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Abstract

In this paper, we address flexible assembly plans gen-
eration to accommodate human task variability. Unlike
existing approaches, the proposed approach is based on
a free-style human-robot interaction (HRI) that does not
impose any task order on the participants and further-
more can accommodate their errors and help them to
correct the errors without stopping the whole assembly
process. Our approach is implemented in a real robotic
architecture that combines sensory-motor modules with
Hierarchical Task Networks (HTN) to endow the cobot
with the necessary adaptability to correspond to human
actions dynamically. We show experimentally with 56
participants on a simulated industrial assembly task that
the cobot increases the task performance (reduction in
the number of errors and gestures) without increasing
the participants’ cognitive load.

Introduction
Classical automation procedures has obliged the operators
to follow specific operation paradigms, this type of con-
strained operation increases the cognitive load of the oper-
ators [11, 12], reduces the room for maneuver in their task
performance and causes musculoskeletal disorders [1, 23].
This is due to a lack of human variability consideration in the
design of the automation process. It is therefore important to
take into account human variability, e.g., level of experience
or fatigue, size, etc. very early in the robotic architecture
design, and to endow the robot with the ability to adapt to
human beings in order to prevent these risks.

Among human variabilities that must be taken into ac-
count, human task variability is one of the most important.
It is a question of being able for a robot to adapt the order in
which it performs the tasks to the order chosen by a human
and not the other way around. The aim is to give the human
a great deal of freedom in carrying out a collaborative task
with a robot and not to constrain him more than necessary.

Accommodating robot’s behaviors to human task variabil-
ity is a challenging issue due to the uncertainty in human
behavior [4] and the probability of conflicts between human
and cobot actions [2]. To deal with this issue, we propose in
this paper a robotic architecture bridging sensory and action
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elements with task planning reasoning capabilities [19] im-
plemented on the cobot YuMi to ensure a smooth workflow
in collaborative tasks.

Our contribution in this paper is twofold: (1) a free-style
human-robot interaction (HRI), we mean by a free-style that
the human operator is free to achieve the task in any order
that he prefers, without imposing a specific sequence of ac-
tions on him, and the system has to accommodate the op-
erator errors and help him to correct these errors without
stopping the whole assembly process, and (2) an evalua-
tion methodology that highlights the benefits of integrating
a cobot into the assembly process using not only a classical
robotics metrics to evaluate task performance but also met-
rics from ergonomics. This methodology handles the prob-
lem from different aspects, including the subjective cogni-
tive load measured through two phases with and without the
cobot, of experiments performed with 56 participants.

The rest of the paper is organized as follows: Section II
presents the related work; section III presents the architec-
ture proposed; Finally, section IV introduces the experimen-
tal setup and the results showing that our approach reduces
the cognitive load of the operators and increases the task per-
formance.

RELATED WORK
Robotic architectures bridging sensory and action elements
with task planning reasoning capabilities in the context of
industrial human-robot collaboration were discussed mainly
from the performance point of view, where the time of
planning and scheduling is the main criterion for evalua-
tion [4, 8, 10, 24]. In contrast, human aspects such as ac-
ceptability, usability, and cognitive load were less discussed
[2, 5, 21]. Furthermore, most works limit the freedom of ac-
tion of humans in the execution of their task, for example
by assigning specific tasks to humans [5, 8, 21], or limit-
ing their choices in terms of assembly zones and assembled
block colors [4]. To relax these constraints it is necessary to
grant the human a higher degree of liberty to make the inter-
action with the cobot smooth, natural, and intuitive. Hence,
it is better not to impose task order on the human, but in-
stead, adapt the task plans with respect to the human ac-
tions. Compared to other approaches[4, 5, 18, 21], we do not
impose any task order on the operator. Moreover, the robot
and the operator can simultaneously act in the same area



Figure 1: The proposed modular architecture

to accomplish a shared assembly task. A number of works
have tried to deal with the problem of adapting a robot’s be-
havior to the order of execution of a task by a human and
many techniques have been proposed to generate behaviors
more or less dynamically. These are the techniques (in non-
exhaustive list): Planning and Scheduling [4, 14, 15, 17],
AND-OR Graphs [8], Behavior-Tree [18, 22], Hierarchical
Task Networks (HTN) [2, 6, 13], Game Theory [5], Markov
Decision Process (MDP), or a combination of them [21].
Among these techniques, task planning and more precisely
hierarchical planning is widely used and very effective to
generate symbolic plans in a similar way of the human de-
composition of complex tasks into simpler actions [3].

