
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

Shengyi Huang and Santiago Ontañón *

College of Computing & Informatics, Drexel University
Philadelphia, PA 19104

{sh3397,so367}@drexel.edu

Abstract

In recent years, Deep Reinforcement Learning (DRL)
algorithms have achieved state-of-the-art performance
in many challenging strategy games. Because these
games have complicated rules, an action sampled from
the full discrete action distribution predicted by the
learned policy is likely to be invalid according to the
game rules (e.g., walking into a wall). The usual ap-
proach to deal with this problem in policy gradient
algorithms is to “mask out” invalid actions and just
sample from the set of valid actions. The implications
of this process, however, remain under-investigated. In
this paper, we 1) show theoretical justification for such
a practice, 2) empirically demonstrate its importance
as the space of invalid actions grows, and 3) provide
further insights by evaluating different action masking
regimes, such as removing masking after an agent has
been trained using masking.

Introduction
Deep Reinforcement Learning (DRL) algorithms have
yielded state-of-the-art game playing agents in challenging
domains such as Real-time Strategy (RTS) games (Vinyals
et al. 2017; Vinyals et al. 2019) and Multiplayer Online
Battle Arena (MOBA) games (Berner et al. 2019; Ye et
al. 2020). Because these games have complicated rules, the
valid discrete action spaces of different states usually have
different sizes. That is, one state might have 5 valid actions
and another state might have 7 valid actions. To formulate
these games as a standard reinforcement learning problem
with a singular action set, previous work combines these
discrete action spaces to a full discrete action space that
contains available actions of all states (Vinyals et al. 2017;
Berner et al. 2019; Ye et al. 2020). Although such a full dis-
crete action space makes it easier to apply DRL algorithms,
one issue is that an action sampled from this full discrete
action space could be invalid for some game states, and this
action will have to be discarded.

To make matters worse, some games have extremely large
full discrete action spaces and an action sampled will typ-
ically be invalid. As an example, the full discrete action
space of Dota 2 has a size of 1,837,080 (Berner et al. 2019),

*Currently at Google
Copyright © 2022by the authors. All rights reserved.

Figure 1: A screenshot of µRTS. Square units are “bases”
(light grey, that can produce workers), “barracks” (dark
grey, that can produce military units), and “resources mines”
(green, from where workers can extract resources to produce
more units), the circular units are “workers” (small, dark
grey) and military units (large, yellow or light blue), and on
the right is the 10×10 map we used to train agents to harvest
resources. The agents could control units at the top left, and
the units in the bottom left will remain stationary.

and an action sampled might be to buy an item, which
can be valid in some game states but will become invalid
when there is not enough gold. To avoid repeatedly sam-
pling invalid actions in full discrete action spaces, recent
work applies policy gradient algorithms in conjunction with
a technique known as invalid action masking, which “masks
out” invalid actions and then just samples from those ac-
tions that are valid (Vinyals et al. 2017; Berner et al. 2019;
Ye et al. 2020). To the best of our knowledge, however, the
theoretical foundations of invalid action masking have not
been studied and its empirical effect is under-investigated.
In this paper, we take a closer look at invalid action masking
in the context of games, pointing out the gradient produced
by invalid action masking corresponds to a valid policy gra-
dient. More interestingly, we show that in fact, invalid action
masking can be seen as applying a state-dependent differen-
tiable function during the calculation of the action probabil-
ity distribution, to produce a behavior policy. Next, we de-

sign experiments to compare the performance of invalid ac-
tion masking versus invalid action penalty, which is a com-
mon approach that gives negative rewards for invalid actions
so that the agent learns to maximize reward by not execut-
ing any invalid actions. We empirically show that, when the
space of invalid actions grows, invalid action masking scales
well and the agent solves our desired task while invalid ac-
tion penalty struggles to explore even the very first reward.
Then, we design experiments to answer two questions: (1)
What happens if we remove the invalid action mask once
the agent was trained with the mask? (2) What is the agent’s
performance when we implement the invalid action masking
naively by sampling the action from the masked action prob-
ability distribution but updating the policy gradient using the
unmasked action probability distribution? Finally, we made
our source code available at GitHub for the purpose of re-
producibility1.

