
Comparative Analysis of Transformers to Support
Fine-Grained Emotion Detection in Short-Text Data

Robert H Frye and David C Wilson
University of North Carolina at Charlotte

Charlotte, NC

Abstract
Understanding a person’s mood and circumstances by way
of sentiment or finer-grained emotion detection can play a
significant role in AI systems and applications, such as in
chat dialogue or reviews. Analysis of emotion from text typ-
ically requires specialized text or document understanding,
and recent work has focused on transformer learning ap-
proaches. Common models of these transformers (e.g. BERT,
RoBERTa, ELECTRA, XLM-R, and XLNet) have been pre-
trained using longer texts of well-written English; however,
many application contexts align more directly with social
media content or have a shorter format more akin to so-
cial media, where texts often bend or violate standard lan-
guage conventions. To understand the applicability and trade-
offs among common transformers within such contexts, our
research investigates accuracy and efficiency considerations
in fine-tuning transformers for granular emotion detection in
short-text data. This paper presents a comparative study in-
vestigating the performance of five common transformers as
applied in the specific context of multi-category emotion de-
tection in short-text Twitter data. The study explores differ-
ent considerations for hyperparameter settings in this context.
Results show significant fine-tuning benefits in comparison to
recommended baselines for the approaches and provide guid-
ance for fine-tuning to support fine-grained emotion detection
in short texts.

Introduction
Understanding a person’s mood and circumstances by way
of sentiment analysis or finer-grained emotion detection can
play a significant role in AI systems and applications. Yue et
al. (Yue and others 2019), for example, note commercial, po-
litical, and public security as three important application ar-
eas. Commercial applications can provide valuable reaction-
based feedback to merchants, manufacturers, and consumers
about the quality and reception of different products. In pol-
itics, sentiment and emotion data can help inform political
strategies for both candidates and incumbents. And recog-
nizing sentiment-driven trends in social media can help to
understand emerging, potentially disruptive world events.

The task of correctly identifying specific emotions por-
trayed in written text is challenging, even with richer data
where the text is longer, well-written and closely follows
rules of grammar, spelling, punctuation, and style. Given

Copyright © 2022by the authors. All rights reserved.

that texts for user interactions in modern communication are
often shorter and more aligned in structure with social media
interactions, there are additional challenges to the detection
task. For example, Hassan et al. (Hassan, Abbasi, and Zeng
2013) note that “...Twitter harbors a lot of noise, including
spam, the short colloquial communication style adopted by
users, irrelevant content, and an abundance of neutral con-
tent.” More generally, noise issues in short-text online com-
munication include: misspellings, inconsistent and repeated
punctuation, use of emojis and emoticons, user tags, hash-
tags, URLs, and case mixing.

For example, consider the first entry from our dataset:
“t-minus 10 minutes until interview timeeeee. #nervous”.
There are differences from formal style in terms of sentence
length and general content, including the lack of capitaliza-
tion, misspelling of time, and use of a hashtag to self-label
the tweet. Considerations such as these are important as-
pects of context in typical short-text online communication,
and need to be accounted for in emotion detection, partic-
ularly when the leading available text analysis components
are foundationally trained on longer, more formal texts.

In building emotion-aware applications, there are impor-
tant tradeoffs to consider in the use of standard language pro-
cessing components as part of the architecture. Pre-trained
components are commonly available as part of natural lan-
guage understanding packages. Devlin et al. (2019) note that
“Recent empirical improvements due to transfer learning
with language models have demonstrated that rich, unsu-
pervised pre-training is an integral part of many language
understanding systems.” At the same time, however, the cor-
pora used for such training typically focus on longer, well-
written sources, such as the English version of Wikipedia
and BOOKCORPUS (Zhu and others 2015), CCNews-En
(Mackenzie and others 2020), STORIES (Trinh and Le
2019), and OpenWebText (Peterson, Meylan, and Bourgin
2019) datasets. Since the foundational models for common
transformers are based on longer text corpora with more for-
mal writing style, there are potential trade-offs when they are
applied for understanding in shorter-text social media con-
texts, either directly or with fine-tuning.