Subsequently, the challenge of the tasks order adaption
is tackled in this paper with a real industrial cobot YuMi
to best imitate an industrial assembly task and not only on
simulation [4, 14]. The robot’s behavior is made explicit to
the human, through an interface so as to consolidate his/her
understanding and his/her acceptability of its behavior [16].
An explanation of the cobot next action, and human errors
are provided for error correction while the assembly keeps
uninterrupted.

Adaptive Robotic Architecture
Our approach in tackling human task variability stands on a
modular architecture consisting of four modules (Fig 1):

1. Perception module to perceive the workplace (including
the human task variability) and encode the perceived in-
formation into a discrete representation.

2. Planning module to generate the adaptive behavior that
corresponds to the human task variability.

3. Execution module to execute the intelligent behavior on
the cobot.

4. Controller module to manage the interaction between the
operator and the cobot, and explain the intelligent behav-
ior to the operator in order to augment his/her social ac-
ceptance.

PERCEPTION MODULE
This module, using classical image processing techniques
generates a discrete representation of the workplace com-
posed of position and color information. This representation
is a dictionary where the key is the discrete position encoded

Figure 2: Workplace zones

in row column indices, and the value is the color informa-
tion, e.g., {13 : blue, 21 : green, 34 : yellow}.

The workplace in our scenario is divided into four zones
(Fig 2): cobot stock zone, human stock zone, shared assem-
bly zone, and swap zone where the cobot can provide blocks
from its stock to the operator.

PLANNING MODULE
To adapt the cobot behavior to the human task variability
we take advantage of the flexibility and the intelligence that
Automated Planning (AP) can generate. Specifically, Hier-
archical Task Networks (HTN) technique allows to compute
action sequences i.e. plans with respect to given world states,
and to provide explanations on the causal links of these ac-
tions at different levels of abstractions [16].

For this purpose we have developed a conceptual model
composed of a domain, and a problem in the Hierarchical
Domain Definition Language (HDDL) [9]. The planner used
in our architecture is the Totally Ordered Fast Downward
(TFD) Planner [20]. The domain in our model is static and
encompasses the objects in our scenario and the relations
(primitive actions) between them, as well as the higher-level
tasks, and different methods to decompose the tasks into
primitive actions according to triggering preconditions. On
the other hand, the problem in our case is dynamic in the
sense that the initial state is obtained from the discrete repre-
sentation generated by the vision system, which varies along
the cobot actions, and the operator variable actions (Fig 3).
Re-planning is done after each perception phase sequentially
for each block until a plan is found for a given block, other-
wise if there is no plan found for all blocks, hence planning
stops and the user is informed to do the task alone.

The predicates in HDDL define the status of each object,
for instance the gripper position, orientation, fingers status
(open/close), and whether it is loaded or not. Furthermore,
the points are described in terms of occupancy and neigh-
boring points. Finally, blocks orientation, gripping position,
and whether the block is attached to the workspace or not.
The tasks in our domain are limited to Pick, and Place, and
the parameters are the gripper which will be used, the block
to be picked/placed, and the direction of the placement:

(:task pick



Figure 3: Planning module

:parameters (?g - Gripper ?x - Block ?d -
Direction))

(:task place
:parameters (?g - Gripper ?x - Block ?pos
- Point_Workspace))

These tasks are combined with the necessary primitive ac-
tions, and the hierarchical decomposition methods to pro-
vide a flexible way to execute the same task in various avail-
able approaches. An example of the actions done here is
holding a block with the gripper, this action changes the sta-
tus of the cobot fingers from open to close, and the gripper
becomes loaded with the block:
(:action Hold_gripper

