0.532 0.508 0.532
SVM 0.520 0.520 0.520 0.520

The Receiver Operating Characteristic (ROC) curves for
all five models are shown in Figure 3. It can be seen that
Random Forest and K-Nearest-Neighbors have higher AU-
ROCs and outperform the other three models, which each
have AUROC values near 0.5. Random Forest produced the
highest value of AUROC with 0.827.

Discussion
With Random Forest as the best prediction model from
the evaluation metrics, we used it to predict associations
between existing drugs and rare orphan diseases. We per-
formed multiple prediction runs for each disease class and
kept the records of predicted drugs. In Table 4, we present
the five most frequently predicted drugs under each disease
class. The drugs that are listed in Table 4 are not used for



rare orphan diseases. Instead, our model predicted that these
existing drugs might treat rare orphan diseases. For exam-
ple, the drug ZIPRASIDONE is predicted as a candidate
for rare orphan diseases related to the eyes. In today’s prac-
tice, ZIPRASIDONE is used to treat bipolar disorder. So,
the listed drugs are identified as candidate drugs that can be
further investigated as potential treatments for rare orphan
diseases.

Table 4: Predicted Drugs for Orphan Rare Diseases

Disease
class

Predicted Drugs for Repurposing

Eye ZIPRASIDONE, CABERGOLINE, AMITRIP-
TYLINE, OLANZAPINE, CLOZAPINE

Gene PONATINIB, NINTEDANIB, LENVATINIB,
HEPARIN, FOSTAMATINIB

Lung SORAFENIB, HEPARIN, REGORAFENIB,
PONATINIB, LENVATINIB

Abdomen METHYSERGIDE, ROPINIROLE, LISURIDE,
KETAMINE, PIPOTIAZINE

Skin YOHIMBINE, LOFEXIDINE, NICARDIPINE,
CABERGOLINE, NORTRIPTYLINE

Conclusion and Future Work
Drug repurposing is an attractive option for drug discov-
ery and for finding substitutes for existing drugs. This pa-
per describes a machine learning-based drug repurposing ap-
proach that first fuses heterogeneous information from var-
ious sources. Then, based on the notion that similar drugs
might treat similar diseases, it constructs drug clusters based
on their targets, enzymes, genes, and side effects. The best
prediction model is then identified. In our experiments, Ran-
dom Forest outperformed the other models. Lastly, the best
model is used (i.e., Random Forest) to identify potential ex-
isting drugs for rare orphan diseases.

This work only considered information from four sources:
drug-target, drug-side effects, drug-enzymes, and drug-
gene. Integrating data from more sources like protein-
protein interactions, 3-D chemical structures of drugs, etc.,
could improve the accuracy of predictions. Similarly, we
only experimented with a small cluster of drugs obtained
from k-means clustering. We could, in the future, use differ-
ent clustering techniques and experiments on a more signif-
icant data set as well.

While the results obtained are preliminary, this paper
demonstrates how machine learning techniques use for drug
repurposing. We anticipate this work will open an approach
for drug repurposing by fusing information from heteroge-
neous information sources.
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