Background
In this paper, we use policy gradient methods to train
agents. Let us consider the Reinforcement Learning prob-
lem in a Markov Decision Process (MDP) denoted as
(S,A, P, ρ0, r, γ, T), where S is the state space, A is the
discrete action space, P : S × A × S → [0, 1] is the state
transition probability, ρ0 : S → [0, 1] is the initial state
distribution, r : S × A → R is the reward function, γ is
the discount factor, and T is the maximum episode length.
A stochastic policy πθ : S × A → [0, 1], parameterized
by a parameter vector θ, assigns a probability value to an
action given a state. The goal is to maximize the expected
discounted return of the policy:

J = Eτ

[
T−1∑
t=0

γtrt

]
where τ is the trajectory (s0, a0, r0, . . . , sT−1, aT−1, rT−1) ,

s0 ∼ ρ0, st ∼ P (·|st−1, at−1), at ∼ πθ(·|st), rt = r (st, at)

The core idea behind policy gradient algorithms is to obtain
the policy gradient ∇θJ of the expected discounted return
with respect to the policy parameter θ. Doing gradient ascent
θ = θ +∇θJ therefore maximizes the expected discounted
reward. Earlier work proposes the following policy gradient
estimate to the objective J (Sutton and Barto 2018):

∇θJ = Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at|st)Gt

]
, Gt =

∞∑
k=0

γkrt+k

Invalid Action Masking
Invalid action masking is a common technique implemented
to avoid repeatedly generating invalid actions in large dis-
crete action spaces (Vinyals et al. 2017; Berner et al. 2019;
Ye et al. 2020). To the best of our knowledge, there is no
literature providing detailed descriptions of the implementa-
tion of invalid action masking. Existing work (Vinyals et al.
2017; Berner et al. 2019) seems to treat invalid action mask-
ing as an auxiliary detail, usually describing it using only a

1https://github.com/vwxyzjn/invalid-action-masking

few sentences. Additionally, there is no literature providing
theoretical justification to explain why it works with policy
gradient algorithms. In this section, we examine how invalid
action masking is implemented and prove it indeed corre-
sponds to valid policy gradient updates (Sutton et al. 2000).
More interestingly, we show it works by applying a state-
dependent differentiable function during the calculation of
action probability distribution.

First, let us see how a discrete action is typically generated
through policy gradient algorithms. Most policy gradient al-
gorithms employ a neural network to represent the policy,
which usually outputs unnormalized scores (logits) and then
converts them into an action probability distribution using a
softmax operation or equivalent, which is the framework we
will assume in the rest of the paper. For illustration purposes,
consider an MDP with the action set A = {a0, a1, a2, a3}
and S = {s0, s1}, where the MDP reaches the terminal state
s1 immediately after an action is taken in the initial state
s0 and the reward is always +1. Further, consider a policy
πθ parameterized by θ = [l0, l1, l2, l3] = [1.0, 1.0, 1.0, 1.0]
that, for the sake of this example, directly produces θ as the
output logits. Then in s0 we have:
πθ(·|s0) = [πθ(a0|s0), πθ(a1|s0), πθ(a2|s0), πθ(a3|s0)]

= softmax([l0, l1, l2, l3]) (1)
= [0.25, 0.25, 0.25, 0.25],

where πθ(ai|s0) =
exp(li)∑
j exp(lj)

At this point, regular policy gradient algorithms will sam-
ple an action from πθ(·|s0). Suppose a0 is sampled from
πθ(·|s0), and the policy gradient can be calculated as fol-
lows:

gpolicy = Eτ

[
∇θ

T−1∑
t=0

log πθ(at|st)Gt

]
= ∇θ log πθ(a0|s0)G0

= [0.75,−0.25,−0.25,−0.25]

(∇θ log softmax(θ)j)i =

(1− exp(lj)∑
j exp(lj)

) if i = j
− exp(lj)∑

j exp(lj)
otherwise

Now suppose a2 is invalid for state s0, and the only valid
actions are a0, a1, a3. Invalid action masking helps to avoid
sampling invalid actions by “masking out” the logits corre-
sponding to the invalid actions. This is usually accomplished
by replacing the logits of the actions to be masked by a
large negative number M (e.g. M = −1 × 108). Let us use
mask : R → R to denote this masking process, and we can
calculate the re-normalized probability distribution π′

