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Abstract

The task of argument quality ranking, which identi-
fies the quality of free text arguments, remains, to this
day, a challenge. While most state-of-the-art initiatives
use point-wise ranking methods and predict an absolute
quality score for each argument, we instead focus on
learning how to order them by their relative convincing-
ness, experimenting with several learning-to-rank meth-
ods for argument quality. We leverage BERT’s pow-
erful ability in building a representation of an argu-
ment, paired with learning-to-rank approaches (point-
wise, pairwise, list-wise) to rank arguments according
to their measure of convincingness. We also demon-
strate how an ensemble of models trained with differ-
ent ranking losses often improves the performance at
identifying the most convincing arguments of a list. Fi-
nally, we compare BERT coupled with learning-to-rank
methods to state-of-the-art approaches on all major ar-
gument quality datasets available for the ranking task,
demonstrating how a learning-to-rank approach gener-
ally performs better at outlining the topmost convincing
arguments.

Introduction

Establishing a position on a topic is defined by someone’s
ability to defend a stance. Argumentation is a tool to con-
vince an audience of a stance on a given topic. For example,
given the topic “Zoos should be abolished” and the stance
”Pro”, one could argue that a zoo’s whole business model
is to take animals from their natural habitats and exploit
them for money (Dataset IBM ArgQ 30k (Gretz et al. 2020)).
This yields the question: what defines a good argument? Or,
how can one identify a convincing argument? Natural lan-
guage processing defines this task as the automatic assess-
ment of argument quality. In fact, (Habernal and Gurevych
2016) proposed 2 tasks in the field of computational argu-
mentation: First, the task of predicting the most convincing
argument out of a pair of arguments and second, the task of
ranking a list of arguments, according to their convincing-
ness. While the performance of state-of-the-art models on
the first task is impressive, the task of ranking arguments
in order of convincingness proves to be more challenging,
as demonstrated by (Toledo et al. 2019). As one would ex-
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pect, ranking a list of arguments is more complex than sim-
ply choosing the most convincing argument out of a pair of
arguments.

In this work, we focus on the second task: ranking a list
of arguments for a given topic, in order of convincingness.
Most proposed solutions so far approached the task as pre-
dicting an absolute quality score for each argument indi-
vidually, defined as point-wise ranking. While these meth-
ods produce the wanted results as the list of the predicted
scores of convincingness can be sorted to show the ranking
of the arguments, we hypothesize that there are ranking ca-
pabilities potentially lost during the learning process by not
comparing the arguments together. We propose to define the
problem as a true ranking task, where we do not evaluate
each argument’s individual measure of quality, but instead
focus on evaluating its relative convincingness compared to
other arguments.

More generally, we try to answer the following research
question: How can learning to rank techniques coupled with
pretrained language models contribute to automatic argu-
ment quality evaluation? In this work, we leverage a neural
approach to learning-to-rank, built on top of BERT (Devlin
et al. 2018). This method combines BERT’s strong ability
to build an argument’s representation, and different rank-
ing loss functions (pointwise, pairwise, list-wise). The main
contribution of our work is to demonstrate the effective-
ness of neural approaches to learning-to-rank on the task of
ranking arguments by their measure of convincingness. We
demonstrate how our method delivers stronger capability in
outlining the fopmost convincing arguments of a list.

This paper is organized as follows. First, we present previ-
ous state-of-the-art approaches in the section Related Work.
Second, we describe the datasets used to compare our ap-
proach to previous ones. We explain the architecture of our
solution, our methodology and the performance metrics used
to evaluate our model in the section Learning-to-rank. The
section Results compares our approach to state-of-the-art
models.

Related Work

As evaluating the quality of an argument or, in other
words, its convincingness, remains a challenge in the field,
we review the main methods presented in the last 5 years for
automatic argument quality evaluation.



First task: Predicting the most convincing
argument of a pair

(Habernal and Gurevych 2016) pioneered the task of as-
sessing argument convincingness by defining it as the fol-
lowing problem: choosing the most convincing argument
out of a pair of arguments with the same stance on the
same topic. Many notable state-of-the-art solutions outper-
form (Habernal and Gurevych 2016)’s initial model. (Simp-
son and Gurevych 2018) propose to utilize scalable Bayesian
preference learning for argument quality evaluation, produc-
ing a classifier which achieves impressive results. (Gleize et
al. 2019) present a Siamese BLSTM using word2vec embed-
dings. Finally, (Toledo et al. 2019) demonstrate how BERT
with a binary classification head outperforms both previ-
ously cited solutions.

