Pseudo-visibility: A Game Mechanic Involving Willful Ignorance

Samuel Allen Alexander
The U.S. Securities and Exchange Commission

Arthur Paul Pedersen
The City College of New York

Abstract

We present a game mechanic called pseudo-visibility
for games inhabited by non-player characters (NPCs)
driven by reinforcement learning (RL). NPCs are incen-
tivized to pretend they cannot see pseudo-visible play-
ers: the training environment simulates an NPC to de-
termine how the NPC would act if the pseudo-visible
player were invisible, and penalizes the NPC for act-
ing differently. NPCs are thereby trained to selectively
ignore pseudo-visible players, except when they judge
that the reaction penalty is an acceptable tradeoff (e.g., a
guard might accept the penalty in order to protect a trea-
sure because losing the treasure would hurt even more).
We describe an RL agent transformation which allows
RL agents that would not otherwise do so to perform
some limited self-reflection to learn the training envi-
ronments in question.

Introduction

From Monte Carlo Tree Search to AlphaStar, there has been
much progress training new types of agents by means of let-
ting the agent simulate the environment. In this paper, we
go the other direction. We allow the environment to simu-
late the agent. This gives rise to new types of environments.
It would be hard to apply this strategy directly to human-
playable environments, as it is hard to simulate a human. But
the strategy can be used indirectly to endow human-playable
environments with novel gameplay mechanics. Namely: a
human-playable environment can be populated with Non-
Player Characters (NPCs) pre-trained in apparently not-
human-playable agent-simulating environments.

We will illustrate the above technique with a novel game
mechanic we call pseudo-visibility. NPCs can see pseudo-
visible players, but their pre-training incentivizes them to
ignore those players. This is different than true invisibility,
because the NPC can weigh said incentives against compet-
ing incentives. For example, if a pseudo-visible player gets
too close to a guarded treasure, the guard (who was previ-
ously ignoring the player) might strategically decide to re-
act to the player, calculating that the incentive to protect the
treasure outweighs the incentive to ignore the player. Us-
ing reinforcement learning (RL), these incentives can be nu-
merically fine-tuned. All else equal, the bigger the training

Copyright © 2021by the authors. All rights reserved.

penalties are for reacting to pseudo-visible players, the more
pseudo-visibility resembles invisibility.

The idea of an agent-simulating environment can be
traced back to Newcomb’s Problem (Nozick 1969). Inter-
est in the idea has picked up recently. Bell et al (2021) in-
vestigated so-called Newcomblike decision processes, envi-
ronments which can, at each step in the agent-environment
interaction, query the agent’s policy function as of that step.
Alexander et al (2022) investigated so-called extended en-
vironments, which can query how the agent would act in
response to arbitrary training (not just the training it has
actually received). The logic of ignorance in general has
also seen recent interest, see (Aldini, Graziani, and Tagli-
aferri 2020). Our contribution is to point out how these tech-
nologies can be used to create exotic game mechanics (de-
scribing one particular such mechanic). The high complexity
of such mechanics might make them somewhat impractical
(Johansson, Eladhari, and Verhagen 2012), but it is interest-
ing that they are theoretically possible.

The paper proceeds as follows. We work in deterministic
RL for simplicity. After formally defining pseudo-visibility,
we give examples of pseudo-visibility in games and draw
attention to its features in game-play. Current state-of-the-
art RL agents are not designed to base actions on their own
hypothetical behavior. We accordingly offer (in Definition
10) a method for equipping RL agents with some limited
self-reflection to help them learn these environments.

Pseudo-visibility
For the sake of simpler definitions, we will assume de-
terministic RL: policies are deterministic, environments’
observation-reward calculations are deterministic, and train-
ing is deterministic.