θ(·|s0)
as the following:

π′
θ(·|s0) = softmax(mask([l0, l1, l2, l3])) (2)
= softmax([l0, l1,M, l3]) (3)

= [π′
θ(a0|s0), π′

θ(a1|s0), ϵ, π′
θ(a3|s0)] (4)

= [0.33, 0.33, 0.0000, 0.33]

where ϵ is the resulting probability of the masked invalid ac-
tion, which should be a small number. If M is chosen to be

https://github.com/vwxyzjn/invalid-action-masking

sufficiently negative, the probability of choosing the masked
invalid action a2 will be virtually zero. After finishing the
episode, the policy is updated according to the following
gradient, which we refer to as the invalid action policy gra-
dient.

ginvalid action policy = Eτ

[
∇θ

T−1∑
t=0

log π′
θ(at|st)Gt

]
(5)

= ∇θ log π
′
θ(a0|s0)G0 (6)

= [0.67,−0.33, 0.0000,−0.33]

This example highlights that invalid action masking appears
to do more than just “renormalizing the probability distri-
bution”; it in fact makes the gradient corresponding to the
logits of the invalid action to zero.

Masking Still Produces a Valid Policy Gradient
The action selection process is affected by a process that
seems external to πθ that calculates the mask. It is there-
fore natural to wonder how does the policy gradient theo-
rem (Sutton et al. 2000) apply. As a matter of fact, our anal-
ysis shows that the process of invalid action masking can be
considered as a state-dependent differentiable function ap-
plied for the calculation of π′

θ, and therefore ginvalid action policy
can be considered as a policy gradient update for π′

θ.

Proposition 1. ginvalid action policy is the policy gradient of pol-
icy π′

θ.

Proof. Let s ∈ S to be arbitrary and consider the process
of invalid action masking as a differentiable function mask
to be applied to the logits l(s) outputted by policy πθ given
state s. Then we have:

π′
θ(·|s) = softmax(mask(l(s)))

mask(l(s))i =

{
li if ai is valid in s

M otherwise

Clearly, mask is either an identity function or a constant
function for elements in the logits. Since these two kinds of
functions are differentiable, π′

θ is differentiable to its param-
eters θ. That is, ∂π′

θ(a|s)
∂θ exists for all a ∈ A, s ∈ S, which

satisfies the assumption of policy gradient theorem (Sutton
et al. 2000). Hence, ginvalid action policy is the policy gradient of
policy π′

θ.

Note that mask is not a piece-wise linear function. If we
plot mask, it is either an identity function or a constant func-
tion, depending on the state s, going from −∞ to +∞. We
therefore call mask a state-dependent differentiable func-
tion. That is, given a vector x and two states s, s′ with dif-
ferent number of invalid actions available in these states,
mask(s, x) ̸= mask(s′, x).

Experimental Setup
In the remainder of this paper, we provide a series of em-
pirical results showing the practical implications of invalid
action masking.

Table 1: Observation features and action components.

Observation Fea-
tures

Planes Description

Hit Points 5 0, 1, 2, 3, ≥ 4
Resources 5 0, 1, 2, 3, ≥ 4
Owner 3 player 1, -, player 2
Unit Types 8 -, resource, base, bar-

rack, worker, light,
heavy, ranged

Current Action 6 -, move, harvest, return,
produce, attack

Action Compo-
nents

Range Description

Source Unit [0, h× w − 1] the location of the unit
selected to perform an
action

Action Type [0, 5] NOOP, move, harvest,
return, produce, attack

Move Parameter [0, 3] north, east, south, west
Harvest Parame-
ter

[0, 3] north, east, south, west

Return Parameter [0, 3] north, east, south, west
Produce Direction
Parameter

[0, 3] north, east, south, west

Produce Type Pa-
rameter

[0, 6] resource, base, barrack,
worker, light, heavy,
ranged

Attack Target
Unit

[0, h× w − 1] the location of unit that
will be attacked

Evaluation Environment
We use µRTS2 as our testbed, which is a minimalistic
RTS game maintaining the core features that make RTS
games challenging from an AI point of view: simultaneous
and durative actions, large branching factors, and real-time
decision-making. A screenshot of the game can be found in
Figure 1. It is the perfect testbed for our experiments be-
cause the action space in µRTS grows combinatorially and
so does the number of invalid actions that could be gener-
ated by the DRL agent. We now present the technical details
of the environment for our experiments.