Our long-term research program is investigating hybrid
classification models for fine-grained emotion detection in
short-text data. As a foundation, it is essential to under-
stand performance and trade-offs in best-practice baseline



components. This paper investigates potential trade-offs and
applicability of modern, commonly available transformers
when applied in short-text media contexts for the task of
fine-grained emotion detection. Our key questions were to
understand the performance of models that were pre-trained
on longer, more formal texts in the shorter-text social media
context, as well as to investigate appropriate hyperparamter
settings for emotion detection in the short-text context. The
remainder of this paper is organized as follows. First, we dis-
cuss related work, including transformers and deep learning
algorithms for emotion detection in written text, as well as
hyperparameter optimization. Second, we present our exper-
imental approach. Finally, we present our results and analy-
sis along with conclusions and future work.

Related Work
Our research focuses on commonly used deep learning
transformer-based approaches and hyperparameter opti-
mization as part of the classification and prediction steps
for emotion detection. The approaches discussed have all
been applied to the task of sentiment analysis, and each of
the transformer approaches specifically references the SST-
2 task of GLUE (Wang et al. 2019). The related work here
covers both common types of neural networks employed, as
well as the specific transformer approaches that have been
applied in sentiment analysis and finer-grained emotion de-
tection.

Deep Learning Algorithms
Convolutional neural networks (CNNs) were originally pro-
posed by Lecun et al. (LeCun et al. 1999) for applications in
image recognition. CNNs use filters of progressively smaller
selections of an image to map the features from each larger
filter to the smaller selection in each subsequent layer. A
softmax layer is then used to map the preceding layers to
the final categories in a classification task. Yoon Kim (Kim
2014) mapped the CNN approach from the field of image
recognition to the problem of text classification, and parallel
work by other researchers further established the viability
of CNNs for text classification problems (Liu et al. 2017;
Johnson and Zhang 2015; 2017). As an example for emo-
tion detection, consider the following phrase. “No fan of the
Carolina Panthers has ever said watching their games is a re-
laxing experience.” From this statement, we can infer that a
fan may find most Panthers games stressful to watch; how-
ever, if we consider only the phrase, “...watching their games
is a relaxing experience,” in isolation, we may draw a much
different conclusion. Thus, the context between phrases is
important for emotion detection.

Recurrent neural networks (RNNs) are designed to main-
tain some memory of the outcome of previous steps. In
RNNs, the output of a previous step in a sequence applies to
the next word in a sequence, enabling an RNN to consider
the context of an entire word sequence. RNNs are vulnerable
to the problem of vanishing or exploding gradients, and thus
are limited to remembering only a small number of steps.
Hochreiter and Schmidhuber (Hochreiter and Schmidhuber
1997) developed the long short-term memory (LSTM) net-
work, which uses 4 layers per time step, including an input

gate, output gate, forget gate, and hidden memory layer to
bypass the vanishing or exploding gradient problem inherent
to RNNs. Cho et al. (Cho and others 2014) proposed GRU, a
simplified version of LSTM which combines the forget and
input gates and merges the hidden and cell states. Schuster
and Paliwal (Schuster and Paliwal 1997) proposed bidirec-
tional RNNs to capture the context before and after a se-
quence. In their approach, one RNN processes input in the
original order and the other processes the input in reverse
order. Ghosh et al. (Ghosh et al. 2016) extended LSTM with
the concepts of CNNs (LeCun et al. 1999) by adding mem-
ory of the class to each gate in the LSTM layer. In their work
on topic modeling classification, C-LSTM improved on the
performance of traditional LSTM by approximately 20%.