:parameters (?x - Block ?g - Gripper)
:precondition
(and (is_open ?g)
(unloaded ?g))

:effect
(and (loaded ?g ?x)
(not (is_open ?g))
(not(unloaded ?g))))

The method to decompose the pick task in the case of 2x2
block will have the selected gripper, the block to be picked,
the direction of the placement, and the waypoint where the
gripper will move to after picking the block as parameters.
This method decomposes the pick task into a series of sub-
tasks/actions in the case that all the pre-conditions are satis-
fied:
(:method pick_2x2

:parameters(?g - Gripper ?x - Block_2x2 ?d
- Direction ?pa - Point_Air)

:task (pick ?g ?x ?d)
:precondition
(and (not (left_direction ?d))
(not (right_direction ?d))

:ordered-subtasks
(and (Open_gripper ?g)
(Rotate_empty_gripper_V ?g)
(Move_open_gripper_V_To_Stock ?g ?pa)
(Hold_gripper ?x ?g)
(take_V ?x ?g ?pa)))

All pick and place tasks in our case are equal, and the plan-
ner selects the first feasible solution from the list of pick/-
place tasks.

EXECUTION MODULE
The execution of the adapted behavior represented in the
generated plan is done in our scenario on the cobot YuMi

Figure 4: Execution module

(for the sake of simplicity we used one arm only). Pick/Place
locations are passed from the plan to the low-level language
(RAPID) to execute the corresponding motion. We have de-
veloped a special Application Programming Interface (API)
to use the Robot Web Services (RWS) platform provided by
the robot manufacturer in order to execute the plan on the
cobot, and get the execution status (Fig 4).

USER INTERFACE MODULE
It is important to express the cobot behavior to the opera-
tor to ensure workflow smoothness in the collaborative joint
task, hence a user interface is used to explain: i) Assem-
bly progress. ii) Cobot’s next movement, to ensure human
awareness of the cobot behavior in order to avoid conflicts.
iii) Operator mistakes, to make the cobot adaptation clear
and understandable to the operator and to increase the oper-
ator acceptance.

Therefore, we have developed a user interface to demon-
strate the cobot behavior, where the elements inside this in-
terface emulate the situation of the workplace. It contains
three distinctive areas (Fig 5): 1. Assembly pattern selection
and control area. 2. Assembly and swap zone area. 3. Mes-
sages area.

The first area is used to control the experiments, while
the rest are interactive areas, area (2) visualises the location
and the color signals, while area (3) is used to display the
interactive messages.

The color signals used in the graphical interface are as
follows: I) Green-colored squares to represent the green
base-plate to indicate unoccupied positions. II) Red-blinking
squares to represent the positions that the cobot will use
to place a block. III) Yellow/Blue colored squares to rep-
resent the occupied positions. IV) Red cross on top of the
Yellow/Blue squares to represent any incorrect placement.

Moreover, the interactive messages are: i) ”I’m taking a
photo to understand the situation.” ii) ”I’m placing a block
in the blinking area.” iii) ”I can’t help you anymore, I’ll let
you finish.” iv) ”The task is solved, thank you very much”

Experiments
The objective of this experimentation is to evaluate the im-
pacts of integrating intelligent cobot equipped with an adap-
tive action-selection mechanism and free-style user interac-
tion on runtime and operators’ well-being. The former (run-
time) represents productivity, while the latter (well-being)
is interpreted as the physical and cognitive demands of the
task. Thus, we consider the performance with an extended



Figure 5: Graphical interface module

vision that takes into account not only runtime but also hu-
man ergonomics.

The experiments were performed in two phases, the first
with 33 participants, and the second with 23 participants dif-
ferent from the first phase. They all were informed about the
experiments and signed a consent form beforehand.

Experimental Scenario
The experiments are meant to simulate a collaborative as-
sembly task in an industrial environment, hence LEGO
blocks were used to construct four patterns (Fig 6) each of
them is 4 × 4 blocks of two different colors yellow/blue
(Fig 6), pattern (D) is used for demonstration purpose, while
the rest are used for the experiments with the participants.
All the experiments have been designed by ergonomists (co-
authors) expert in industrial workplaces to specifically in-
vestigate free-style human-robot interaction in realistic situ-
ations.

