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Abstract 
With the exponential growth of publicly available datasets, a 
scholarly recommendation system of datasets would be an es-
sential tool in the field of information filtering. Recommend-
ing datasets to users can be formulated as a classification 
problem where deep learning models can be carefully trained. 
In such case, when preparing training data for the learning 
models, one needs to consider different ratios of false and true 
pairs. Therefore, a sensitivity analysis is necessary. In this 
work, we conduct a sensitivity analysis using different class 
ratios on a deep learning model (BERT) for recommending 
datasets. We found out that our BERT-based recommender 
model is relatively robust using recommender metrics such 
as Mean Reciprocal Rank (MRR)@k, Recall@k, etc., except 
for the extreme class imbalance case (1:5000). Therefore, we 
conclude that moderate ratio of random negative sampling 
scheme, (in our case 1:10) is reasonable, sufficient and time 
efficient in the recommendation system training. 

 Introduction    
With the ever-growing public information online, recom-
mendation systems have proven to be an effective strategy 
to deal with information overload. In fact, recommenders 
are thriving in this era of Big Data with wide commercial 
applications in recommending products, music, movies, 
books, news articles, and many more. 

Applications of recommendation systems are currently 
expanding beyond the commercial area to include schol-
arly activities (Bollacker, Lawrence, and Giles 1998; 
Yoneya and Mamitsuka 2007; Lin and Wilbur 2007; Col-
lins and Beel 2019; Hassan et al. 2019; Achakulvisut et al. 
2016). However, the majority of literature belongs to the 
category of data linking either in the web-service or for ac-
ademic references (Ellefi et al. 2016; Lopes et al. 2014; 
Ghavimi et al. 2016; Boland et al. 2012; Piwowar and 
Chapman 2008). For dataset recommendations, Alghofaily 
and Ding (2019) used dataset features with meta-learners 
and factor analysis for the dataset recommendations. Altaf 
et al. (2019) represented research papers and datasets in the 
two-layer network using heterogeneous variational graph 
autoencoder for the recommendation of data. Previous 
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work in scholarly recommendation systems conducted by 
our team members includes (Patra, Roberts, and Wu 2020; 
Patra et al. 2020; Zhu, Patra, and Yaseen 2021). Especially, 
Patra, Roberts, and Wu (2020) experimented with infor-
mation retrieval paradigms (BM25, TF-IDF, etc.) for Gene 
Expression Omnibus (GEO) data recommendation to re-
searchers. 

There are many public datasets available on the internet 
which might be useful to researchers for further explora-
tion. A dataset recommendation system for papers is an 
important and very helpful tool in the field of information 
filtering. It can enhance the dataset’s re-usability and data 
sharing. Recommending publicly available datasets, for 
example COVID-19, to make sure public health research-
ers can promptly access the data is important for the scien-
tific community. This will save time, increase knowledge 
and help derive actionable measures to tackle population 
health problems. 

When using task-oriented deep learning models such as 
BERT, we have the option to formulated recommendation 
as a classification problem (as compared to simple infor-
mational retrieval as in our previous work (Patra, Roberts, 
and Wu 2020). In such case, due to the large number of 
‘users’ (researchers), ‘products’ (the datasets) and existing 
associations between them (the datasets citations in the pa-
pers), the recommendation problem suffers from data spar-
sity (Sharma and Gera 2013; Popescul et al. 2013) consid-
ering existing user-product associations vs. all available 
data pairs.  

Data imbalance issues were mostly discussed in terms 
of data sampling techniques and cost-sensitive machine 
learning algorithms (Sun et al. 2007; Hulse, Khoshgoftarr, 
and Napolitano 2007; Leevy et al. 2018; Costa et al., 2020; 
Lin, Chen, and Qi 2019). For experimental evaluations of 
class imbalance on machine learning model performance,  
Thabtah et al.(2020) studied the impact of varying class 
imbalance ratios on the naïve Bayes classifier. (Batista, 
Silva, and Prati (2012) used artificially modified class dis-
tributions using different sampling technique to study the 
performance loss compared to balanced data (1:1) AUC on 

 



a variety of classifiers. Su and Hsiao (2007) compared the 
classification performances of decision trees, SVMs etc. 
with different imbalance levels, sample sizes and classifi-
cation complexities to evaluate the model robustness on ‘g-
means’ (Woodall et al. 2003) and the author-proposed 
measure. For deep learning, however, sensitivity analysis 
of data imbalance has been concentrated on Convolutional 
Neural Networks architectures (Buda, Maki, and Ma-
zurowski 2018; Johnson and Khoshgoftaar 2019). Despite 
a growing demand on big data analytics, there is still lim-
ited research that properly evaluates the effect of data im-
balance on deep learning models, and therefore the conse-
quences of deep learning on imbalanced data is still largely 
understudied (Johnson and Khoshgoftaar 2019). To this 
end, we carried out carefully designed experiments to eval-
uate how class imbalance will affect BERT-based deep 
learning recommender. 