We are interested in games where NPCs are driven by RL
policies which are pre-trained before any actual player plays
the game. During pre-training, the “player” is another char-
acter (whose actions could be, for example, random, trained,
or even selected by the game’s designer in real-time). Thus,
in the following definitions, we will speak of “an NPC X
who co-inhabits a larger game together with another char-
acter Y,” with the unspoken understanding that in the final
game (when all the pre-training is done), Y will be played
by the game’s player. But in the definitions, we avoid refer-
ring to Y as player because we want to avoid confusing the

player (who drives Y') with the agent (who drives the NPC
X). So, in the following definitions, the character whom we
are intending to potentially become pseudo-visible is Y.

Definition 1. Suppose p is an RL environment intended to
train an NPC X to co-inhabit a larger game together with
another character Y. We say that p paints Y last if ;i com-
putes its tth observation Oy as Oy = P (S, D(Sy)), where:

1. Sy is an internal state (including information about Y')
which p maintains.

2. D is a function which paints the world (with state Sy) as
it would be seen through X ’s eyes, except that D does not
paint the character'Y .

3. P is a function which takes the image from D and adds
the character Y to it (or leaves it unchanged if, e.g., Y is
outside of X '’s field-of-view).

In the following definition, we assume the game in ques-
tion has a notion of whether or not the player is pseudo-
visible. For example, the player might become temporarily
pseudo-visible after drinking a pseudo-visibility potion or
casting a pseudo-visibility spell. The definition does not de-
pend on the specific in-game definition of what it means for
the player to be pseudo-visible, only that the game’s state
S; includes a Boolean variable pv, for the player’s pseudo-
visibility status.

Definition 2. Let 1 be an RL environment intended to train
an NPC X to co-inhabit a larger game together with another
character Y. Assume p paints 'Y last, and let P, D, S; be as
in Definition 1. Assume that the internal state S includes a
Boolean variable pv; (intended to represent whether or not
Y is pseudo-visible). For each rational number q € Q, the
result of taking Y ’s pseudo-visibility into account in |, with
penalty q, denoted vy q, is defined as follows.

Whenever iy 4 needs to compute an observation and re-
ward in response to the agent taking action A; in response
to observation O;_1 = P(S;_1, D(Si-1)), Wy,q computes
the observation and reward exactly as | does, except that:

e If pv; = True, then py,q queries the agent’s policy to
determine which action A} the agent would have taken
in response to O,_; = D(S;_1) instead of Oy_1 =
P(Si—1,D(Si-1)). If A} # Ay, then py,q subtracts q
from the reward p would output.

Informally, in Definition 2, p1y4 is the environment which
is identical to p except that the agent is incentivized to ignore
Y (whom we should think of as the player in a larger game)
any time Y is pseudo-visible. Specifically, if the agent does
not ignore Y (i.e., if the agent acts differently than it would
act if Y were not painted at all), then penalty ¢ is applied to
whatever reward the agent would otherwise receive for the
action in question.

Definition 3. Let G be a single-player game in which a
player interacts with various NPCs, and let ¢ € Q be a
rational-number penalty. Define a new game G, the result
of taking pseudo-visibility into account in G with penalty
q, to be the game identical to G except that for every NPC
X in G pre-trained in environment p as in Definition 2 (with
the player’s character as Y), in G, X is instead pre-trained
in fy,q.

The following lemma is trivial, but we state it because it
(and its proof) illustrate some subtle nuances.

Lemma 4. Let G be as in Definition 3. For each NPC x
in G, assume that during x’s pre-training, the policy func-
tion being trained is side-effect-free (i.e., calling said policy
Sfunction is read-only). Then G|, = G.

Proof. Since we are assuming deterministic training, it suf-
fices to show that z’s policy is trained the same for G|, as
for G. The way the policy is trained is based on the reward-
observation-action sequence when the agent training the pol-
icy interacts with the training environment. Let p be 2’s
training environment in the creation of G. So pyo is x’s
training environment in the creation of G{,. We argue by in-
duction that the reward-observation-action sequence is the
same when the policy is trained in as in 1y . For the base
case, the initial observation cannot differ in ;1 and py,o be-
cause no actions have taken place yet and p and p1yo only
differ in how they reward actions. The tth action A; is the
same in both sequences because, by induction, the policy has
been trained identically up until A; is chosen, and we are
assuming deterministic training (the policy may have been
called additional times in 1y,g, but the hypothesis is that
such additional calls have no side effects). And for ¢t > 0,
the ¢th reward and observation R; and O; are the same in
both sequences because they are deterministically computed
based on preceding sequences which (by induction) are the
same, and, although the action policy might be called an ad-
ditional time in f1y,g, that call has no side effects, and the
penalty resulting from that extra call (if the agent fails to
ignore a pseudo-visible Y)) is 0. O

