
EgoPlan: A Framework for Multi-Agent Planning Using Single Agent Planners

Mark McArthur, Yashar Moshfeghi, and Michael Cashmore
University of Strathclyde, Glasgow, Scotland

{mark.mcarthur.2016,yashar.moshfeghi,michael.cashmore}@strath.ac.uk

Abstract

Planning problems are, in general, PSPACE-complete; large
problems, especially multi-agent problems with required co-
ordination, can be intractable or impractical to solve. Factored
planning and multi-agent planning both address this by sepa-
rating multi-agent problems into tractable sub-problems, but
there are limitations in the expressivity of existing planners
and in the ability to handle tightly coupled multi-agent prob-
lems. This paper presents EGOPLAN, a framework which fac-
tors a multi-agent problem into related sub-problems which
are solved by iteratively calling on a single agent plan-
ner. EGOPLAN is evaluated on a multi-robot test domain
with durative actions, required coordination, and temporal
constraints, comparing the performance of a temporal plan-
ner, OPTIC-CPLEX, with and without EGOPLAN. Our re-
sults show that for our test domain, using EGOPLAN allows
OPTIC-CPLEX to solve problems that are twice as complex as
it can solve without EGOPLAN, and to solve complex prob-
lems significantly faster.

1 Introduction
Many planning problems naturally model situations with
multiple acting agents, i.e. trucks in a logistics domain or
teams in an emergency response problem, that have an in-
herent factoring into smaller, connected sub-problems. Sce-
narios that can be solved by a single complex agent can of-
ten be tackled more cheaply and efficiently with a team of
simpler heterogeneous agents (Carreno et al. 2020). Multi-
agent planning techniques and factored planning techniques
can take advantage of factoring to reduce the complexity of
a planning problem. This allows these techniques to solve
larger problems than unfactored single agent planners and
to solve large problems faster.

Both multi-agent and factored planning solve factored
versions of the problem to generate a valid plan for the orig-
inal problem. The difference between these techniques is in
the nature and purpose of the factorisation. Typically, multi-
agent planners must use an imposed factorisation based on
privacy or limited communication. Most multi-agent plan-
ners are designed to be suitable for one type of imposed fac-
torisation (Torreño et al. 2018), such as privacy-preserving
planners (Torreño, Onaindia, and Óscar Sapena 2014). On

Copyright © 2021by the authors. All rights reserved.

the other hand, factored planners typically analyse the prob-
lem to generate an efficient factorisation, and are not re-
stricted by any imposed factoring (Brafman and Domsh-
lak 2006). When factorisation cannot completely decouple
sub-problems the use of specialised multi-agent or factored
planners is required. These planners often cannot handle the
same combinations of expressive features as single agent
planners, e.g. uncertainty and time (Torreño et al. 2018).

In this paper we introduce EGOPLAN1, a novel factored
planning technique that enables the use of a single agent
planner (for any expressive planning language) in multi-
agent problems where interaction between agents is re-
quired. Our initial approach restricts agents to one of two
roles: those that achieve goals (Egobots) or support other
agents (a single Sidekick). The two groups iteratively con-
verge upon a solution. Removing the restriction of these two
roles is discussed in Section 7.

EGOPLAN assumes a factorisation imposed by separate
agents in a real-world problem. However, EGOPLAN does
not handle privacy constraints or limited communication. As
such, it is somewhere between factored planners and multi-
agent planners, and is best compared to factored planners in
terms of performance.

Our approach is agnostic to the choice of planner, mean-
ing the approach can tackle more expressive problems than
most multi-agent or factored planners, even when sub-tasks
require interaction between agents. Our implementation is
based on temporal problems in the Planning Domain Defini-
tion Language (PDDL2.2) (Edelkamp and Hoffmann 2004).

This paper describes related work in factored and multi-
agent planning, then defines a multi-agent problem and the
EGOPLAN framework. An evaluation of EGOPLAN is given
in Section 6.

2 Related Work
In this section, we give an overview of multi-agent and fac-
tored planning and highlight similar approaches to EGO-
PLAN. A more detailed survey of the state-of-the-art in
multi-agent planning is provided by Torreño et al. (2018).