The work described in this manuscript has the following 
contributions: 1) addresses the recommendation problem 
in the context of classification (instead of simple cosine 
similarity as we addressed before), 2) the data sources en-
compass wider varieties in the domain of immunology, ge-
netic arrays and sequences,  3) and most importantly, per-
forms sensitivity analysis on how training data class im-
balance affects model performances, and therefore pro-
vides a practical guide on how we can best train models to 
efficiently learn. As part of our ongoing effort on the de-
velopment of Virtual Research Assistant (VRA), a web-
based recommender application for population health pro-
fessionals at http://genestudy.org/recommends/#/dataset, 
we believe that the work presented here is especially im-
portant for further development and improvement of our 
research. In this paper, we artificially modified the training 
dataset class imbalance using different proportions of the 
false association pairs, and we examined how the imbal-
ance in the training data affected the model recommenda-
tion performances. In the following sections we describe 
the data sources, methods and evaluation metrics. After 
that, we present our results and conclusions. 

Data 
The experiments were performed with public datasets from 
two domains: one from immunology: including Immport1, 
Immune space2 and ITN trial share (ITN)3; the second from 
genetic array and sequence: Gene Expression Omnibus 
(GEO)4, and Sequence Read Archive (SRA) studies5. Asso-
ciated PubMed articles are crawled through Medline6. Data 
sources are provided in Table 1. 
 We utilized the citations of PubMed papers within the da-
tasets metadata as our ground truth associations. Then we 
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reversed the citation direction and aggregated all the da-
tasets associated with each publication for recommendation 
purposes, so that an entry in the final citation is in the format 
of '20398357' (pmid): ['DRP000002', 'DRP001803'] (data 
ids). We kept track of all true associations to create different 
numbers of false pairs using this information. For example, 
we have two true associations of this example: ('20398357', 
'DRP000002'), ('20398357', 'DRP001803'). Additionally, 
we removed any publications with too many associated da-
tasets (>10 datasets, at 99% of distributions). The rest of the 
data sources had a maximum of 6 datasets associated. Basic 
summary statistics of the sources are provided in Table 2. 
 
Data source: Immunology data 
Immport Immport is a data repository for public data sharing of 

immunological studies.  
Immune 
space 

Immune space allows users to easily explore and ana-
lyze datasets from the Human Immunology Project 
Consortium (HIPC) 

ITN ITN is a clinical trials research portal of the Immune 
Tolerance Network (ITN) designed to promote trans-
parency, reproducibility and scientific collaboration. 
It shares information about the ITN’s clinical studies 
and specimen biorepositories, as well as data and 
analysis code.   

Data source: Genetic array and sequence 

GEO  GEO is an international public repository that archives 
and freely distributes microarray, next-generation se-
quencing, and other forms of high-throughput func-
tional genomics data submitted by the research com-
munity. 

SRA stud-
ies 

Sequence Read Archive (SRA) studies is the largest 
publicly available repository of high throughput se-
quencing data on National Center for Biotechnology 
Information (NCBI). It has data from all branches of 
life as well as metagenomic and environmental sur-
veys.  

Table 1. Description of data sources 

Data sources Immunology data Genetic arrays and 
sequence  

immport  Immune 
space 

ITN GEO SRA 
studies 

Total datasets 354 35 38 96,457 28,710 
Total publica-
tions associated  

259 43 69 73,248  

Total true pairs 354 53 69 103,018 23,558 
Max # of associ-
ated datasets 

6 3 1 10 28,710 

Additional notes    Re-
moved >10  

5 

Table 2. Data sources and basic summary statistics 

4 https://www.ncbi.nlm.nih.gov/geo 
5 https://www.ncbi.nlm.nih.gov/sra  
6 https://www.nlm.nih.gov/medline/index.html  



Methods 

a. System architecture 
We formulated the recommendation as a classification prob-
lem, where we trained a BERT model and predicted the 
probability of a dataset and a PubMed publication being a 
true match. In our experiments, datasets were represented by 
their titles and summaries, while publications were repre-
sented by their titles and abstracts (extreme long texts were 
truncated at the end equally from both dataset summaries 
and publication abstracts). For those predicted as ‘matching’ 
pairs, we aggregated the dataset results using predicted 
probability as the ranking score (descending order). Figure 
1 shows our recommender’s architecture. 