Second task: Ranking list of arguments

Most state-of-the-art methods to solve the task of rank-
ing a list of arguments for a given stance on a topic consist
of point-wise ranking. (Simpson and Gurevych 2018), along
with their model presented for the first task, also present a
model leveraging scalable Bayesian preference learning for
the regression task of predicting a quality score for every ar-
gument in a list. (Gleize et al. 2019) reuse one leg of their
Siamese BLSTM from the first task to predict a quality score
for each argument individually. Both (Toledo et al. 2019)
and (Gretz et al. 2020), initiatives by IBM research, present
BERT with a regression head to solve the task at hand. To
predict a quality score, BERT takes 2 sequences as input:
the topic and the argument.

(Potash, Ferguson, and Hazen 2019) stand out from other
state-of-the-art approaches by proposing a learning-to-rank
architecture similar to RankNet (Burges et al. 2005) using a
sum of word embeddings for the representation of an argu-
ment. The model produces scores independently for each ar-
gument, normalizing the scores of argument pairs using the
Softmax function. It is trained on preference pairs of argu-
ments and, therefore, can be trained on the pairwise labeled
datasets. The trained model is then evaluated on the classifi-
cation task or the ranking task. (Potash, Ferguson, and Hazen
2019) manage to outperform previous state-of-the-art solu-
tions considering Spearman ranking metric.

Looking at state-of-the-art methods in argument quality
evaluation, we can observe the effectiveness of using BERT
to build embedding representation of the arguments. In fact,
methods using BERT deliver the best performance for pre-
dicting the most convincing argument of a pair. However,
on the task of ranking a list of arguments, point-wise ap-
proaches to learning-to-rank fall short. (Potash, Ferguson,
and Hazen 2019) demonstrate the benefits of moving to
a pairwise approach. Based on those observations, in this
work, we compare a pointwise, pairwise and list-wise ap-
proach to learning-to-rank on top of BERT, evaluated on all
the major argument quality datasets.

Datasets

In this section, we briefly describe all the major publicly
available argument quality datasets released in the last 5

years and used in our experiments. Descriptive statistics are
shown in Table 1. These datasets present differences in the
way the arguments were gathered and the way they were an-
notated.

For instance, the UKP datasets (Habernal and Gurevych
2016) were annotated as pairs through crowdsourcing,
where each annotator had to choose the most convincing ar-
gument out of the pair (aka pair annotations). (Habernal and
Gurevych 2016) also rank the arguments in order of convinc-
ingness for each topic, by computing a score for each argu-
ment from the pair annotations. They build a graph represen-
tation where nodes represent arguments and directed edges
represent pair annotations. PageRank is applied to rank all
the arguments for each topic, resulting in the dataset UKP-
ConvArgRank which is used for the task of ranking argu-
ments for each topic.

Similarly, IBM-EviConv is annotated as a set of evidence
pairs extracted from Wikipedia. To extract rankings from
those annotations, (Gleize et al. 2019) use one leg from the
Siamese BLSTM trained on the pair annotations, to generate
a score for each argument.

IBM-ArgQ 1is built using two different labelling ap-
proaches: each individual argument is annotated with an ab-
solute quality score and also, argument pairs are labelled
(similar to previous approaches). This resulted in, as per
other initiatives, two datasets: one for the task of predicting
the most convincing argument of a pair and the other for the
task of ranking a list of arguments for a topic. However, in
this case, both datasets were built directly from human an-
notators, avoiding a transformation step such as in (Habernal
and Gurevych 2016) and (Gleize et al. 2019).

In the case of IBM-ArgQ-Rank-30k, the arguments are an-
notated directly with an individual score. The arguments are
annotated as a binary decision. For each argument, the an-
notators were asked if they would recommend a friend to
use that argument or not. Each argument is annotated by 10
people. A continuous quality score, between 0 and 1, is then
derived from these binary annotations. (Gretz et al. 2020)
uses two different ways of deriving that score: a weighted-
average (WA) and the MACE probability (MACE-P). This
process yields a dataset with a continuous quality score for
each argument, aiming at the task of ranking the arguments
for each topic.

Learning-to-rank

A learning-to-rank approach is defined by the scoring
function it uses, and the loss function applied to the pro-
duced scores.