1An implementation of EGOPLAN and benchmark
domains are available online: https://github.
com/strathclyde-artificial-intelligence/
egobots-and-sidekicks



Multi-agent planners can be distinguished by how they com-
bine planning and coordination. Some planners plan cooper-
atively, with high levels of communication between agents
to allow them to function like a threaded single agent plan-
ner (Torreño, Onaindia, and Óscar Sapena 2014). In other
planners, each agent plans independently, and then con-
straint satisfaction or replanning techniques are used to com-
bine those plans (Nissim, Brafman, and Domshlak 2010).

A key distinction between factored planners and multi-
agent planners is that factored planners search for a decom-
position of the problem that minimises the search space.
Decomposition can be done by considering the possible or-
derings between serializable subgoals (Korf 1987; Yu et al.
2004) or causal graph analysis (Wang and Williams 2015).
Other approaches depend on domain knowledge, for exam-
ple Buksz et al. (2019) decompose problems based on the
locality of subgoals. Carreno et al. (2020) build upon this
to include agent capabilities. More similar to our approach,
REALPLAN (Srivastava 2000) decomposes tasks based on
available resources, such as independent robots.

These approaches allow the direct use of single agent
planners with potentially much more expressive planning
languages, but are limited by the ways in which the factored
problems may interact with each other (Crosby, Rovatsos,
and Petrick 2013). For example, A# proposed by Jezequel
and Fabre (2012) models interactions between sub-problems
by biasing each planning agent’s search towards plans which
are mutually compatible with other planning agents, rather
than directly modelling requests from one agent to another.

The current implementation of EGOPLAN handles tempo-
ral and numeric problems in PDDL2.2 (Edelkamp and Hoff-
mann 2004), which is used in our evaluation. While most
factored planners are limited in expressivity, temporal fac-
tored planners do exist such as tBurton (Wang and Williams
2015) and TFPOP (Kvarnström 2011). tBurton uses a sin-
gle agent planner embedded in a larger framework, similar
to the EGOPLAN framework, and factors the problem based
on sub-goals. The partial plans which can achieve these sub-
goals are then unified using a backtracking search. More
similar to EGOPLAN, TFPOP factors by acting agents, as-
suming that each acting agent will have long strings of ac-
tions which require no interaction with other agents. This
assumption describes loosely coupled problems, and when
it does not hold TFPOP is still able to solve problems but
with less factoring.

Crosby et al. (2014) proposed a framework that trans-
forms problems between multi-agent and single agent. Their
method transforms a multi-agent problem with required con-
current actions into a simpler single agent problem, where
concurrent actions are modelled as single actions contain-
ing predicates for each involved agent. While also using a
single agent planner to solve a multi-agent problem, our ap-
proach builds a framework around the single agent planner
and solves many small sub-problems whereas Crosby et al.’s
method combines the sub-problems into a single problem
the single agent planner can solve.

The previous work most similar to EGOPLAN is A-
SHOP (Dix et al. 2003), which implemented a SHOP plan-
ner as an agent in the IMPACT multi-agent environment.

This allowed the use of SHOP’s planning capabilities to
solve multi-agent problems and allowed SHOP to use ar-
bitrary inputs from other IMPACT agents. The system could
also handle multiple separate SHOP planning agents in a
multi-agent team. However, there was no specific functional-
ity for multi-agent planning, as the planners were agents that
would take inputs and give outputs in a non-planner envi-
ronment. The depth of interaction between planning agents
is unclear.

3 Problem Definition
In EGOPLAN, problems are solved by a team of planning
agents that can be separated into two roles: Egobots and
Sidekicks. Egobots have goals to achieve and may request
help from Sidekicks. Sidekicks do not have their own goals
but receive requests from Egobots and try to satisfy as many
of those requests as they can. EGOPLANis a first step to-
wards a more generally applicable system in which teams
of planning agents can both send and receive requests. We
define the multi-agent problem as follows.
Definition 1 (Multi-Agent Problem). The Multi-Agent
Planning Problem Π is a 6-tuple ⟨Φ,Ψ, P, I,G,A⟩ where:
Φ is a set of agents. Each agent φi is associated with a set of
agents to which it may make requests, denoted as Φi ⊆ Φ.
These mappings are represented as the set Ψ : {Φi, ∀φi}. P
is a finite set of propositions and fluents. Each agent φi can
observe only a subset of propositions and fluents Pi ⊆ P .
These subsets are not disjoint. I ⊆ P is the initial state.
G ⊆ P is the goal condition. Gi ⊆ G is the goal condition
observable by agent φi. The goal condition observable by
each agent is disjoint, so that Gi∩Gj = ∅ for all φi, φj ∈ Φ.
A is a set of durative actions. For each action, there is a sin-
gle planning agent φi that is executive over that action, and
the action contains only one acting agent. Ai is the set of
actions for which φi is the executive.