 We used the base-BERT (Devlin et al. 2019) for the task. 
The standardized wordPiece tokenization (Wu et al. 2016) 
was applied before we fed the pair of PubMed article and 
dataset in tokens, position ids and segment ids as the inputs 
to the model. The detailed BERT usage is enlarged in Figure 
2.  

 
     Figure 1. Recommendation system architecture 

 
          Figure 2. BERT model usage 

During the fine-tuning process, the base-BERT architec-
ture with self-attention was kept; its default pretrained pa-
rameters were initialized and updated. The pooled output of 
last hidden layer was used to feed into the classifier. The 
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classifier consists of a dropout layer of 𝑝	 = 	0.1 and a linear 
layer as detailed in Table 3. 2-20 epochs were used during 
preliminary test runs. Since the model converged quickly 
without considerable performance variations after 4 epochs, 
4 epochs were chosen for the final experimentations (results 
presented in this paper). The best model parameters were 
saved based on best validation performance. Cross entropy 
loss together with Adam optimizer with a learning rate of 
2 × 10!"and an epsilon of 10!# and a linear scheduler were 
used. Hyperparameters choices of learning rate and epsilon 
were chosen with Bayesian optimization package Ax7. The 
choices of relatively small number of epochs (fast learning) 
as well as tuned hyperparameters were also consistent with 
BERT authors’ suggestions (Devlin et al. 2019) on fine-tun-
ing processes. 

Architecture  Sub-archi-
tecture 

Input 
size   

Output 
size  

Number of pa-
rameters 

base-BERT   5128 768 110m  
Classifier  Dropout 768 768 0 

Linear 768  2  1538 

Table 3. Dataset recommender: BERT component architecture 

b. Experimental setup 
We ran three big sets of sensitivity analysis in consideration 
of heterogeneity of the datasets. First set of experiments 
were on immunology datasets only: Immport, Immune 
space and ITN; the second set on genetic array and sequence 
only: GEO and SRA studies; the third one on composite data 
comprising all five sources from the two domains. 

The three sets followed the same procedures, namely: 1) 
set aside the true pairs of association for training, 2) create 
the false pairs of association for training at different ratios; 
3) split for train, validation and test; 4) train and evaluate 
test performance. 

We utilized all available 476 true associations within the 
immunology datasets, in addition, we randomly sampled 
952 true associations from GEO as well as 952 true associ-
ations from SRA studies in order not to crowd the composite 
training data with genetic data sources only. Secondly, false 
pairs of association were created for each dataset separately 
for the maximized false vs. true ratio of 50:1. For GEO and 
SRA studies, we also created a false vs. true ratio of 5000:1 
for extreme case experimentations. Then the data were split 
to 7:1:2 for training, validation and test on unique publica-
tion (to preserve all associated datasets for evaluation pur-
poses). For the test data, the false pairs were resampled 
again at 1:1 ratio and kept aside for use during each experi-
mentation. During each run of experiments, different num-
ber of false pairs were randomly sampled to make our de-
sired true vs false ratios for training and validation. The ra-
tios of true vs. false that we experimented with were: 

8 Here 512 refers to the number of (padded) input sequence (sentence pair) 



1:0.1(10:1), 1:0.5(2:1), 1:1, 1:2, 1:10, 1:20, 1:50 and one ex-
treme case:1:50009.  

For each set of the experiments, the metrics was evaluated 
on the same test data corresponding to that set. Additionally, 
we were also interested in the computational complexity of 
the models with the different training ratios, so we recorded 
the training time for all experiments as well. 

The code for experiments is published at 
https://github.com/ashraf-yaseen/VRA under dataset_rec/. 

c. Evaluation metrics 
For predicted matching pairs, we aggregated the recommen-
dation results at each unique publication level and used the 
following metrics to evaluate the recommendations. In order 
to better describe Recall@k and Precision@k, we supple-
mented the confusion matrix as below. 
 