Transformers
Devlin et al. (Devlin et al. 2019) created BERT (Bidirec-
tional Encoder Representations from Transformers) to cap-
ture the bidirectional contextual information inherent in
text. BERT was pre-trained using the 800M words of the
BooksCorpus (Zhu and others 2015) and 2.5B words of En-
glish Wikipedia. BERT was developed using a 30K token
vocabulary based on WordPiece embeddings (Wu and oth-
ers 2016). Part 1 of BERT’s pre-training was unsupervised
training, conducted by randomly masking 15% of the in-
put tokens and then predicting the masked tokens – a so-
called masked language model (MLM) approach. Part 2 of
pre-training was meant to enable an understanding of sen-
tence relationships using the unsupervised training of a next
sentence prediction task. BERT generated pre-trained em-
beddings based on the sum of token, segmentation, and
position embeddings, and thus captures information from
each pre-training task in the final embedding vector. BERT
was trained with batches of 256 tokens. The original BERT
approach showed substantial improvement on the General
Language Understanding Evaluation (GLUE) (Wang et al.
2019) score by 7.7% absolute improvement, and 91.6% for
binary (positive/negative) sentiment prediction when com-
bined with BiLSTM.

Liu et al. (2019) extended the concepts of BERT trans-
formers in RoBERTa (Robustly Optimized BERT Pretrain-
ing Approach). RoBERTa was trained with the CC-NEWS
dataset, a derivation compiled from Nagel’s Common-
Crawl News dataset (Nagel 2016). The RoBERTa approach
matched or improved on BERT results in 6 of the 9 GLUE
tasks. Liu et al. increased several training hyperparameters
for BERT, including the length of training and the batch
sizes used. RoBERTa was trained with maximum batch sizes
of 512. For ablation testing, Liu et al. removed the next
sentence prediction task, adapted the masking pattern dy-
namically, and trained on longer sequences. In evaluating
RoBERTa, the team reported a best accuracy in binary sen-
timent analysis (the SST-2 task from GLUE) of 92.9%.

Yang et al. (2020) compared their XLNet algorithm to
BERT, and differentiated their approach from BERT in sev-
eral key ways. XLNet’s training method considers permu-
tations of factorization orders to capture the bidirectional
context of tokens within text and maximize the logarithmic
likelihood of a token sequence in regards to the permuta-



tions. As an autoregressive approach to pre-training, XLNet
uses the product rule to factor join probabilities of predicted
tokens, thus avoiding the token/mask independence discrep-
ancy in BERT. Finally, XLNet further differentiates its ap-
proach from BERT in not introducing tagging noise to the
dataset. XLNet was trained on many of the same or sim-
ilar datasets as BERT and RoBERTa, including Common-
Crawl, BooksCorpus, and English Wikipedia, while also
training with the ClueWeb 2012-B (extended from (Callan
et al. 2009)) and the Giga5 (Parker et al. 2011) datasets. We
note that Yang et al. intentionally filtered their training data
to remove short, low-quality articles, arguably representa-
tive of social media type data. XLNet was trained with 512
token training sequences and, like RoBERTa, dropped the
next sentence prediction task when compared to BERT. XL-
Net reported 94.4% accuracy in the SST-2 binary sentiment
prediction task, higher than both BERT and RoBERTa.

Cross-lingual language models (XLM) (Lample and Con-
neau 2019) were developed to extend the success of pretrain-
ing approaches like BERT to multiple languages. XLM was
trained using the XNLI dataset (Conneau and others 2018)
with 7500 human-annotated samples from 15 languages.
XLM differs from BERT by considering text streams trun-
cated at 256 tokens, composed of an arbitrary number of
sentences, instead of sentence pairs. XLM attempts to ad-
dress the imbalance between frequent and rare tokens by
sampling the tokens in a stream based on their multinomi-
ally distributed weight in proportion to the square root of
their inverted frequencies. For translation language model-
ing, XLM extended the MLM approach to consider pairs
of parallel translated sentences, thus generating predictions
based on contextual clues from either language.