Figure 6: Assembly patterns

The hardware of the experimental setup is as follows:
I) Raspberry Pi 3B+ module with wide-angle camera. II) PC.
III) Screen to display the user interface. IV) YuMi cobot.
V) Lego blocks and base-plate for the assembly.

In this workspace divided into four spaces (Fig 2), the par-
ticipant is supposed to use the stock from his/her dedicated
area, and the swap area, while the cobot is programmed to
use the stock from its dedicated area. Initially, the swap and
the assembly areas are empty, while the stock of both the
participant and the cobot is filled with blocks of two differ-
ent sizes 2 × 2 and 2 × 4, and two different colors: yellow,
and blue. The user interface is used to start the experiment,
where the cobot starts by perceiving the environment, and
the user is informed through a message displayed on the
user interface ”I’m taking a photo to understand the situa-

tion.”, the perceived environment is interpreted into a dis-
crete representation exploited by our conceptual model to
generate the adaptive response. After that the cobot executes
the sub-task (single block assembly) and the participant is
informed of the cobot action and place of execution by the
user interface: the message ”I’m placing a block in the blink-
ing area.” appears on the user interface, and the red-blinking
squares, which reflects the positions that the cobot needs to
do the placement, appear on the screen (Fig 5). The user at
this stage is supposed to do the assembly at the same time
as the cobot, with respect to the red-blinking positions that
the cobot will use. This loop of perception, planning, col-
laborative action is repeated until the cobot cannot place any
block because of the size of the robot’s fingers. Then the
user is asked to complete the task alone in the user inter-
face: ”I can’t help you anymore, I’ll let you finish.”, and this
message is presented until the perception module verifies the
task completion, thus the last message appears: ”The task is
solved, thank you very much”. The assembly task complex-
ity stems from the fact that the task is changing according to
the selected pattern, thus the size and the color of the blocks
vary from one pattern to another making the task cognitively
demanding.

Moreover, this scenario reflects actual collaborative as-
sembly tasks in manufacturing where the operator and the
cobot execute teamwork. The code used is released online1

for experiment reproducibility.

Evaluation Criteria
Four factors were used for evaluation in our case: time of
the task completion, to evaluate the impact on the productiv-
ity, errors committed during the task (any misplacement is
considered an error, even if it was corrected later), to eval-
uate the impact on the quality, count of gestures per task
(each movement of the participant’s hand to do a sub-task
is counted as a gesture, even if he did not place a block),
which in turn reflects the physical demands of the task, and
cognitive load measured using the NASA-TLX [7] form.

Methodology
The experiments were conducted in two separate phases
with different groups of participants in each phase: in the
first phase, one person fulfills the block assembly task, this
constitutes our baseline. In the second phase, the assembly
task is jointly realised by the cobot and a human operator.
It is noteworthy that the experiments focus on the Human-
Robot adaptation in joint task completion, not manipulation
skills. From this perspective, comparable setups can be met
in the industry without significant changes because the as-
sembly process is similar, though the size and the shape of
the assembled parts vary with the considered application.

First Phase: Human Alone
The first phase of the experiments was performed with hu-
mans only (without the cobot), in order to compare the re-
sults with the second phase. This phase of the experiments
consists of four steps:

1https://github.com/bhomaidan1990/Legos



1. Introduction of the tasks to be carried out: a short intro-
duction of the tasks and the framework is given to famil-
iarize the participant with the experiment. The setup is as
in Fig. 2, except that the cobot, the camera, and the user
interface are not present in the first phase.

2. A demonstration of assembly pattern: a demonstration of
”Model D” assembly is carried out to eliminate any am-
biguity, then the participant is asked if he has any further
questions about the task assembly to be clarified.

3. The assembly tasks: The user is asked to assemble the
other three models (A, B and C) according to a given doc-
ument in a specific order2 one by one, and the experiments
are video recorded to be analyzed later.