• Observation Space. Given a map of size h × w, the
observation is a tensor of shape (h,w, nf), where nf

is a number of feature planes that have binary values.
The observation space used in this paper uses 27 feature
planes as shown in Table 1, similar to previous work in
µRTS (Stanescu et al. 2016; Yang and Ontañón 2018;
Huang and Ontañón 2019). A feature plane can be thought
of as a concatenation of multiple one-hot encoded fea-
tures. As an example, if there is a worker with hit points
equal to 1, not carrying any resources, the owner being
Player 1, and currently not executing any actions, then the
one-hot encoding features will look like the following:

[0, 1, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0],

[0, 0, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0]

2https://github.com/santiontanon/microrts

https://github.com/santiontanon/microrts

Invalid action masking

Masking removed

Invalid action penalty, rinvalid = 0

Naive invalid action masking

Invalid action penalty, rinvalid = −0.1

Invalid action penalty, rinvalid = −0.01

Invalid action penalty, rinvalid = −1

0

20

40

60

80

E
pi

so
di

c
R

et
ur

n

(a) 4× 4 Map

−10

0

10

20

30

40

(b) 10× 10 Map

0 1 2 3 4 5
Time Steps ×105

0.00

0.02

0.04

0.06

K
L

D
iv

er
ge

nc
e

(c) 4× 4 Map

0 1 2 3 4 5
Time Steps ×105

0.00

0.02

0.04

0.06

(d) 10× 10 Map

Figure 2: The first two figures show the episodic return over the time steps, and the remaining two show the Kullback–Leibler
(KL) divergence between the target and current policy of PPO over the time steps. The shaded area represents one standard
deviation of the data over 4 random seeds. Curves are exponentially smoothed with a weight of 0.9 for readability.

The 27 values of each feature plane for the position in the
map of such worker will thus be the concatenation of the
arrays above.

• Action Space. Given a map of size h × w, the action is
an 8-dimensional vector of discrete values as specified in
Table 1. The action space is designed similar to the action
space formulation by Hausknecht, et al., (Hausknecht and
Stone 2016). The first component of the action vector rep-
resents the unit in the map to issue actions to, the second is
the action type, and the rest of the components represent
the different parameters different action types can take.
Depending on which action type is selected, the game en-
gine will use the corresponding parameters to execute the
action.

• Rewards. We are evaluating our agents on the simple task
of harvesting resources as fast as they can for Player 1
who controls units at the top left of the map. A +1 reward
is given when a worker harvests a resource, and another
+1 is received once the worker returns the resource to a
base.

• Termination Condition. We set the maximum game
length to be 200 time steps, but the game could be termi-
nated earlier if all the resources in the map are harvested
first.

Notice that the space of invalid actions becomes signifi-
cantly larger in larger maps. This is because the range of the
first and last discrete values in the action space, correspond-
ing to Source Unit and Attack Target Unit selection, grows
linearly with the size of the map. To illustrate, in our exper-
iments, there are usually only two units that can be selected
as the Source Unit (the base and the worker). Although it is
possible to produce more units or buildings to be selected,
the production behavior has no contribution to reward and
therefore is generally not learned by the agent. Note the
range of Source Unit is 4 × 4 = 16 and 24 × 24 = 576, in
maps of size 4×4 and 24×24, respectively. Selecting a valid
Source Unit at random has a probability of 2/16 = 0.125 in
the 4×4 map and 2/576 = 0.0034 in the 24×24 map. With
such action space, we can examine the scalability of invalid
action masking.

Training Algorithm
We use Proximal Policy Optimization (Schulman et al.
2017) as the DRL algorithm to train our agents.

Strategies to Handle Invalid Actions
To examine the empirical importance of invalid action mask-
ing, we compare the following four strategies to handle in-
valid actions.