BERT Learning-to-rank model

Focusing on the ranking task, the learning objective is,
given a Topic 7, a stance S and a list of arguments A;, Ay, ...,
A,, to assign a rank to each argument A; from the most con-
vincing rank to the least convincing rank. We propose to use
TFR-BERT (Han et al. 2020), a learning-to-rank approach
paired with BERT. A ranking head is used on top of BERT,
allowing to apply a ranking loss function (see the section
Ranking Loss Functions) over multiple arguments at once.



Number Arg Length Topic Length | Mean

Dataset name Number of arguments of Task Source g k= % S ] =] x| Topic Arg
. Q Q

topics s s | = S = | S | Count
UKPConvArg1Strict 11650 pairs of arguments 32 PA Extracted from createdebate.com,
UKPConvArgl-Ranking | 1052 arguments 32 Ranking | convinceme.net 263 | 37 | 753 | 561 26 | 92 32
IBM-ArgQ-Pairs 9100 pairs of arguments 22 PA Actively collected arguments from
IBM-ArgQ-Args 5300 arguments 22 Ranking | crowds 138 1361 275 | 42| 31 | 63 240
IBM-EviCony 5697 pairs of arguments | 69 | b & | Automatically retrieved Wikipedia | o9 | 6 | 495 | 34 | 20 | 55 26

Ranking | sentences

IBM-ArgQ-Rank-30k | 30000 arguments 71 | Ranking ?r‘;‘v‘;’;;y collected arguments from |17 | 35 | 551 | 34 | 21 | 52 429

Table 1: Statistics on most common datasets for the argument quality evaluation task. PA stands for Pair Classification.

This neural approach to learning-to-rank is implemented us-
ing the TF Ranking library (Pasumarthi et al. 2018).

Input representation The ranking model needs to be able
to grasp the quality of an argument with respect to a topic.
The BERT module is responsible for building a represen-
tation demonstrating the association between the argument
and the topic. Each argument’s text is concatenated to its re-
spective topic’s text, in a typical BERT pair representation:
[CLS] Topic [SEP] Argument [SEP].
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[SEP]
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Figure 1: Architecture of the BERT ranking model based on
(Han et al. 2020).

Architecture As shown in figure 1, for each argument, the
BERT module takes a topic & argument concatenated se-
quence and outputs the hidden units of the [CLS] token of
the last layer. The pooled outputs of each topic & argument
sequence, for every argument in the list to rank, are fed into
a dense layer which acts as a scoring function. The scor-
ing function learns to associate a score to every argument.
A ranking loss function is applied to the scores generated
by the scoring function and is used to update the model’s

weights. The loss function used determines how many argu-
ments are considered at once when calculating the loss for
backpropagation over the model’s weights.

Ranking Loss Functions

In this work, we compare the performance of 3 types of rank-
ing losses, introducing list-wise ranking loss functions to ar-
gument quality evaluation. When training a ranking model,
the loss function can either be applied to the arguments in-
dividually (pointwise loss), by pairs (pairwise loss) or alto-
gether (listwise loss). For point-wise losses, the arguments
are considered independently. Pairwise losses use argument
pairs to calculate the loss. List-wise losses consider the or-
der of the whole list of arguments. Table 2 shows the specific
loss functions we explore for each type of loss.

[ Loss Type | Loss Function | Equation

L)) = 3 — 5.

i

Pointwise | Mean Squared Loss

Pairwise Hinge Loss

L({y}. {s}) = Z Zl[y, > y;]max(0, 1 — (s; — s5))
ij

Pairwise

Logistic Loss

LHyhAsh) = D> Iy > y5] log(1+exp(—(si—5;))

L({y}, {s}) = —log(P(myls))
where P(m,|s) is the Plackett-Luce probability of a per-
mutation 7, conditioned on scores s.

L{({y}.{s}) = —Z'y, -log (i’”&)

j exp(s;)

List MLE Loss

Listwise Softmax Loss

1 i 1
LWk Ash) = _DCG(y7y) Z log, (1 + rank;)

=)
Table 2: Equations of loss functions, where s is the list of

scores predicted and y is the list of scores used as ground
truth.

Approx NDCG
Loss 1
rank; =1+

iAi 1 +exp ([

Transforming scores into ranks

For all the datasets mentioned in the section Datasets, the
quality score is an absolute value and cannot be directly used
with a learning to rank model. We must first sort all the ar-
guments for a given topic by quality score, from lowest to
highest. From that sorted list of arguments, we attribute a
relevancy rank to each of the argument, with the highest rank
for the highest score. To transform scores into ranks, we use
the function rankdata from the Scipy library . To deal with

"https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.rankdata.html



arguments with tied scores, we choose the strategy ’dense’
to transform the scores into ranks in a way that limits the
range of the rank values. This implies only a single rank
value is assigned to arguments with tied scores, and ensures
the ranking model is able to learn to rank two arguments as
equal if they have the same quality score.

