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Abstract

The increase in automating complicated physical processes
using Cyber-Physical Systems (CPS) raises the complexity of
CPS and their behavior. It creates the necessity to make them
explainable. The popular Explainable Artificial Intelligence
(XAI) methodologies employed to explain the behavior of
CPS usually overlook the impact of physical and virtual con-
text when explaining the outputs of decision-making software
models, which are essential factors in explaining CPS’ behav-
ior to stakeholders. Hence in this article, we survey the most
relevant XAI methods to identify their shortcomings and ap-
plicability in explaining the behavior of CPS. Our main find-
ings are (i) Several papers emphasize the relevance of context
in describing CPS. However, the approaches for explaining
CPS fall short of being context-aware; (ii) the explanation
delivery mechanisms use low-level visualization tools that
make the explanations unintelligible. Finally (iii), these unin-
telligible explanations lack actionability. Therefore, we pro-
pose to enrich the explanations further with contextual infor-
mation using Semantic Technologies, user feedback, and en-
hanced explanation visualization techniques to improve their
understandability. To that end, context-aware explanation and
better explanation presentation based on knowledge graphs
might be a promising research direction for explainable CPS.

1 Introduction
Cyber-Physical Systems (CPS) are capable of integrating
physical and virtual processes (Lee 2008). The ability of
CPS to interact with, and increase the capabilities of the
physical entities through computation, communication, and
control, are the facilitators of future technological advance-
ments (Baheti and Gill 2011). However, the increasing com-
plexity of software, hardware, and communication mecha-
nisms may reduce the understandability and trust of stake-
holders (users, auditors, engineers) in the CPS. Recent stud-
ies (Daglarli 2021) have argued in favor of providing ex-
planations to increase user trust in such complex automation
processes. Moreover, (Shin 2021) highlights the importance
of causability 1 of the delivered explanations to increase the
trust of users from a human factors perspective, and (Doshi-
Velez et al. 2017) argues that explanations are required to
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1Causability justifies for what and how something should be ex-

plained. It helps determine the relative importance of the properties
of explainability.

establish the system’s accountability on legal grounds. Un-
derstanding the behavior of the CPS not only would help to
reason about the anomalous behavior of the CPS, but also al-
low users to take control over the ever-growing complexity
of the CPS due to the increased interaction with their con-
text. Hence, we argue that it will become essential for CPS
to be able to explain their behavior to users while consider-
ing their context.

CPS may explain their behavior by themselves or
through the help of external explanation methods. To
become self-explainable, a system would need to know its
working environment, internal states, user profiles, and the
interactions between its software and physical components.
Since there is no such CPS available yet that could explain
themselves, a framework introduced as Monitor-Analyze-
Build-Explain (MAB-EX) (Blumreiter et al. 2019) seems
to be a promising framework for the development of
self-explainable CPS in the future. Alternatively, model-
agnostic explanation systems can help explain the behavior
of a deployed CPS based on their historical data without
interrupting the traditional engineering processes of a CPS.
However, numerous recent studies have agreed on some
drawbacks of using XAI techniques directly in this domain.
For example, (Schlegel et al. 2019) deduced that commonly
used XAI methods that are popular for behavioral analysis
of CPS do not offer good understandability for time-series
data through overlaying the feature importance on a time
scale. Furthermore, (Weber and Wermter 2020) addresses
the poor degree of understandability offered to explainees
through feature visualization in XAI approaches due to the
lack of information delivered. Since time may be utilized as
a common factor in a CPS to synchronize the monitoring
of the CPS’ behavior and the behavior of other components
in its context (Shrivastava et al. 2016), the explanation
systems should consider the time-continuous behavior of
the CPS when explaining them. Apart from a scarcity of
time-series explanation visualization methods, the existing
XAI methods are often unintelligible due to a lack of
contextual awareness, user profile, and usage history. It is
fair to assume that most of the work in XAI only adheres
to the view of the developers about what constitutes a
’good’ explanation (Miller 2019). Hence, user profiling and
explanation customization will assist various users, such as
managers, auditors, and maintainers, in understanding the



system’s behavioral logic. We argue that the customized
explanations delivered through enhanced visualization
techniques will increase users’ understandability of the be-
havior of a CPS. Therefore, we aim to answer the following
overarching research question (RQ) through this article:

RQ: What approaches of today’s explanation systems
may be applied to better explain the behavior of CPS,
and what are the characteristic of CPS that need to be
considered in explanation systems that are adapted for CPS?