XLM-RoBERTa (XLM-R), developed by Conneau et al.
(Conneau et al. 2020), applied concepts presented by both
BERT and XLM. Specifically, XLM-R was trained with
MLM using monolingual sample streams and a larger vo-
cabulary than BERT, with 250K tokens, compared to 30K
with BERT. 100 different languages were sampled with the
same distribution used in XLM, with α = 0.3 instead of
α = 0.5, and without language embeddings. A clean deriva-
tion of the CommonCrawl Corpus was used in pretraining
XLM-R, with one English version and twelve versions in-
clusive of other languages. Conneau et al. reported 95.0%
accuracy on the SST binary sentiment classification task.

Clark et al. (Clark et al. 2020) developed ELECTRA (Ef-
ficiently Learning an Encoder that Classifies Token Replace-
ments Accurately) to offset a perceived weakness of BERT,
namely, that BERT has an imbalance caused by the intro-
duction of masking tokens during the pre-training phase,
but not during the fine-tuning phase of training. While the
pre-training corpus is not specifically noted in (Clark et al.
2020), the appendix notes running an MLM comparison be-
tween ELECTRA-Base and BERT-Base using a combined
Wikipedia and BooksCorpus dataset. BERT was actually
more accurate in the MLM comparison, with a 77.9% accu-
racy compared to ELECTRA’s 75.5%. ELECTRA attempts
to offset the BERT imbalance between training and fine-
tuning by replacing some tokens with samples from a pro-
posed distribution created by a small MLM. Pre-training is

then conducted to predict every token, whether an original
token or a replaced token. This differs from BERT, wherein
pre-training is only applied to the masked 15% of all tokens,
and enables ELECTRA to be pre-trained faster. ELECTRA
reported a top SST accuracy between 89.1% to 96.7%, with
accuracy variations determined by the fine-tuning datasets
used and the duration of training.

Hyperparameter Optimization
Elshawi et al. (2019) note that the process of hyperparameter
optimization is one of the key challenges in developing accu-
rate models specific to a given domain. Murray et al. (2019)
examined auto-sizing various components of the transformer
architecture, including gradients, attention heads, and feed
forward networks, in order to streamline the hyperparame-
ter optimization process. Yang and Shami (2020) completed
a comprehensive survey of hyperparameter optimization ap-
proaches for traditional machine learning and deep learning
models and identified the learning rate, dropout rate, batch
size, and number of epochs as key hyperparameters in need
of tuning for deep learning algorithms. They describe nu-
merous optimization approaches, including trial and error
(Abreu 2019), grid search (Koch et al. 2017), and random
search (Bergstra and Bengio 2012), as well as various li-
braries designed to assist in their implementation.

It is notable that while each of the various transformer
algorithms we considered provided some insight into how
their models were developed, details on hyperparameter se-
lection explored were limited. For example, in (Devlin et al.
2019), Appendix A.3 notes a constant dropout of 0.1, batch
sizes of 16 or 32, Adam learning rates of 5e-5, 3e-5, or 2e-5,
and either 2, 3, or 4 learning epochs, stating that these values
were found to “...work well across all tasks...”. In addition, it
is noted that datasets with more than 100k training samples
were less sensitive to hyperparameter choices, and that fine-
tuning was generally fast enough that it was reasonable to
simply iterate through the different hyperparameter options
and pick the model with the best results. We interpret this as
a recommendation that a basic grid search (Koch et al. 2017)
approach is expected to be sufficient for hyperparameter op-
timization.

Methodology
Key questions in our comparative analysis were to under-
stand the performance of models that were pre-trained on
longer, more formal texts in the shorter-text social media
context, as well as to investigate appropriate hyperparamter
settings for emotion detection in the short-text context.