1. Invalid action penalty. Every time the agent issues an
invalid action, the game environment adds a non-positive
reward rinvalid ≤ 0 to the reward produced by the cur-
rent time step. This technique is standard in previous
work (Dietterich 2000). We experiment with rinvalid ∈
{0,−0.01,−0.1,−1}, respectively, to study the effect of
the different scales on the negative reward.

2. Invalid action masking. At each time step t, the agent re-
ceives a mask on the Source Unit and Attack Target Unit
features such that only valid units can be selected and tar-
geted. Note that in our experiments, invalid actions still
could be sampled because the agent could still select in-
correct parameters for the current action type. We didn’t
provide a feature-complete invalid action mask for sim-
plicity, as the mask on Source Unit and Attack Target Unit
already significantly reduce the action space.

3. Naive invalid action masking. At each time step t, the
agent receives the same mask on the Source Unit and
Attack Target Unit as described for invalid action mask-
ing. The action shall still be sampled according to the
re-normalized probability calculated in Equation 4, which
ensures no invalid actions could be sampled, but the gra-
dient is updated according to the probability calculated
in Equation 1. We call this implementation naive invalid
action masking because its gradient does not replace the
gradient of the logits corresponds to invalid actions with
zero.

4. Masking removed. At each time step t, the agent receives
the same mask on the Source Unit and Attack Target Unit
as described for invalid action masking, and trains in the
same way as the agent trained under invalid action mask-

Table 2: Results averaged over 4 random seeds. The symbol “-” means “not applicable”. Higher is better for repisode and lower
is better for anull, abusy, aowner, tsolve, and tfirst.

Strategies Map size rinvalid repisode anull abusy aowner tsolve tfirst

Invalid action penalty 4× 4 -1.00 0.00 0.00 0.00 0.00 - 0.53%
-0.10 30.00 0.02 0.00 0.00 50.94% 0.52%
-0.01 40.00 0.02 0.00 0.00 14.32% 0.51%
0.00 30.25 2.17 0.22 2.70 36.00% 0.60%

10× 10 -1.00 0.00 0.00 0.00 0.00 - 3.43%
-0.10 0.00 0.00 0.00 0.00 - 2.18%
-0.01 0.50 0.00 0.00 0.00 - 1.57%
0.00 0.25 90.10 0.00 102.95 - 3.41%

16× 16 -1.00 0.25 0.00 0.00 0.00 - 0.44%
-0.10 0.75 0.00 0.00 0.00 - 0.44%
-0.01 1.00 0.02 0.00 0.00 - 0.44%
0.00 1.00 184.68 0.00 2.53 - 0.40%

24× 24 -1.00 0.00 49.72 0.00 0.02 - 1.40%
-0.10 0.25 0.00 0.00 0.00 - 1.40%
-0.01 0.50 0.00 0.00 0.00 - 1.92%
0.00 0.50 197.68 0.00 0.90 - 1.83%

Invalid action masking 04x04 - 40.00 - - - 8.67% 0.07%
10x10 - 40.00 - - - 11.13% 0.05%
16x16 - 40.00 - - - 11.47% 0.08%
24x24 - 40.00 - - - 18.38% 0.07%

Masking removed 04x04 - 33.53 63.57 0.00 17.57 76.42% -
10x10 - 25.93 128.76 0.00 7.75 94.15% -
16x16 - 17.32 165.12 0.00 0.52 - -
24x24 - 17.37 150.06 0.00 0.94 - -

Naive invalid action 4× 4 - 59.61 - - - 11.74% 0.07%
masking 10× 10 - 40.00 - - - 13.97% 0.05%

16× 16 - 40.00 - - - 30.59% 0.10%
24× 24 - 38.50 - - - 49.14% 0.07%

ing. However, we then evaluate the agent without provid-
ing the mask. In other words, in this scenario, we evaluate
what happens if we train with a mask, but then perform
without it.

We evaluate the agent’s performance in maps of sizes 4×
4, 10 × 10, 16 × 16, and 24 × 24. All maps have one base
and one worker for each player, and each worker is located
near the resources.