As a particularly treacherous example where Lemma 4
would fail, imagine that the action policy being trained
chooses actions by invoking a deterministic pseudo-random
number generator (pseudo-RNG) and thus, implicitly,
changes the internal state of that pseudo-RNG. Then a sub-
sequent call to the same action policy might generate a dif-
ferent action, even if the policy is not further trained in be-
tween calls. This would mean that when py,, queries the
policy in order to compare the most recent action A; with the
hypothetical action A} which X would have taken if Y were
invisible, the resulting A} might not reliably capture which
hypothetical action X would have taken if ¥ were invisi-
ble, because by the time p1y,4 calculates A}, X has already
used the policy to calculate A;, which could have polluted
the pseudo-RNG. Thus if pseudo-randomness is desired in
NPCs in G;, care should be taken to avoid such side-effects:
for example, give each policy its own isolated pseudo-RNG
and only update the pseudo-RNG’s internal state when the
policy is trained, not when the policy is called.

Behavior of NPCs in a game with pseudo-visibility

Pseudo-visibility differs from true invisibility. If the player
were truly invisible, the NPCs would not see the player, and
could not react to seeing the player whether they wanted to
or not. If the player is merely pseudo-visible, then NPCs see
the player but are incentivized to act as if they don’t, how-
ever, they may still choose to react to seeing the player be-

cause other incentives outweigh the incentive to ignore the
player. By choosing different values for ¢ in Definition 3
we could calibrate these tradeoffs. Large values of ¢ would
mean that NPCs would be incentivized to react to the player
only in dire circumstances; small positive values of ¢ might
only incentivize NPCs to ignore players whom they deem
harmless. Here are a few examples.

Example 5 (Guarded treasures). A guard protects a trea-
sure that the player might steal. Pseudo-visibility would in-
centivize the guard not to react to the player unless the
player seems likely to steal the treasure. Depending how
large the penalties are for losing the treasure vs. reacting
to the player, the guard might continue ignoring the player
until the player gets quite near.

Example 6 (Amusing erratic behavior). A street-racer
might deliberately swerve all over the road at all times
whether the player is nearby or not. By doing so, the racer
might be able to cut off a pseudo-visible player without suf-
fering any reaction penalty. The extent to which the racer
is incentivized to act so erratically depends on the relative
penalties for reacting to the pseudo-visible player, getting
passed by the player, or (e.g.) crashing into lamp-posts.

Example 7 (Emergent behavior). Multiple NPC soldiers
might organically develop a signalling system whereby one
soldier can point at the pseudo-visible player so the other
soldiers can open fire. The pointing soldier suffers a reac-
tion penalty but the other soldiers avoid it: “I didn’t see the
player, I only opened fire because I saw my friend pointing
at an empty patch of dirt!”

Example 8 (Disguises). A clever player (or even an NPC)
attempts to cheat by disguising as a pseudo-visible player
without actually being one, hoping to fool some NPCs.

Limitations of current RL agents

If an RL agent were to self-reflect, asking itself questions
like “Which action would I have taken if the pseudo-visible
player had been invisible?”, then the RL agent would pre-
sumably eventually be able to figure out patterns like: “If the
player is pseudo-visible, then the environment seems to pe-
nalize me for acting differently than I would act if the player
were invisible.” As far as we know, none of the current state-
of-the-art RL agents are designed to self-reflect in such a
fashion. Thus, we suspect that those agents would have trou-
ble figuring out this aspect of training-environments /iy, 4. In
this section, we describe a way to modify a given RL agent to
force it to self-reflect in exactly the way necessary to under-
stand the penalties for reacting to the pseudo-visible player.
Basically, given an RL agent 7, the construction is quite sim-
ple: let 7’ be the agent obtained by intercepting observations
sent to 7 and annotating them with the action 7 would take if
the pseudo-visible player were invisible (or dummy actions
if the observation has no pseudo-visible player). Thus in a
sense, ' acts as 7 would act if T were self-reflecting.