Data
Experimental analysis employed a 1.2M tweet dataset
(Wang et al. 2012) as labeled for emotion detection in (Ran-
ganathan and Tzacheva 2019), which we refer to as the HT
(HarnessingTwitter) dataset. Obtaining Twitter datasets can
be challenging, as Twitter only allows the sharing of tweet
IDs between researchers, requiring each research team to
independently scrape the required tweets by ID. For this
reason, the original HT dataset contained more than 2M



tweets; however, the content for only 1.2M remained acces-
sible from Twitter at the time of our study. The HT dataset
contained samples of 7 total emotions, distributed as shown
in Table 1:

joy 349,419 thankfulness 72,505
sadness 299,412 fear 65,010
anger 261,806 surprise 11,978
love 153,017

Table 1: Sample sizes for emotions in HT dataset

Preprocessing Data was preprocessed as follows. First,
we removed URLs, username references (e.g. @POTUS),
hashtags (e.g. #happy), and numbers from the content of
each tweet, replacing each complete reference with an empty
string. Next, we cast all text to lowercase, unescaped any
HTML escape strings, removed punctuation duplicates, and
replaced contractions with full phrases (e.g. “what’s” was
replaced with “what is,“’ve” was replaced with “ have,” and
“n’t” was replaced with “ not.”), and stripped extra whites-
pace from the beginning and end of each string. Finally, we
lemmatized the verbs in each tweet.

Software Libraries
Our experiments employed standardized platform imple-
mentations of different transformers within the Simple
Transformers library, which leverages the following com-
mon Python libraries: scikit-learn - train-test splits and ana-
lytics (Pedregosa and others 2011); HuggingFace’s Trans-
formers - basis of Simple Transformers (Wolf and others
2020); Simple Transformers - easy implementation of trans-
formers (Rajapakse 2019); Keras Tensorflow - basis of Hug-
gingFace’s Transformers (Chollet and others 2015); Pan-
das - dataframe manipulation (pandas development team
2020); NLTK - preprocessing text (Loper and Bird 2002);
and Numpy - array-based math (Harris and others 2020).

Experimental Setup
We selected BERT (Devlin et al. 2019), RoBERTa (Liu and
others 2019), XLM-R (Conneau et al. 2020), XLNet (Yang
et al. 2020), and ELECTRA (Clark et al. 2020) transform-
ers as a representative sampling of modern transformer ap-
proaches. In all cases, our training approach was to fine-
tune the base models available from the Keras Tensorflow
libraries for the algorithms above with a 70/30 split of the
1.2M tweet HT dataset and a different random seed than
those used in our 10-fold cross validation testing. The Sim-
ple Transformers library (Rajapakse 2019) has a default
dropout of 0.1. This aligns with the dropout rate consistently
employed in related work, and so was kept constant here.

Recommended Parameter Testing We trained our initial
models and our extended parameter testing models with a se-
lection of data from the HT dataset, using a 70/30 train/test
split and a random seed of 21. We created models from 2, 3,
and 4 training epochs for each of our selected transformers,
with learning rates of 2e-5, 3e-5, and 5e-5. We used batch

sizes of 8 for all permutations of models, epochs, and learn-
ing rates. The relatively smaller batch size (vs. 16 or 32) was
used because some models gave rise to buffer overrun er-
rors with the Nvidia Geforce RTX 2080 GPU used in exper-
imentation. Moreover, the batch size selection follows Mas-
ters and Luschi (2018), who found “...that using small batch
sizes for training provides benefits both in terms of range of
learning rates that provide stable convergence and achieved
test performance for a given number of epochs.”

Figure 1: Accuracy increase curve flattens at 9-10 epochs.

Extended Parameter Testing We extended parameter
testing by adding additional training epochs until increases
in the plotted accuracy curve became relatively flat. Thus,
we trained additional models for each transformer up to 10
epochs, across all learning rates. As a long-range compari-
son point, we also trained one BERT model to 50 epochs.