Evaluation Metrics

We used the following metrics to measure the performance
of the agents in our experiments: repisode is the average
episodic return over the last 10 episodes. anull is the aver-
age number of actions that select a Source Unit that is not
valid over the last 10 episodes. abusyis the average number
of actions that select a Source Unit that is already busy ex-
ecuting other actions over the last 10 episodes. aowner is the
average number of actions that select a Source Unit that does
not belong to Player 1 over the last 10 episodes. tsolve is
the percentage of total training time steps that it takes for
the agents’ moving average episodic return of the last 10
episodes to exceed 40. tfirst is the percentage of the total
training time step that it takes for the agent to receive the
first positive reward.

Evaluation Results
We report the results in Figure 2 and in Table 2. Here we
present a list of important observations:

Invalid action masking scales well. Invalid action mask-
ing is shown to scale well as the number of invalid actions in-
creases; tsolve is roughly 12% and very similar across differ-
ent map sizes. In addition, the tfirst for invalid action mask-
ing is not only the lowest across all experiments (only taking
about 0.05− 0.08% of the total time steps), but also consis-
tent against different map sizes. This would mean the agent
was able to find the first reward very quickly regardless of
the map sizes.

Invalid action penalty does not scale. Invalid action
penalty is able to achieve good results in 4 × 4 maps, but
it does not scale to larger maps. As the space of invalid
action gets larger, sometimes it struggles to even find the
very first reward. E.g. in the 10 × 10 map, agents trained
with invalid action penalty with rinvalid = −0.01 spent
3.43% of the entire training time just discovering the first
reward, while agents trained with invalid action masking
take roughly 0.06% of the time in all maps. In addition,
the hyper-parameter rinvalid can be difficult to tune. Although
having a negative rinvalid did encourage the agents not to ex-
ecute any invalid actions (e.g. anull, abusy, aowner are usually
very close to zero for these agents), setting rinvalid = −1

seems to have an adverse effect of discouraging exploration
by the agent, therefore achieving consistently the worst per-
formance across maps.

KL divergence explodes for naive invalid action mask-
ing. According to Table 2, the repisode of naive invalid action
masking is the best across almost all maps. In the 4 × 4
map, the agent trained with naive invalid action masking
even learns to travel to the other side of the map to harvest
additional resources. However, naive invalid action masking
has two main issues: 1) As shown in the second row of Fig-
ure 2, the average Kullback–Leibler (KL) divergence (Kull-
back and Leibler 1951) between the target and current pol-
icy of PPO for naive invalid action masking is significantly
higher than that of any other experiments. Since the policy
changes so drastically between policy updates, the perfor-
mance of naive invalid action masking might suffer when
dealing with more challenging tasks. 2) As shown in Table 2,
the tsolve of naive invalid action masking is more volatile
and sensitive to the map sizes. In the 24 × 24 map, for ex-
ample, the agents trained with naive invalid action masking
take 49.14% of the entire training time to converge. In com-
parison, agents trained with invalid action masking exhibit a
consistent tsolve ≈ 12% in all maps.

Masking removed still behaves to some extent. As
shown in Figures 2b, masking removed is still able to per-
form well to a certain degree. As the map size gets larger, its
performance degrades and starts to execute more invalid ac-
tions by, most prominently, selecting an invalid Source Unit.
Nevertheless, its performance is significantly better than that
of the agents trained with invalid action penalty even though
they are evaluated without the use of invalid action masking.
This shows that the agents trained with invalid action mask-
ing can, to some extent, still produce useful behavior when
the invalid action masking can no longer be provided.

Conclusions

In this paper, we examined the technique of invalid action
masking, which is a technique commonly implemented in
policy gradient algorithms to avoid executing invalid ac-
tions. Our work shows that: 1) the gradient produced by in-
valid action masking is a valid policy gradient, 2) it works by
applying a state-dependent differentiable function during the
calculation of action probability distribution, 3) invalid ac-
tion masking empirically scales well as the space of invalid
action gets larger; in comparison, the common technique of
giving a negative reward when an invalid action is issued
fails to scale, sometimes struggling to find even the first re-
ward in our environment, 4) the agent trained with invalid
action masking was still able to produce useful behaviors
with masking removed.