For the purpose of formally stating the construction, we
will work in a concrete version of RL in which agents are in-
stances of AgentClasses, python classes implementing cer-
tain required methods. This will allow us to give the con-
struction using actual python code, which will make it far

more readable than if we would attempt to give it using ab-
stract mathematics.

Definition 9. An AgentClass is a python class which imple-
ments the following methods:

e act: takes an observation and returns an action.

* train: takes an observation o_prev, an action a, a reward
1, and an observation o_next, and returns nothing. The in-
tuition is that when this method is called, the agent should
update its action policy (neural network weights, Q table,
etc.) in response to receiving reward r and new observa-
tion o_next for having taken action a in response to old
observation o_prev.

Definition 10. Let p be an environment as in Definition 2.
Assume —1 is not a valid action in u. Suppose:

1. There is a function detect_pseudovis which takes a u-
given observation obs and outputs True if obs contains a
pseudo-visible player, False otherwise.

2. There is a function erase_player which erases the char-
acter Y from any given observation containing a pseudo-
visible player, by which we mean

erase_player(P(Sy, D(S))) = D(St)

for every p-output observation P(Sy, D(S;)) containing
a pseudo-visible player.
For any AgentClass A, we define the AgentClass
SelfRefl(A), the version of A which self-reflects about
pseudo-visible players using detect_pseudovis and
erase_player, to be the following AgentClass:

class SelfRefl_of_A:
def __init__(self):
self . A_inst = A() # Store A-instance

def annotate_obs(self, obs):

Annotate obs w/action A would

take if player were erased (or -1

if no pseudovis player in obs)

if detect_pseudovis (obs):
erased = erase_player (obs)
erased = self.annotate_obs(erased)
a = self.A_inst.act(erased)
return (obs, a)

else:
return (obs, -1)

def act(self, obs):
Act as A would on annotated obs
annotated = self.annotate_obs (obs)
return self.A_inst.act(annotated)

def train(self ,o_prev,a,r,o_next):
Train A w/annotated observations
o_prev = self.annotate_obs(o_prev)
o_next = self.annotate_obs(o_next)
self . A_inst.train (o_prev ,a,r,o_next)

Lemma 11. SelfRefl(A) really is an agent.

Proof. The methods of SelfRefl(A) clearly have the correct
signatures, so the only way SelfRefl(A) would fail to be
an agent would be if it would get stuck in an infinite loop
when it’s not supposed to. The only place an infinite loop
could be caused would be when annotate_obs recursively
calls itself. But annotate_obs only calls itself if the observa-
tion in question satisfies detect_pseudovis(obs), and when
it calls itself, it calls itself on erased = erase_player(obs).
Since erase_player erases the pseudo-visible character Y
from obs, the inner call to annotate_obs does not recur-
sively self-call again, so infinite looping is avoided. 0

Equivalently, the annotations in Definition 10 could be
built into the environment rather than into the agent:

Proposition 12. Suppose u, A, detect_pseudovis and
SelfRefl(A) are as in Definition 10, q € Q. Let 1’ be the
environment which is just like iy, q (Definition 2) except that
whenever u would output observation Oy = P(S;, D(S})),
w' instead outputs observation:

* (O, a), where a is the action the agent would take on ob-
servation (D(s;), —1), if detect_pseudovis(O;) = True,
or

* (O, —1) otherwise.

Then: the actions and rewards which arise when an A-
instance interacts with 1, are the same as the actions and
rewards which arise when a SelfRefl(A)-instance interacts
with [1y,q.