Results and Discussion
For comparative analysis, we selected accuracy as our pri-
mary metric. We considered previous research (Salman and
Liu 2019; Sedik and others 2020; Safder et al. 2020) com-
paring validation loss and accuracy to assess how well a
model generalizes and avoid overfitting, as well as others
who posit that sufficiently large datasets generate models
wherein the flat part of a power-law learning curve describes
a region of irreducible error (Hestness et al. 2017). To as-
sess how well our models generalize, We performed 10-fold
cross validation with a 70/30 split to provide robust sampling
across the entire dataset and determined that the accuracy
scores were stable across folds, with maximum deviations
from the average generally within ±0.05%.

We performed 10-fold cross-validation testing across the
models we trained with a grid search using the BERT-
recommended parameters. Results are shown in Table 2. In
our domain of fine-grained emotion detection from social
media texts, we found that the higher learning rate, 5e-5,
yielded more accurate results than the smaller 2e-5 and 3e-
5 rates. This trend held across all transformer models, with
BERT yielding the most accurate results after 4 epochs at an



Model 2eps 3eps 4eps 5eps 6eps 7eps 8eps 9eps 10eps
bert 84.75% 87.14% 89.03% 90.39% 91.30% 92.00% 92.38% 92.63% 92.72%
electra 83.95% 86.19% 87.87% 89.32% 90.37% 91.16% 91.69% 92.02% 92.15%
roberta 83.78% 85.37% 86.95% 88.10% 89.43% 90.16% 90.93% 91.44% 91.62%
xlmr 82.42% 83.73% 85.35% 86.77% 87.80% 88.89% 89.70% 90.23% 90.45%
xlnet 83.26% 85.34% 86.97% 88.34% 89.46% 90.35% 91.06% 91.50% 91.66%

Table 2: Accuracy per epoch by transformer model at 5e-5 learning rate.

average accuracy of 89.03%. We also determined that the in-
crease in accuracy was most prevalent in the BERT models,
with a difference of approximately 2% increase for BERT
and ELECTRA and 1.0-1.5% for other models.

We also noted that accuracy continued to show substan-
tial increases across training epochs. For example, BERT at
the 5e-5 learning rate improved nearly 2% in accuracy from
the 3rd to 4th training epoch. Given the rate of increase was
still decreasing relatively slowly between the 3rd and 4th
epochs, we performed additional grid search testing to de-
termine where the rate of increase was low enough that the
increase in accuracy was prohibitively expensive when com-
pared to the increased training time. We found that the rate
of accuracy increase across all models and epochs tended to
flatten significantly at about the 9-10 epoch range. See Fig-
ure 1 for comparison.

As shown, when we extended our number of fine-tuning
epochs to 10, accuracy increased 0.1% between the 9th
and 10th epoch to 91.98%, whereas the accuracy increased
nearly 3 times as much between the 8th and 9th epoch,
with an increase of 0.28%. To assess how much accuracy
increased with additional training epochs, we trained a 50
epoch model at the 3e-5 rate. Even when we extended our
model to 50 epochs, the accuracy only improved to 93.41%,
for an increase of 1.41% when compared to the 3e-5 model
at 10 epochs. Given that each additional training epoch for
our BERT models required approximately an additional hour
of computational time (for our setup), an average accuracy
increase per epoch of 0.036% (assuming an even distribution
instead of diminishing returns) could become quite expen-
sive in terms of computational time, especially when BERT
and ELECTRA were the least expensive to train, and train-
ing other models usually required 1.5-2 hours per epoch.

Conclusions and Future Work
Based on our experiments and analysis, we note the fol-
lowing recommendations for training transformers to detect
fine-grained emotions in social media text.