4. The survey: Finally, the participant is asked to answer the
NASA-TLX test to measure his/her cognitive load.

Second Phase: Human and Cobot
The second phase involves the cobot with the human to
achieve a shared task. Furthermore, this phase has three ad-
ditional components: the cobot, the camera to capture the
world, and the user interface projected on the external screen
beside the cobot. The second phase of the experiment is ex-
ecuted in four steps as follows:

1. Introduction of the tasks to be carried out: a short in-
troduction of the cobot, the tasks, and the framework is
given to familiarize the participant with the experiment.
The setup that the participant is introduced to consists of:

• The user interface (Fig 5) including the signals and the
messages that the participant will encounter during the
experiment.

• The camera, and the captured workspace.

And the workplace:

(a) The cobot abilities and the high safety constraints to
make the participant feel confident that there is no harm
in working in collaboration with the cobot.

(b) The pattern which has to be assembled in collabora-
tive manner with the cobot.

(c) The stock to be used by the participant.
(d) The stock of the cobot, which the participant should

not use.
(e) The assembly zone where the tasks are carried out.
(f) The swap zone, where the cobot handles a block to

the participant to assist him in doing the task in case
the user is out of stock of a specific size/color.

2. A demonstration of assembly pattern: a demonstration of
”Model D” assembly is carried out with assistance of the
cobot and the user interface to eliminate any ambiguity
or panic, then the participant is asked if he/she has any
further questions about the task assembly, the cobot be-
havior, or the user interface to be clarified.

2The sequence introducing the patterns is randomized to avoid
bias in the results.

3. The assembly tasks: The user is asked to assemble the
other three models (A, B and C) in a specific sequence2

one by one with assistance of the cobot, and the experi-
ments are video recorded to be analyzed later. Note that
at this phase, the start/finish signals of the tasks were re-
placed by the messages emitted from the user interface,
and not expressed by the participant as in the first phase.

4. The survey: Finally, the participant is asked to answer the
NASA-TLX test to measure his/her cognitive load.

EXPERIMENTAL RESULTS
The preliminary results (Table 1) indicate a significant de-
crease in the average number of errors (60%), the average
number of gestures (31%), and the average subjective cog-
nitive load (2%). On the contrary, the time for task comple-
tion has increased (150%) due to the simplification3 in the
framework, hence finer optimization has to be considered in
the further studies to remediate this drawback.

Phase 1
Min Max SD Avg

Time (minutes) 1.1 4.4 0.92 2.73
Errors 0 16 4 5

Gestures 41 124 20 74
Cognitive load 15.2% 59.07% 12.91% 37.49%

Phase 2
Min Max SD Avg

Time (minutes) 4 10.68 1.55 6.82
Errors 0 6 1.83 2

Gestures 34 72 10 51
Cognitive load 11.33% 62.53% 15.32% 35.52%

Table 1: Experimental Results. SD - Standard Deviation,
Avg - Average value. Phase 1: 33 participants. Phase 2: 23
participants different from Phase 1.

Discussion
In this work, we proposed a modular architecture to adapt
cobot behavior to human task variability. This architecture
makes use of HTN to generate flexible plans that account for
human task variability, allows free-style human-robot inter-
action, and assists the human partner in correcting their er-
rors without hindering the progress of the assembly process.
These preliminary results show that, from an ergonomic per-
spective, this architecture and the automated planning are
adequate to address human-cobot interactions effectively in
industrial workplaces. The intelligent behavior acceptabil-
ity is enhanced by a user interface that makes explicit the
cobot behavior to the user. The errors decrease significantly
indicating higher quality in performing the task, the number
of gestures also decreases, which reflects less physical load,
and the cognitive load has significantly decreased.

3Only left arm of the cobot was used, and the speed was reduced
for the sake of comfort human-robot interaction.



Task completion time increase highlights the importance
of utilizing an enhanced module for the motion and the co-
ordination between the robot and the human partner. We do
believe there is room to enhance this architecture’s runtime
performance and converge towards human-alone effective-
ness.
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