Factoring the multi-agent problem results in a set of fac-
tored problems, Πi for each agent φi, defined as follows.
Definition 2 (Factored Agent Problem). The problem Πi for
agent φi is a 5-tuple Πi = ⟨Pi, Ii, Gi, Â, Ri⟩ where: Pi and
Gi are the propositions, fluents, and goal conditions known
to the agent as defined above. Ii = Pi ∩ I is the initial state
known to agent φi. Â : Ai ∪

⋃
φj∈Φi

Aj is the set of du-
rative actions over which agent φi is executive, plus actions
belonging to agents to which φi can send requests. Ri is the
set of requests φi receives from other agents, described in
more detail in Section 5.

4 Framework
The planning process of EGOPLAN is illustrated by Figure 1.
This is an iterative process in which each iteration generates
the next part of the Sidekick’s final plan. The Egobots re-
plan completely in each iteration. Once there are no more
requests for the Sidekick to complete, the process concludes.

First a set of agents Φ must be chosen for the
problem ⟨P, I,G,A⟩, giving the multiagent problem
⟨Φ,Ψ, P, I,G,A⟩. Each agent will either be an Egobot or
Sidekick.



Figure 1: Execution flow of the EGOPLAN framework.

An Egobot φi has a limited knowledge of the world (Pi),
a goal condition (Gi), executive control over some actions
(Ai), and knowledge of the Sidekick’s executive actions
(Âi = Ai ∪ As). A Sidekick φs has full knowledge of the
world (Ps = P ), an empty goal condition (Gs = ∅), ex-
ecutive control over some actions As, and no knowledge of
other actions (Âs = As). The planning agents are split into
these two roles so that no agent will be expected to both re-
ceive and send requests.

Because Egobots can only ask for help and Sidekicks
can only give help, there is no capacity for interaction be-
tween Egobots or interaction between Sidekicks. This limits
EGOPLAN to multi-agent problems in which no agents need
to both receive and give help. Similarly, Egobot planning
agents cannot handle interference from other Egobots, and
Sidekick planning agents cannot handle interference from
other Sidekicks. This limits EGOPLAN to domains in which
agents of the same type are kept separated. Future work to
generalise EGOPLAN to different settings without these lim-
itations is discussed in Section 7.

The multi-agent problem Π is factored into separate prob-
lem files for each Egobot (fig. 1 A-C). The planner is then
called once for each Egobot problem generating plans (fig.
1 D, E) in which the executive actions of that Egobot and of
the Sidekick are used to meet that Egobot’s goals.

Each Sidekick action in an Egobot’s plan whose effects
achieve part of the Egobot’s goal or supports a later Egobot
action is transformed into a request for the Sidekick (fig.
1 F). The details of transforming a Sidekick action into a
request are described in Section 5.

A problem is generated for the Sidekick with soft goals
for each request. The planner generates a partially optimised
plan in which the Sidekick completes as many requests as it
is able (fig. 1 G-J). This plan will be part of the final plan

(fig. 1 J*). Each part of the Sidekick plan that modifies part
of the world state known to an Egobot (some p ∈ Pi) is
transformed into a timed effect (fig. 1 K). In PDDL2.2 we
use Timed Initial Literals (TIL). This includes an effect that
adds the final location of the Sidekick at the end of its plan.

A set of Egobot problems is generated (fig. 1 L, C). These
problems include the effects of Sidekick actions as TILs in-
cluding the TIL that re-enables the Sidekick. A plan for these
Egobot problems cannot include actions for the Sidekick be-
fore the TIL that re-enables the Sidekick, and so new re-
quests are only generated later than that time.

Once an Egobot generates a plan that does not include any
Sidekick actions (fig. 1 F*), this is one of the final Egobot
plans and that Egobot does not replan in later iterations.
Once all Egobots have generated a plan that does not in-
clude any Sidekick actions, the final Egobot plans and the
set of Sidekick plans are combined into a single final plan
for the original problem.

5 Requests
In this paper we define a request r = ⟨Gr, Sr⟩ as a com-
munication from one planning agent to another containing a
temporally extended goal and the value of the goal. In EGO-
PLAN, useful requests are identified by giving the Egobot
planning agents knowledge of Sidekick actions, so that their
plans include helpful, feasible Sidekick actions.