Training parameters

Maximum sequence length The maximum length of the
sequence passed as input to the BERT module is calculated
for every dataset. It is fixed to a value that ensures 95% of
the arguments aren’t truncated (sequence length including
the topic & the argument combined as seen in the section
Learning-to-rank). For the rest of the arguments, the total
sequence is truncated to the fixed maximum length. The rea-
son for this decision is to facilitate the training. Choosing
a maximum sequence length that would ensure the remain-
ing 5% of the arguments aren’t truncated usually increased
drastically the sequence length and caused the model to be
heavier to train.

Argument batches During the training phase, memory
limits did not allow to fit the whole list of arguments for
a topic. Thus, for each topic in our datasets, we divide the
list of arguments into smaller lists of 12 arguments as shown
in table 3, the same list size used by (Han et al. 2020). At
inference time, however, full lists of arguments are fed to
the model for predictions, ensuring the model is evaluated
on unmodified data (test set).

Tied ranks and scores The methodology used to divide a
list of arguments into smaller lists of 12 arguments must take
into account the number of arguments with the same score,
otherwise it affects the training of the model. In fact, many
arguments have the same score, especially the most convinc-
ing ones and the least convincing ones, resulting in equal
ranks. Feeding the model with batches of arguments with
equal ranks would result in poor training. Consequently, we
divide the list of arguments in such a way that each batch has
arguments of rank values well spread across the rank range.
To do so, we divide the list of arguments, sorted by convinc-
ingness, into 12 slices. Each batch; takes argument i of every
slice, generating uniform batches of size 12, while ensuring
no argument overlap between batches. In other words, ev-
ery list of arguments fed to the model for training contains
strong and poor quality arguments, as well as arguments
considered relatively convincing. This allows for effective
learning of the ranking function.

Train

Leaming| EpoCH | optimizer | Batch
size

Dropout | List

Loss Function .
rate size

MSE Loss le-5 2
Hinge Loss
Logistic Loss adam 6 0.1 12
List MLE le-6 3
Softmax Loss

Approx NDCG Loss

Table 3: Training parameters of TFR-BERT for the argument
quality ranking task.

Ensemble TFR-BERT Han et al. demonstrate how an en-
semble approach to TFR-BERT, combining multiple rank-
ing losses, can improve predictions. We use the same ap-
proach for the task of argument quality, combining the pre-
dictions of multiple versions of TFR-BERT, each trained us-
ing a different ranking loss. For each prediction, we aver-
age the list of scores predicted over the different versions of
TFR-BERT. This increased the model’s performance con-
siderably, as shown in section Results.

Metrics

Most initiatives in the argument quality evaluation field
used Pearson & Spearman to evaluate the ranking task. As
we focus more on the ranking perspective of the task and less
on predicting an absolute score for each argument, we em-
ploy the NDCG (Normalized Discounted Cumulative Gain)
to evaluate our model’s performance, as it is a metric com-
monly used for learning-to-rank.

We also report our results using Pearson, Spearman and
Kendall’s Tau to compare our results to other initiatives in
the state-of-the-art.

Results

We evaluate the model TFR-BERT, presented in the sec-
tion Learning-to-rank, on all major argument quality evalu-
ation datasets available. When a division into train, valida-
tion and test sets was not provided by the dataset, we divided
them as 20% of the topics assigned to the test set, 20% as-
signed to the validation set and the remaining to the train
set. Table 4 shows descriptive statistics on the train, valida-
tion and test sets. Test sets never contain a topic already seen
by the model during training. For reproducibility purposes,
we provide all the datasets® as lists of ordered arguments
following the methodology described in the section Trans-
forming scores into ranks.

Dataset ] Train .Valid _ Test
Topic | Args | Topic | Args | Topic | Args
UKP Rank 18 602 7 222 7 228
IBM Evi 36 6632 12 2006 21 2756
IBM ArqQ Rank 12 2625 5 1586 5 1087
IBM Arg 30K 49 20974 7 3208 15 6315

Table 4: Division of datasets into train, valid and test sets.