 Recommended Not recom-

mended 
Total 

Relevant True positive 
(TP) 

False negative 
(FN) 

Total relevant 

Not Relevant False positive 
(FP) 

True negative 
(TN) 

Total Not rele-
vant 

Total Total recom-
mended 

Total Not recom-
mended 

Overall Total 

Table 4. Confusion metrics for recommender systems 

Mean reciprocal rank (MRR)@k: The Reciprocal Rank 
(RR) measures the reciprocal of the rank at which the first 
relevant document was retrieved. RR is 1 if the relevant 
document was retrieved at rank 1, RR is 0.5 if document is 
retrieved at rank 2, and so on. When we average the top k 
retrieved items across the queries Q, the measure is called 
the MRR@k. In our case, we chose k=10. 
𝑀𝑅𝑅@𝑘	 = 	 !

|#|
∑ !

$%&'!
|#|
()!    

Recall@k: At the k-th retrieved item, this metric measures 
the proportion of relevant items that are retrieved. We 
evaluated both recall@1 and recall@10. 
𝑟𝑒𝑐𝑎𝑙𝑙@𝑘	 =

𝑇𝑃@𝑘
𝑇𝑃@𝑘 + 𝐹𝑁@𝑘 

Precision@k: At the k-th retrieved item, this metric 
measures the proportion of the retrieved items that are 
relevant. In our case, we are interested in precision@1.  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘	 =

𝑇𝑃@𝑘
𝑇𝑃@𝑘 + 𝐹𝑃@𝑘 

 
9 1:5000 created for GEO and SRA, while the immunology data kept at 
1:50 due to too limited records to create extreme false ratios. Thus we only 
reported the 1:5000 results on the composite datasets. 

Results and Discussion 

Using the setups explained in Methods, we presented the 
results below. We additionally provided performance per-
centage loss (Batista, Silva, and Prati 2012) in the bracket, 
where the percentage loss is calculated as: 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑙𝑜𝑠𝑠	 = 	 *+$,-$.%&/+01+23	*+$,-$.%&/+
1+23	*+$,-$.%&/+	

	× 100%  

Experiment 
group (True: 
False ratio)  

MRR@10 
(percent-
age loss) 

Recall@1 
(percent-
age loss) 

Recall@10 
(percent-
age loss) 

Preci-
sion@1  
(percent-
age loss) 

1:0.1 (10:1) 0.703  
(-24.8%) 

0.579 
 (-30.8%) 

0.677  
(-19.9%) 

0.639 
 (-31.1%) 

1:0.5 (2:1) 0.806  
(-13.8%) 

0.695 
 (-17.0%) 

0.756  
(-10.5%) 

0.753  
(-18.8%) 

1:1 0.777 
 (-16.9%) 

0.658 
 (-21.4%) 

0.746  
(-11.7%) 

0.703  
(-24.2%) 

1:2 0.785  
(-16.0%) 

0.657 
 (-21.5%) 

0.749  
(-11.3%) 

0.718  
(-22.5%) 

1:10 0.856  
(-8.4%) 

0.731  
(-12.7%) 

0.783 
 (-7.3%) 

0.817  
(-11.9%) 

1:20 0.867  
(-7.2%) 

0.736  
(-12.0%) 

0.836 
 (-1.1%) 

0.782 
 (-15.6%) 

1:50 0.935 (0%) 0.837 (0%) 0.845 (0%) 0.927 (0%) 

Table 5. Sensitivity analysis with different class ratios on immu-
nology datasets, with the best performance highlighted in bold 

and corresponding percentage loss in parenthesis 

Experiment 
group  
(True: 
False ratio)  

MRR@10 
(percent-
age loss) 

Recall@1 
(percent-
age loss) 

Recall@10 
(percent-
age loss) 

Preci-
sion@1 
(percent-
age loss)  

1:0.1 (10:1) 0.784  
(-9.8%) 

0.616  
(-10.9%) 

0.617  
(-11.4%) 

0.783  
(-9.4%) 

1:0.5 (2:1) 0.849  
(-2.3%) 

0.667  
(-3.5%) 

0.670  
(-3.8%) 

0.847  
(-2.0%) 

1:1 0.856  
(-1.5%) 

0.677  
(-2.0%) 

0.678  
(-2.6%) 

0.855  
(-1.0%) 

1:2 0.864  
(-0.6%) 

0.683  
(-1.2%) 

0.684  
(-1.7%) 

0.864 (0%) 

1:10 0.865  
(-0.5%) 

0.689  
(-0.3%) 

0.692  
(-0.6%) 

0.862  
(-0.2%) 

1:20 0.865  
(-0.5%) 

0.688  
(-0.4%) 

0.692  
(-0.6%) 

0.861  
(-0.3%) 

1:50 0.869 (0%) 0.691 (0%) 0.696 (0%) 0.864 (0%) 