Each precondition of an Egobot action that is supported
by the effect of a Sidekick action becomes a request goal
Gr. The condition is first generalised by “lifting” symmetric
objects (Fox and Long 1999). For example, an Egobot might
request that a welder is delivered to a location, represented
by the condition (at loc12 welder4). However, the
Egobot plan is agnostic to the specific welder object, so the
goal becomes: (at loc12 ?w - welder). The goal is



then temporally extended with a deadline at or soon after the
end of the relevant Sidekick action in the Egobot plan.

The value of each request is defined by a score fluent Sr

added to the Sidekick problem during factorisation. The val-
ues were set using domain specific information about the
importance of different requests. The Sidekick problem is
an optimisation problem to maximise score by fulfilling re-
quests. Actions that fulfill requests were modelled such that
they can only be applied if an Egobot has requested it, can
only be completed once per request, can only be completed
before the request’s deadline, and increase the score by Sr.

6 Evaluation
A domain for robotic maintenance of a space station was
used to test EGOPLAN. Problems using this domain have
goals to inspect or patch panels. Inspect actions require no
tools while patch actions require and consume a patch held
by the robot. When patches are separated from the areas with
patch goals, the requirement for a Sidekick to deliver patches
means that the patch goals can only be achieved by coordi-
nation between two agents.

In this domain there are two types of acting agent rep-
resenting bulky robots which must be supported by a
lightweight drone. The bulky acting agents (Egobots) are
limited to a set of locations such that no two Egobots can
interfere with each other. The lightweight drone (Sidekick)
cannot perform the patch panel action, but it can travel to
any location to inspect panels and deliver patches.

Figure 2: Example Problem Layout

All problems were generated with one Sidekick agent (fig.
2 “sid”) starting in a central location (fig. 2 “loc00”), which
initially contains all patch objects. Each problem had some
number of Egobot agents and some number of accessible
locations per Egobot. Figure 2 shows five Egobots each with
three accessible locations. These locations were arranged in
lines, one line per Egobot, with each line connecting to the
central location where the Sidekick starts. The Egobots were
each given 4 goals per location they could access, giving the

problem shown in Figure 2 a total of 60 goals. 1 in 5 of the
goals were patch goals, the rest were inspect goals.

Problems were generated with E = 3 . . . 20 Egobots
and L = 3 . . . 13 locations per Egobot. The problem was
solved by EGOPLAN with the temporal planner OPTIC-
CPLEX (Benton, Coles, and Coles 2012). The same planner
was applied to the unfactored problem.

The two approaches were compared based on planning
success, planning time, and plan length. The single agent
planner was given a timeout of 30 minutes. The time re-
ported for the single agent planner is the time taken to find
the first plan, which in all cases was also the best plan.

The iterative process of EGOPLAN makes it harder to ap-
ply timeouts, as timeouts must be set for each agent in each
iteration. EGOPLAN cannot backtrack to optimise, so EGO-
PLAN cannot be directly asked to optimise for 30 minutes.

EGOPLAN was given internal timeouts for each iteration:
Egobot problems were solved with a timeout of 30 minutes,
returning the first plan found without optimisation; Side-
kick problems were given 5∗E∗L seconds and returned the
best plan found in that interval. This Sidekick timeout was
chosen through trial and error as it generally avoided the
Sidekick failing to find a plan. The time reported for EGO-
PLAN was the sum of the times taken for the planner to find
the plans used in each iteration, not including time used to
optimise that did not result in a better plan being found. This
was selected as the closest equivalent to the single agent re-
porting the time taken to find the best plan, but not reporting
the entire 30 minutes of planning.

In total 547 problems were attempted by each approach
(large problems were not attempted if preliminary testing
showed problems with significantly lower N and L could
not be solved by either approach). The single agent planner
was able to solve 12% of the problems while EGOPLAN was
able to solve 59%. There were no problems solved by the
single agent that were not also solved by EGOPLAN.

Figure 3: Planning Time by Complexity

The time taken to solve problems is shown in Figure 3,
with the total number of goals in the problem used as an ap-
proximation of the problem’s complexity. The single agent
approach couldn’t solve any problems with more than 96
goals, while the most complex problem solved by EGO-
PLAN has 192 goals. The wide range of times taken to solve
problems with the same number of goals is due to factors



other than total goals, such as the distribution of patch goals,
impacting the complexity of the problem.