UKP Rank

We first evaluate the performance of TFR-BERT on the
UKP Rank dataset for the argument quality ranking task,
comparing different loss functions. Table 5 shows Pear-
son, Spearman, Kendall’s Tau as well as the NDCG@K
metrics for every model. The first 3 metrics give a mea-
sure of how well the model ranks all the arguments of
the list. The NDCG@K metrics show how the model per-
forms at outlining the top K most convincing arguments. We
can see in table 5 that the majority of TFR-BERT variants
outperform BERT across many metrics, including models
trained with pointwise, pairwise and list-wise losses. The

“http://www.labowest.ca/FLAIRS2022/datasets



| \ Loss \ Model PEARSON SPEARMAN TAU\ NDCG@5 NDCG@10 NDCG@IS]
Pointwise BERT 0.44 0.56 0.40 0.53 0.62 0.68
TFR-BERT MSE Loss 0.45 0.68 0.51 0.59 0.67 0.72
~ TFR-BERT Hinge Loss 0.44 0.60 0.46 0.63 0.72 0.75
§ | Pairwise | TFR-BERT Logistic Loss 0.38 0.59 0.45 0.43 0.57 0.61
E State-of-the-art: Sum-of- 0.48 0.69 0.52 - - -
N Words-Embeddings + FFNN
= TFR-BERT Softmax Loss 0.40 0.67 0.51 0.49 0.61 0.66
List-wise | TFR-BERT List MLE 0.36 0.61 0.45 0.36 0.54 0.60
TFR-BERT Approx NDCG Loss 0.47 0.59 0.44 0.54 0.66 0.69
Mix TFR-BERT Ensemble Losses 0.48 0.68 0.51 0.60 0.72 0.77
Pointwise BERT 0.57 0.51 0.37 0.88 0.90 0.89
TFR-BERT MSE 0.56 0.50 0.36 0.90 0.90 091
= | Ppairwise TFR-BERT Hinge Loss 0.53 0.46 0.34 0.88 0.88 0.88
K TFR-BERT Logistic Loss 0.37 0.36 0.26 0.86 0.84 0.86
§ TFR-BERT Softmax Loss 0.60 0.54 0.39 091 0.90 0.92
~ | List-wise | TFR-BERT list MLE 0.38 0.29 0.21 0.77 0.79 0.81
TFR-BERT Approx NDCG Loss 0.55 0.52 0.36 0.90 0.89 0.80
Mix TFR-BERT Ensemble Losses 0.61 0.56 0.41 0.91 0.89 0.89
Pointwise State-of-the-art: BERT 0.42 0.41 0.22 0.55 0.60 0.63
- TFR-BERT MSE 0.30 0.29 0.20 0.63 0.64 0.66
I~ Pairwise TFR-BERT Hinge Loss 0.31 0.31 0.21 0.61 0.63 0.64
Q TFR-BERT Logistic Loss 0.33 0.34 0.24 0.60 0.63 0.66
:Eo TFR-BERT Softmax Loss 0.34 0.33 0.23 0.57 0.61 0.62
= List-wise | TFR-BERT List MLE 0.32 0.31 0.21 0.58 0.61 0.64
S TFR-BERT Approx NDCG Loss 0.29 0.32 0.22 0.62 0.64 0.67
Mix TFR-BERT Ensemble Losses 0.35 0.34 0.23 0.64 0.67 0.66
Pointwise State-of-the-art: BERT 0.52 0.48 0.32 0.85 0.87 0.86
e TFR-BERT MSE 0.50 0.45 0.32 0.87 0.87 0.87
S Pairwise TFR-BERT Hinge Loss 0.49 0.45 0.31 0.90 0.89 0.88
80 TFR-BERT Logistic Loss 0.50 0.45 0.31 0.88 0.88 0.88
< TFR-BERT Softmax Loss 0.49 0.43 0.30 0.86 0.86 0.86
§ List-wise | TFR-BERT List MLE 0.51 0.45 0.32 0.89 0.90 0.89
~ TFR-BERT Approx NDCG Loss 0.43 0.42 0.30 0.88 0.87 0.87
Mix TFR-BERT Ensemble Losses 0.52 0.47 0.32 0.89 0.89 0.88

Table 5: Evaluation of TFR BERT using different ranking losses on all major argument quality datasets.

Ensemble TFR-BERT, which combines models trained with
MSE, Hinge, Pairwise Logistic and Approx NDCG losses
respectively, is the best performing variant of TFR-BERT.
Comparing it to the state-of-the-art (Potash, Ferguson, and
Hazen 2019)’s Sum-of-Words-Embeddings with Feed For-
ward Neural Network, we find that Ensemble TFR-BERT
performs similarly to their solution for Pearson, Spearman
and Kendall’s Tau metrics. Ensemble losses and the Pair-
wise Hinge loss are the best performing TFR-BERT variants
according to NDCG @K metrics, outperforming BERT by a
significant margin.