• Consider BERT as a preferred baseline model for fine-
grained emotion detection

• Batch size 8 performs well and is likely to be efficient
enough for many tasks

• Fine-tuning for 9 epochs provides a reasonable balance
for accuracy (over 90%) and efficiency, even on single
GPU machines

• Target a learning rate of 5e-5, as smaller learning rates
seem to provide lower accuracy

• Setting recommendations are valid for BERT, RoBERTa,
ELECTRA, XLM-R, and XLNet, as we observed similar
trends in accuracy gains across all models
Our focus was on fine-grained emotion detection beyond

positive / negative / neutral, and substantive datasets are
fairly limited. Thus the analysis here is limited to results
from the HT dataset. In this work, our focus was on accuracy
versus validation loss, whereas future work includes exami-
nation of other metrics (precision, recall, f-measure) and fur-
ther validation to confirm general recommendations for ap-
plying transformers, specifically within the context of emo-
tion detection in short-texts. As part of ongoing research,
we are applying this analysis to investigate ensemble pre-
dictions from various approaches to fine-grained emotion
detection. Finally, we observed variations in previous work
on level of detail across parameterization and fine-tuning,
and we plan to continue work toward enhancing community
standards on threshold criteria in applying transformer ap-
proaches.

Copyright
Copyright 2022 by the authors. All rights reserved.

References
Abreu, S. 2019. Automated architecture design for deep
neural networks. CoRR abs/1908.10714.
Bergstra, J., and Bengio, Y. 2012. Random search for hyper-
parameter optimization. Journal of machine learning re-
search 13(2).
Callan, J.; Hoy, M.; Yoo, C.; and Zhao, L. 2009. Clueweb09
data set.
Cho, K., et al. 2014. Learning phrase representations using
rnn encoder-decoder for statistical machine translation.
Chollet, F., et al. 2015. Keras.
https://github.com/fchollet/keras.
Clark, K.; Luong, M.-T.; Le, Q. V.; and Manning, C. D.
2020. Electra: Pre-training text encoders as discriminators
rather than generators.
Conneau, A., et al. 2018. Xnli: Evaluating cross-lingual
sentence representations. arXiv preprint arXiv:1809.05053.
Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.;
Wenzek, G.; Guzmán, F.; Grave, E.; Ott, M.; Zettlemoyer,
L.; and Stoyanov, V. 2020. Unsupervised cross-lingual rep-
resentation learning at scale.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding.



Elshawi, R.; Maher, M.; and Sakr, S. 2019. Automated
machine learning: State-of-the-art and open challenges.
Ghosh, S.; Vinyals, O.; Strope, B.; Roy, S.; Dean, T.; and
Heck, L. 2016. Contextual lstm (clstm) models for large
scale nlp tasks.
Harris, C. R., et al. 2020. Array programming with NumPy.
Nature 585(7825):357–362.
Hassan, A.; Abbasi, A.; and Zeng, D. 2013. Twitter sen-
timent analysis: A bootstrap ensemble framework. In 2013
international conference on social computing. IEEE.
Hestness, J.; Narang, S.; Ardalani, N.; Diamos, G.; Jun, H.;
Kianinejad, H.; Patwary, M.; Ali, M.; Yang, Y.; and Zhou,
Y. 2017. Deep learning scaling is predictable, empirically.
arXiv preprint arXiv:1712.00409.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Johnson, R., and Zhang, T. 2015. Effective use of word order
for text categorization with convolutional neural networks.
Johnson, R., and Zhang, T. 2017. Deep pyramid convolu-
tional neural networks for text categorization. In Proceed-
ings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), 562–570.
Kim, Y. 2014. Convolutional neural networks for sentence
classification. CoRR abs/1408.5882.
Koch, P.; Wujek, B.; Golovidov, O.; and Gardner, S. 2017.
Automated hyperparameter tuning for effective machine
learning. In proceedings of the SAS Global Forum 2017
Conference, 1–23. SAS Institute Inc. Cary, NC.
Lample, G., and Conneau, A. 2019. Cross-lingual language
model pretraining.
LeCun, Y.; Haffner, P.; Bottou, L.; and Bengio, Y. 1999.
Object recognition with gradient-based learning. In Shape,
contour and grouping in computer vision. Springer.
Liu, Y., et al. 2019. Roberta: A robustly optimized bert
pretraining approach.
Liu, J.; Chang, W.-C.; Wu, Y.; and Yang, Y. 2017. Deep
learning for extreme multi-label text classification. In Pro-
ceedings of the 40th International ACM SIGIR Conference.
Loper, E., and Bird, S. 2002. Nltk: The natural language
toolkit. In In Proceedings of the ACL Workshop on Effective
Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics.
Mackenzie, J., et al. 2020. Cc-news-en: A large english news
corpus. In Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management, 3077–
3084.
Masters, D., and Luschi, C. 2018. Revisiting small batch
training for deep neural networks. CoRR abs/1804.07612.
Murray, K.; Kinnison, J.; Nguyen, T. Q.; Scheirer, W. J.; and
Chiang, D. 2019. Auto-sizing the transformer network: Im-
proving speed, efficiency, and performance for low-resource
machine translation. CoRR abs/1910.06717.
Nagel, S. 2016. Common crawl. Data retrieved
from http://https://commoncrawl.org/2016/10/news-dataset-
available/.