Figure 4: Comparison of Planning Time

Figure 4 shows the 63 problems that the single agent ap-
proach was able to solve and compares the time taken for
both approaches to solve these problems. The dots above
the dashed line show the problems which the single agent
approach was able to solve faster than EGOPLAN. There
were 14 problems solved faster by the single agent approach,
these are problems with up to 60 goals that didn’t take long
for either approach to solve. The other 49 problems that were
solved by the single agent approach were solved faster by
EGOPLAN, and a further 259 problems were not solved by
the single agent approach but were solved by EGOPLAN.

Figure 3 shows that for both approaches more complex
problems took more time to solve, but that planning time
increased with complexity much faster for the single agent
than for EGOPLAN. This was expected because factorisation
is more effective for larger problems, but typically comes at
a cost to plan quality as the single agent approach considers
more interactions than the factored approach.

Figure 5: Comparison of Plan Length

Plan quality is measured as total plan duration, shorter
being better. Quality was similar for both approaches for the
63 problems the single agent approach was able to solve,
as shown in Figure 5. Despite solving a factored problem,
EGOPLAN was able to find slightly higher quality plans in

general. The solution found by EGOPLAN is valid with re-
spect to the unfactored problems, and better solutions might
also exist, but were not found within the time limit due to
the complexity of the problem.

A problem factored by agents can reduce plan quality
when interaction between those agents is restricted by the
factorisation. EGOPLAN does not restrict one-way binary in-
teraction between agents, and the high quality plans found
by EGOPLAN imply that this level of interaction was suffi-
cient for planning in this domain. Applying EGOPLAN to
domains which require more complex interaction is dis-
cussed in Section 7.

Figure 6: Most Complex Problems Solved by Each Ap-
proach

The two forms of complexity in the test problems were
the number of Egobots and the number of locations (there
were 4 times as many goals as locations) per Egobot. Fig-
ure 6 shows how many Egobots and how many locations
per Egobot there were in the most complex problems solved
by each approach. It was expected that EGOPLAN would
be able to solve problems with more Egobots than the sin-
gle agent approach could, because the advantage of EGO-
PLAN is the factoring of the problem. However, EGO-
PLAN also outperformed the single agent approach for low
numbers of Egobots with complex problems. With as few as
three agents, the single temporal planning problem was not
able to scale to large numbers of goals, and benefited from
factorisation.

7 Conclusion
In this paper we presented EGOPLAN, a framework that al-
lows a single agent planner such as OPTIC-CPLEX to solve
factored multi-agent problems with coordination. Our evalu-
ation showed that EGOPLAN allowed OPTIC-CPLEX to scale
to larger problems and to solve large problems more quickly
than when OPTIC-CPLEX is used without EGOPLAN. As
EGOPLAN is a framework that extends a single agent plan-
ner, and generates requests through planning, it is able to
cope with both expressive problem features (i.e. action con-
currency) and required coordination between agents.

In our current implementation and evaluation, the Egobot
agents plan in sequence. In reality, multiple physical agents
would necessarily perform this step in parallel, potentially
reducing the real time required for EGOPLAN to find a solu-
tion by a significant factor. As EGOPLAN handles coordina-



tion through the sending and receiving of requests, it is well
suited to decentralised planning and as a next step we will in-
tegrate EGOPLAN with existing task-allocation systems for
multi-robot planning (Carreno et al. 2020). In addition, we
will compare to existing centralised factored planning ap-
proaches, such as TFPOP, investigating the differences and
limitations in factoring and problem features. Beyond this,
there are several opportunities for generalising the frame-
work which we discuss below.

Two-way communication. The framework will be ex-
tended to handle scenarios in which all agents are capa-
ble of both sending and receiving requests. This more ad-
vanced interaction between agents would allow a planner to
solve more general problems than EGOPLAN, which is lim-
ited to problems in which the agent mappings (Ψ) can be
represented as a tree. Additionally, two-way communication
would remove the planning bottleneck of the single Side-
kick in EGOPLAN. Implementing two-way communication
requires addressing negotiation “deadlock”, in which agents
cannot reach a consensus on how to act.

Generating requests efficiently. EGOPLAN identifies
useful requests and confirms the request is feasible through
plan generation, but this can require significant planning
effort. This effort would increase significantly if two-way
communication allowed each agent to request help from any
other agent. This can be mitigated in two ways. First, limit-
ing which other agents each agent can send requests to using
some agent mapping Ψ that ensures each agent only mod-
els itself and nearby agents. Second, by using an abstracted
model of the supporting agents, approximating the feasibil-
ity of requests instead of directly planning to confirm.