IBM Evi Dataset

For model evaluation on IBM Evi, we used the exact same
test set as in the published dataset (Gleize et al. 2019).
We then reserved 25% of the training set for the valida-
tion set, as shown in table 4. Table 5 shows that 2 variants
of TFR-BERT outperform BERT for Pearson, Spearman &
Kendall’s Tau metrics: TFR-BERT trained with Softmax loss
function and Ensemble TFR-BERT, which combines models

trained with MSE, Softmax and Approx NDCG losses respec-
tively. Those two variants of TFR-BERT also have the edge
on BERT for the NDCG @5 metric. TFR-BERT trained with
Softmax loss function is the best performing model across
NDCG@K metrics, while Ensemble TFR-BERT is the best
performing model across Pearson, Spearman & Tau metrics.

IBM ArqQ Rank

Table 5 shows that IBM ArqgQ Rank was the most chal-
lenging dataset to rank for TFR-BERT. Variants of TFR-
BERT managed to outperform (Toledo et al. 2019)’s state-
of-the-art BERT on Kendall’s Tau and NDCG@XK metrics.
Ensemble TFR-BERT, which combines models trained with
MSE, Hinge, Logistic, Softmax and list MLE losses respec-
tively, remains the best performing model across most met-
rics on IBM ArqQ Rank.

IBM Arg 30K

To ensure a proper comparison to the state-of-the-art on
dataset IBM Arg 30K, we use the exact same division into



train, validation and test sets as described in the published
dataset (Gretz et al. 2020), as shown in table 4. Compar-
ing the TFR-BERT architecture to BERT, we can see that
Ensemble TFR-BERT, which combines models trained with
MSE, Hinge, Logistic, Softmax and list MLE losses respec-
tively, performs similarly to BERT on Pearson, Spearman &
Kendall’s Tau but outperforms it on NDCG@K metrics.

Discussion

The results presented demonstrate that TFR-BERT, eval-
uated on every major argument quality dataset, generally
outperforms state-of-the-art solutions on NDCG@K met-
rics and performs similarly to the state-of-the-art on Pear-
son, Spearman metrics & Kendall’s Tau. The model’s per-
formance for the NDCG @K metric shows the model is ex-
cellent at returning the top K most convincing arguments.
Considering applications of argument quality ranking, one
could say that returning the top K best arguments of a list
has more value than the whole ranked list in itself. This re-
inforces our call for the usage of the NDCG@K metric for
the task of argument quality ranking.

Comparing the different types of ranking losses, we can
observe the pairwise and list-wise ranking losses usually
performed better for the NDCG@K metrics, and thus at
identifying top K most convincing arguments of a list. While
one loss function did not stand out as generally the best
across datasets, an ensemble model of multiple TFR-BERT
trained with different loss functions always yielded better
results. On almost every dataset it was evaluated on, ensem-
ble TFR-BERT outperforms every TFR-BERT trained using
only one ranking loss function, generally performing more
uniformly across all metrics, demonstrating a more robust
approach to argument quality ranking.

From the results in table 5, we can observe a noticeable
difference in performance from one dataset to another. Each
dataset has their own score of quality, each different in the
way the score is calculated, either in the way it is trans-
formed from pairwise annotations or the way it is collected.
In future work, we plan to conduct a qualitative evaluation
of the datasets and also explore the feasibility of using a nor-
malized score for all argument quality datasets, thus unify-
ing them.

Conclusion

In this work, we propose a different view on the task of
ranking arguments by quality. Steering away from trying to
predict an absolute quality score for each argument, we in-
stead focus on learning how to order them by their relative
convincingness. We propose to use an architecture based on
learning-to-rank built on top of BERT. Pairing a learning-to-
rank approach with BERT’s powerful ability in building a
representation of an argument yields stronger ranking capa-
bilities. This shows in the results obtained using TFR-BERT,
which demonstrate better performance for the NDCG@K
metrics, and thus superior capability at outlining top K most
convincing arguments. We argue that this might have more
significant applications than focusing on ranking all the ar-
guments with equal importance. We also demonstrate how

combining multiple ranking loss functions (pointwise, pair-
wise and list-wise) as an Ensemble model of TFR-BERT
shows better performance across many metrics. In future
work, we want to explore neural learning-to-rank methods
with other pre-trained language models: RoOBERTa or Elec-
tra, for the argument quality ranking task.
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