Proof. Let O, Ry, A1, ... be the observations, rewards, and
actions that arise when an A-instance interacts with ', and
let O', R', A, ... be the observations, rewards, and actions
that arise when a SelfRefl(A)-instance interacts with iy .
A simple inductive argument shows that each O,, = (0%, a)
or (0%, —1) (as in the statement of the proposition), each
R, = R™,and each A,, = A". O

Proposition 12 suggests that SelfRefl(A) acts as a ver-
sion of A that hallucinates that it is interacting with p’ in-
stead of p. With current RL agent technology, 1 might ac-
tually be easier to implement than SelfRefl(A4). But if RL
agents in the future are capable of self-reflecting on their
own, neither construction might be necessary. Thus, we con-
sider SelfRefl(A) to be the more natural way to implement
pseudo-visibility-based behavior, because the lack of self-
reflection in current RL technology is an agent shortcoming,
not an environment shortcoming.

Informally, it seems that SelfRefl(A4) should outperform
A in py . (and thus the resulting trained policy should do
a better job at driving the NPC in the game G; of Def-
inition 3), because the kind of self-reflection apparently
needed (“What would I do if this pseudo-visible character
were invisible?”) is prosthetically built into SelfRefl(A). We
do not currently know of any way to articulate this better-
performance conjecture formally. One difficulty is that, al-
though current state-of-the-art RL agents are not designed to
engage in such self-reflection, nevertheless, for stating for-
mal theorems about the relative performance of SelfRefl(A)
in general, we would have to anticipate the possibility that
A might already engage in said self-reflection. If so, then

the SelfRefl transformation might not improve A’s perfor-
mance. What we can do, however, is make some informal
arguments based on the following observation:

Lemma 13. Let y”’ be the same as 1/ from Definition 12,
except for the following differences:

o When detect_pseudovis(O;) = True, let u” output
(Oy, a) where a is a pseudo-randomly generated action
(unlike 1/ which outputs (Oy, a) where a is the action the
agent would take on observation (D(st), —1)).

* Rather than applying penalty q to the agent if the agent
reacts to a pseudo-visible player, instead apply penalty q
to the agent if the agent fails to take action a in response
to observation (O, a) when a # —1.

Then: If v is a pseudo-random MDP, then so is 11"
Proof. Trivial. O

Lemma 13 together with Proposition 12 strongly sug-
gests that if A performs well on pseudo-random MDPs,
then SelfRefl(A) should inherit that good performance on
ty k. This is because, by Proposition 12, the performance
of SelfRefl(A) on py is identical to that of A on p’, and
1’ closely resembles the pseudo-random MDP p”” (Lemma
13). In i, in certain states (those states with pseudo-visible
Y within the agent’s field of view), the agent’s view is anno-
tated with a pseudo-random action and the agent is penalized
for not taking that action. In g/, the annotated action is not
pseudo-random, but calculated from the agent’s own action
policy. If anything, this should make p’ easier to learn, not
harder. It seems that in the worst case, if A completely failed
to learn any patterns in the u’ annotations, those annotations
would seem random: 1’ would seem like 1/ to A. Thus, al-
though we do not currently know how to articulate a theo-
rem stating that SelfRefl(A) should perform better on pyj,
at least we have a compelling informal argument that if A
performs well at pseudo-random MDPs, then SelfRefl(A)’s
performance on fiy,;, should benefit accordingly.

References

Aldini, A.; Graziani, P.; and Tagliaferri, M. 2020. Reasoning
about ignorance and beliefs. In CIFMA.

Alexander, S. A.; Castaneda, M.; Compher, K.; and Mar-
tinez, O. 2022. Extending environments to measure self-
reflection in reinforcement learning. Preprint.

Bell, J. H.; Linsefors, L.; Oesterheld, C.; and Skalse, J. 2021.
Reinforcement learning in Newcomblike environments. In
NeurlIPS.

Johansson, M.; Eladhari, M. P.; and Verhagen, H. 2012.
Complexity at the cost of control in game design. In CGAT.
Nozick, R. 1969. Newcomb’s problem and two principles
of choice. In Rescher, N., ed., Essays in honor of Carl G.
Hempel. Springer. 114-146.