To answer the RQ, we review the work done for explain-
able CPS and XAI in Section 2. Following that, we propose
potential extensions and amendments to these explanation
systems in Section 3 to enable intelligible and actionable ex-
planations for the behavior of CPS.

2 Related Work
This review aims at exploring the literature that surrounds
XAI and explainable CPS following the literature review
guidelines by (Kitchenham and Charters 2007). To an-
swer the RQ, we selected relevant search terms to form
a search query as explainable Cyber-physical Systems OR
Explainability OR ”Explainable Cyber-Physical Systems”
AND XAI OR ”Explainable Artificial Intelligence”. This
search yielded 900 results for the years 2015-2022 on
Google Scholar (comparatively more comprehensive aca-
demic search engine (Gusenbauer 2019)). Based on the fil-
ters applied to include the unique, peer-reviewed work and
content scanning of the articles for prototypical explanation
methodologies used by the found results, 120 articles stood
out, forming the base for our review. This section expands
on the findings of the review process by discussing state-
of-the-art XAI approaches for CPS applications, context-
awareness, and visualization methods employed by the ex-
planation methods.

XAI Methods for Explainable CPS
There are many supervised machine learning-based expla-
nation systems available. However, CPS produce a massive
amount of unlabeled data that are not useful for creating su-
pervised learning-based explanations. In that regard, (Wick-
ramasinghe et al. 2021) provides an explainable clustering
approach based on a self-organizing map for generating
global and local explanations from unlabeled data. Global
explanations help understand an XAI system as a whole (Ko-
pitar et al. 2019), while local explanation methods describe
a single instance involving a smaller group of features. Lo-
cal explanations are thus more limited in scope but typically
lead to better understanding of the feature contributions than
global explanation methods (Kopitar et al. 2019). Explana-
tions about the behavior of a (cyber-physical) systems are
either intrinsic when they can be produced from the inner
states and algorithms of that system (Weber and Wermter
2020) through various explanation techniques, or extrinsic
when given to the CPS from some external entities. For ex-
ample, user feedback can be a form of extrinsic explana-
tions. A further categorization of the popular XAI methods

Table 1: Categorization of popular XAI methods
Scope Approach Explanation Methods
Intrinsic
(Local and
Global)
(Weber and
Wermter
2020)

Model-
agnostic

LIME (Ribeiro, Singh,
and Guestrin 2016) ,
SHAP (Lundberg et
al. 2020), Deep Learn-
ing Important FeaTures
(DeepLIFT) (Shrikumar,
Greenside, and Kundaje
2017), Layer-wise Rele-
vance Propagation (Bach et
al. 2015), Counterfactual
Explanations (Molnar 2020)

Model-
specific

Guided Back-
propagation (Springenberg
et al. 2014), Integrated
Gradients (Sundararajan,
Taly, and Yan 2017)

Extrinsic
(Weber and
Wermter
2020)

Feedback Active or Passive User In-
put (Haque, Aziz, and Rah-
man 2014)

can be seen in Table 1. In terms of comprehending causal-
ity, (Gilpin et al. 2018) points out that users are only satisfied
with explanations when the crucial ’Why?’ and ’Why not?’
questions are answered. In the CPS domain, the key to an-
swering these questions are methods that permit the deriva-
tion of causal understanding of the relationships between
the behavior of a CPS and factors that affect it. (Richens,
Lee, and Johri 2020) argues that using counterfactual-based
algorithms increases the accuracy in detecting causal fac-
tors in medical diagnosis offered using machine learning and
medical CPS. Hence, counterfactual explanations may aid in
the comprehension of explanations by demonstrating causal
relationships between the CPS and the factors influencing
CPS’ behavior.

Contextual Influences of CPS
The cause of behavioral anomalies due to the effect of con-
text (virtual as well as physical phenomena e.g., weather,
air pressure, vibrations, latency) of CPS have been studied
for many years. It has been quantified using test chambers
and recently, using several automated data monitoring and
analysis-based techniques like feature extraction with limit
checking, clustering, and Knowledge-based methods (Lopez
et al. 2017; Ricard and Owezarski 2020). To explicitly con-
sider the context of the CPS for the reasoning of the CPS’
behavior, recent research works (Sahlab, Jazdi, and Weyrich
2020) (Petnga and Austin 2013) leverage semantic tech-
nologies to model and scope the context of the CPS often
using expert knowledge. Similarly, (Aryan et al. 2021) gives
an example of explainable CPS using ontologies and expert
knowledge. For explaining a complex scenario of demand
response in a smart grid, the authors use tacit knowledge
from domain experts about the events that might happen in



the system, including contextual effects on the smart grid
system. We argue that a context-aware explanation system
may help lower such a dependency on tacit knowledge by
learning the contextual influences on the behavior of CPS
and continuously updating the context model with new in-
formation.