Action commitment. EGOPLAN iteratively builds a fi-
nal plan, committing to actions included in each Sidekick
plan. Understanding when it is safe to commit to an ac-
tion during planning or execution is very challenging (Cush-
ing, Benton, and Kambhampati 2008; Shperberg et al. 2020;
Cashmore et al. 2021). We intend to investigate past work in
action commitment and apply it to the context of a multi-
agent environment, where a planning agent may not be
aware of the full consequences of its actions.

References
Benton, J.; Coles, A.; and Coles, A. 2012. Temporal plan-
ning with preferences and time-dependent continuous costs.
In International Conference on Automated Planning and
Scheduling.
Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when, and when not. In AAAI.
Buksz, D.; Cashmore, M.; Krarup, B.; Magazzeni, D.; and
Ridder, B. 2019. Strategic-tactical planning for autonomous
underwater vehicles over long horizons. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS) 2018, 3565–3572.
Carreno, Y.; Pairet, E.; Petillot, Y.; and Petrick, R. P. A.
2020. A decentralised strategy for heterogeneous auv mis-
sions via goal distribution and temporal planning. In Pro-
ceedings of the International Conference on Automated
Planning and Scheduling, 431–439.

Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2021. Replanning for situated
robots. In Proceedings of the International Conference on
Automated Planning and Scheduling, 665–673.
Crosby, M.; Jonsson, A.; and Rovatsos, M. 2014. A single-
agent approach to multiagent planning. In ECAI.
Crosby, M.; Rovatsos, M.; and Petrick, R. 2013. Automated
agent decomposition for classical planning. ICAPS 2013 -
Proceedings of the 23rd International Conference on Auto-
mated Planning and Scheduling 46–54.
Cushing, W.; Benton, J.; and Kambhampati, S. 2008. Re-
planning as a deliberative re-selection of objectives. Techni-
cal report, Arizona State University CSE Department.
Dix, J.; Muñoz-avila, H.; Nau, D. S.; and Zhang, L. 2003.
Impacting shop: Putting an ai planner into a multi-agent en-
vironment. Annals of Mathematics and AI 37:381–407.
Edelkamp, S., and Hoffmann, J. 2004. Pddl2. 2: The lan-
guage for the classical part of the 4th international planning
competition. Technical report, Technical Report 195, Uni-
versity of Freiburg.
Fox, M., and Long, D. 1999. The detection and exploitation
of symmetry in planning problems. In IJCAI, volume 99,
956–961.
Jezequel, L., and Fabre, E. 2012. A-sharp: A distributed
version of a* for factored planning. In 2012 IEEE 51st IEEE
Conference on Decision and Control (CDC), 7377–7382.
Korf, R. E. 1987. Planning as search: A quantitative ap-
proach. Artificial Intelligence 33(1):65 – 88.
Kvarnström, J. 2011. Planning for loosely coupled agents
using partial order forward-chaining. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS).
Nissim, R.; Brafman, R.; and Domshlak, C. 2010. A gen-
eral, fully distributed multi-agent planning algorithm. In
Proceedings of the International Joint Conference on Au-
tonomous Agents and Multiagent Systems, 1323–1330.
Shperberg, S.; Coles, A.; Karpas, E.; Shimony, E.; and
Ruml, W. 2020. Trading plan cost for timeliness in sit-
uated temporal planning. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelli-
gence, IJCAI-20, 4176–4182.
Srivastava, B. 2000. Realplan: Decoupling causal and re-
source reasoning in planning. In AAAI/IAAI, 812–818.
Torreño, A.; Onaindia, E.; Komenda, A.; and Stolba, M.
2018. Cooperative multi-agent planning: A survey. ACM
Computing Surveys 50(6):1–32.
Torreño, A.; Onaindia, E.; and Óscar Sapena. 2014. Fmap:
Distributed cooperative multi-agent planning. Applied Intel-
ligence 41(2):606–626.
Wang, D., and Williams, B. 2015. Tburton: A divide and
conquer temporal planner. In AAAI, 3409–3417.
Yu, H.; Marinescu, D.; Wu, A.; and Siegel, H. J. 2004. Plan-
ning with recursive subgoals. In Knowledge-Based Intelli-
gent Information and Engineering Systems, 7–27.