Table 6. Sensitivity analysis with different class ratios on genetic 
array and sequence datasets, with the best performance high-

lighted in bold and corresponding percentage loss in parenthesis 



Experiment 
group  
(True: 
False ratio)  

MRR@10 
(percent-
age loss) 

Recall@1
(percent-
age loss) 

Recall@10
(percent-
age loss) 

Preci-
sion@1 
(percent-
age loss) 

1:0.1 (10:1) 0.776  
(-10.5%) 

0.628  
(-11.9%) 

0.632  
(-12.6%) 

0.773  
(-10.1%) 

1:0.5 (2:1) 0.816  
(-5.9%) 

0.660  
(-7.4%) 

0.664  
(-8.2%) 

0.813  
(-5.5%) 

1:1 0.834  
(-3.8%) 

0.678  
(-4.9%) 

0.686  
(-5.1%) 

0.826  
(-4.0%) 

1:2 0.839  
(-3.2%) 

0.681  
(-4.5%) 

0.690  
(-4.6%) 

0.830  
(-3.5%) 

1:10 0.864  
(-0.3%) 

0.702  
(-1.5%) 

0.709  
(-1.9%) 

0.860 (0%) 

1:20 0.864  
(-0.3%) 

0.709  
(-0.6%) 

0.714  
(-1.2%) 

0.859  
(-0.1%) 

1:50 0.867 (0%) 0.713 (0%) 0.723 (0%) 0.857  
(-0.3%) 

1:5000* 0.(-100%) 0. (-100%) 0. (-100%) 0. (-100%) 

Table 7. Sensitivity analysis with different class ratios on compo-
site datasets, with the best performance highlighted in bold and 

corresponding percentage loss in parenthesis 

For three sets of experiments, the general trend was that 
with the inclusion of more false pairs, the recommendation 
results improved in terms of nearly all metrics, except for 
precision@1 where it reached the maximum at ratio 1:2 for 
genetic arrays and sequence and at ratio 1:10 for composite 
datasets. The extreme training ratio 1:5000, not surpris-
ingly, produced the worst results.  

Specifically, for the immunology data, however, where 
the data is relatively scarce compared to more abundant ge-
netic arrays and sequence as well as composite sources, the 
increase of performance was more prominent than the latter 
two cases. Once again, this confirms the need of sufficient 
data for training deep learning based models. But overall, 
we observed that variations of metrics were not significant 
within a range of moderate class ratios (1:0.5-1:50). 

All experiments were performed on an HPE server with 
36 cores-72 threads, 768GB memory, and NVIDIA V100 
16GB GPU. We configured the models to utilize the GPU 
in all of our experiments. The total training time for 4 
epochs for different ratios for the three sets are shown in 
Table 8. Training time increased almost exponentially with 
the increasing negative class ratios, especially after 1:10. 
 
Experiment group  
(True: False ratio)  

Immunology 
(min) 

Genetic arrays 
& sequence (h) 

Composite 
(h) 

1:0.1 (10:1) 1.10 0.08 0.12 
1:0.5 (2:1) 1.67 0.10 0.15 
1:1 2.10 0.13 0.20 
1:2 3.03 0.25 0.27 
1:10 11.27 0.73 1.02 
1:20 21.38 1.50 1.90 
1:50 55.15 3.50 4.50 
1:5000* NA NA 211.87 

Table 8. Training time with different class ratios on all experi-
ments 

Overall, the training time increased exponentially with 
the increasing negative class ratios, especially after 1:10. 
Taking into consideration of recommender metrics in Table 
5-7, the model was relatively robust in a range of ratios. Be-
tween ratio 1:10 to 1:50, the metrics stayed relatively opti-
mal, especially for genetic array and composite data where 
the maximum percentage loss is only -1.9%. Considering 
the time vs. performance trade-off, we concluded that a rel-
ative balanced ratio was sufficient for both model perfor-
mance and training efficiency (and in our particular case, 
1:10 was optimal). 

Conclusion  
In this work, we performed a sensitivity analysis on training 
class imbalance ratios in the dataset recommender system. 
We carefully designed the analysis to provide practical guid-
ance on how training data imbalance affected the deep-
learning based recommender performances. We found out 
that even though the recommender results improved moder-
ately with the incorporation of more false pairs in our exper-
imental setups (with the exception of the extreme ratio), the 
performance gain was not cost-efficient considering the 
time increase in the training. Therefore, relatively balanced 
training (in our case 1:10), was optimal in terms of both 
model performance and training efficiency. 
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