Explanation Visualization
To better enable human users to understand and reason about
the behavior of CPS, researchers have in the past experi-
mented with visualizing CPS’ behavior by allowing users to
observe the interaction between different components of a
CPS through a “Magic Lens” using immersive technologies
like augmented reality (Mayer, Hassan, and Sörös 2014).
As a result, several new approaches are developing towards
immersive visualization of the explanations (Frye, Rowat,
and Feige 2020). Recent growth in adopting extended re-
ality methods (for instance, on industrial shop floors) has
opened up a range of possibilities to present explanations
to the users. Some of the popular visualization techniques
used in XAI for better user interpretation of the explana-
tion are Tensor-flow graph visualization (Wongsuphasawat
et al. 2017), Digital staining (Cruz-Roa et al. 2013), Limited
Scoped Natural Language, and Heatmaps (Zeiler and Fergus
2014). However, the time-continuous nature of CPS is not
well represented using the limited feature importance high-
lighting and overlaying techniques used in various explana-
tion methods studied for this survey. Furthermore, (Schlegel
et al. 2019) compares multiple explanation methods (LIME,
SHAP, DeepLIFT) for incorporating temporal dimensions to
conclude that most of the explanation methods work for spe-
cific architectures but are ineffective in conveying the result
to increase users’ understandability of CPS. (Schlegel et al.
2019) also points out the need for a more sophisticated visu-
alization tool for time series explanations than overlaying of
time series data in a heatmap. Such visualization techniques
help users see the relationship and data exchange among the
CPS and different entities in a context. However, because
the interpretation responsibility is left to the user, there is a
possibility of misunderstanding, which might result in the
explanations becoming less understandable and actionable.

3 Discussion and Future Directions
The explanation techniques particular to CPS still require
significant research work to make them interpretable and
understandable for different types of users. Thus, we pro-
pose enhancements and recommend strategies that we be-
lieve would benefit the explanation of CPS’ behavior:

The first enhancement that we propose to enable the appli-
cation of XAI systems to CPS is what we refer to as context-
aware explanations. We believe that a context-aware expla-
nation system will assist users in comprehending the CPS’
behavior in previously unconsidered instances (e.g., harsh
working conditions and geographical relocation). One of the
primary concerns in developing context-aware explanations
using a data monitoring and analysis approach is to model
the constantly evolving context of CPS. As discussed in Sec-
tion 2, many recent studies use knowledge graphs to model

CPS’ context. However, those pre-built knowledge graphs
should be updated to stay relevant in the dynamic context of
CPS. A recent work that models the context of a pill dis-
penser system to explain its behavior (Sahlab, Jazdi, and
Weyrich 2020) points out the uncertainty of such relation-
ships due to their dynamic nature. Hence, we propose to use
the counterfactual explanations method to learn the causal
relationships among the factors influencing the behavior of
CPS in dynamic contexts. Thus, freshly learned relation-
ships and user feedback can be used to update the context
model by the explanation system for further reasoning and
future explanations.

In addition, an enhanced explanation delivery mechanism
based on knowledge graph and counterfactual explanation
methods might deliver explanations that are easier to com-
prehend. Because the explanation is based on the users’ un-
derstanding of how the system works (in general) and the
underlying relationships between physical properties. Users
may have a better understanding of how the (cyber-physical)
system works in general and why it behaves the way it does
in a specific scenario when the CPS’ context model and sys-
tem knowledge are integrated with explanation visualization
methodologies. Moreover, the intuitive presentation of ex-
planations and additional information might increase the in-
telligibility of the explanations. Hence, these explanations
can be actionable as users can then act upon the presented
explanations using the updated knowledge graph and causal
relationships, i.e., the users could adjust the CPS’ context
and input features to achieve the expected behavior.

4 Conclusion
In this paper, we proposed several extensions of explainabil-
ity systems that would make XAI approaches amenable to
explaining the behavior of CPS. We propose that integrating
explanation approaches from XAI and semantic technolo-
gies, together with contextual information of the CPS, will
enable the explanation systems to better explain the behavior
of the CPS. Concretely, this could be accomplished through
the outlined approaches of context-aware explanations and
enhanced explanation learning and delivery.
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