Given the clear effectiveness of invalid action masking
demonstrated in this paper, we believe the community would
benefit from wider adoption of this technique in practice.
Invalid action masking empowers the agents to learn more
efficiently, and we ultimately hope that it will accelerate re-
search in applying DRL to games with large and complex
discrete action spaces.

References
[Berner et al. 2019] Berner, C.; Brockman, G.; Chan, B.; Che-

ung, V.; Debiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.;
Hashme, S.; Hesse, C.; Józefowicz, R.; Gray, S.; Olsson, C.;
Pachocki, J. W.; Petrov, M.; de Oliveira Pinto, H. P.; Raiman, J.;
Salimans, T.; Schlatter, J.; Schneider, J.; Sidor, S.; Sutskever, I.;
Tang, J.; Wolski, F.; and Zhang, S. 2019. Dota 2 with large scale
deep reinforcement learning. ArXiv preprint abs/1912.06680.

[Dietterich 2000] Dietterich, T. G. 2000. Hierarchical rein-
forcement learning with the maxq value function decomposi-
tion. Journal of artificial intelligence research 13:227–303.

[Hausknecht and Stone 2016] Hausknecht, M. J., and Stone, P.
2016. Deep reinforcement learning in parameterized action
space. In Bengio, Y., and LeCun, Y., eds., 4th Interna-
tional Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Pro-
ceedings.

[Huang and Ontañón 2019] Huang, S., and Ontañón, S. 2019.
Comparing observation and action representations for deep re-
inforcement learning in µrts.

[Kullback and Leibler 1951] Kullback, S., and Leibler, R. A.
1951. On information and sufficiency. The annals of mathe-
matical statistics 22(1):79–86.

[Schulman et al. 2017] Schulman, J.; Wolski, F.; Dhariwal, P.;
Radford, A.; and Klimov, O. 2017. Proximal policy optimiza-
tion algorithms. ArXiv preprint abs/1707.06347.

[Stanescu et al. 2016] Stanescu, M.; Barriga, N. A.; Hess, A.;
and Buro, M. 2016. Evaluating real-time strategy game states
using convolutional neural networks.

[Sutton and Barto 2018] Sutton, R. S., and Barto, A. G. 2018.
Reinforcement learning: An introduction. MIT press.

[Sutton et al. 2000] Sutton, R. S.; McAllester, D. A.; Singh,
S. P.; and Mansour, Y. 2000. Policy gradient methods for rein-
forcement learning with function approximation. In Advances
in neural information processing systems, 1057–1063.

[Vinyals et al. 2017] Vinyals, O.; Ewalds, T.; Bartunov, S.;
Georgiev, P.; Vezhnevets, A. S.; Yeo, M.; Makhzani, A.; Küttler,
H.; Agapiou, J.; Schrittwieser, J.; et al. 2017. Starcraft ii:
A new challenge for reinforcement learning. ArXiv preprint
abs/1708.04782.

[Vinyals et al. 2019] Vinyals, O.; Babuschkin, I.; Czarnecki,
W. M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D. H.; Pow-
ell, R.; Ewalds, T.; Georgiev, P.; et al. 2019. Grandmaster level
in starcraft ii using multi-agent reinforcement learning. Nature
575(7782):350–354.

[Yang and Ontañón 2018] Yang, Z., and Ontañón, S. 2018.
Learning map-independent evaluation functions for real-time
strategy games. 2018 IEEE Conference on Computational In-
telligence and Games (CIG) 1–7.

[Ye et al. 2020] Ye, D.; Liu, Z.; Sun, M.; Shi, B.; Zhao, P.; Wu,
H.; Yu, H.; Yang, S.; Wu, X.; Guo, Q.; Chen, Q.; Yin, Y.; Zhang,
H.; Shi, T.; Wang, L.; Fu, Q.; Yang, W.; and Huang, L. 2020.
Mastering complex control in MOBA games with deep rein-
forcement learning. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, Febru-
ary 7-12, 2020, 6672–6679. AAAI Press.

	Introduction
	Background
	Invalid Action Masking
	Masking Still Produces a Valid Policy Gradient

	Experimental Setup
	Evaluation Environment
	Training Algorithm
	Strategies to Handle Invalid Actions
	Evaluation Metrics
	Evaluation Results

	Conclusions