pandas development team, T. 2020. pandas-dev/pandas:
Pandas.
Parker, R.; Graff, D.; Kong, J.; Chen, K.; and Maeda, K.
2011. English gigaword fifth edition, linguistic data consor-
tium. Google Scholar.
Pedregosa, F., et al. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research 12:2825–
2830.
Peterson, J.; Meylan, S.; and Bourgin, D. 2019. Open clone
of openai’s unreleased webtext dataset scraper used to train
gpt-2. https://github.com/jcpeterson/openwebtext.
Rajapakse, T. C. 2019. Simple transformers.
https://github.com/ThilinaRajapakse/simpletransformers.
Ranganathan, J., and Tzacheva, A. 2019. Emotion mining in
social media data. Procedia Computer Science 159:58–66.
Safder, I.; Hassan, S.-U.; Visvizi, A.; Noraset, T.; Nawaz,
R.; and Tuarob, S. 2020. Deep learning-based extraction of
algorithmic metadata in full-text scholarly documents. In-
formation Processing Management 57(6):102269.
Salman, S., and Liu, X. 2019. Overfitting mechanism
and avoidance in deep neural networks. arXiv preprint
arXiv:1901.06566.
Schuster, M., and Paliwal, K. K. 1997. Bidirectional recur-
rent neural networks. IEEE Transactions on Signal Process-
ing 45(11):2673–2681.
Sedik, A., et al. 2020. Deploying machine and deep learning
models for efficient data-augmented detection of covid-19
infections. Viruses 12(7):769.
Trinh, T. H., and Le, Q. V. 2019. A simple method for
commonsense reasoning.
Wang, W.; Chen, L.; Thirunarayan, K.; and Sheth, A. P.
2012. Harnessing twitter” big data” for automatic emotion
identification. In 2012 International Conference on Privacy,
Security, Risk and Trust and 2012 International Confernece
on Social Computing, 587–592. IEEE.
Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; and
Bowman, S. R. 2019. Glue: A multi-task benchmark and
analysis platform for natural language understanding.
Wolf, T., et al. 2020. Huggingface’s transformers: State-of-
the-art natural language processing.
Wu, Y., et al. 2016. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine transla-
tion.
Yang, L., and Shami, A. 2020. On hyperparameter optimiza-
tion of machine learning algorithms: Theory and practice.
Neurocomputing 415:295–316.
Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov,
R.; and Le, Q. V. 2020. Xlnet: Generalized autoregressive
pretraining for language understanding.
Yue, L., et al. 2019. A survey of sentiment analysis in social
media. Knowledge and Information Systems 60(2):617–663.
Zhu, Y., et al. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies and read-
ing books. In Proceedings of the IEEE international confer-
ence on computer vision, 19–27.


