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Abstract
This paper proposes a novel approach to track multiple people
utilizing skeletal  information combined with visual  appearance
features  to  improve  the  accuracy  of  tracking  people  across
different frames of a video. We extracted the appearance feature
vectors and skeletal feature vectors for each detected person in
every  frame.  Each  individual  was  tracked  by  considering  the
cosine distance between the skeletal feature vectors along with
the  euclidean  distance  between the  appearance  feature  vectors
across different frames of a video. This reduces the dependency
of the tracker over appearances of people thus making it more
consistent,  especially  in  videos  with  people  having  similar
appearances such as sports videos with players wearing similar
jerseys.  The  stance  of  an  individual  in  continuing  frames  is
expected to be similar considering the high frame rate of modern
camera  devices.  Therefore  it  is  befitting  to  consider  skeletal
features along with appearance features for tracking. Our paper is
an  incremental  paper  demonstrating  improvement  over  SORT
with a deep association metric approach(Wojke et al., 2017). Our
approach  utilizing  skeletal  information  combined  with  visual
appearance  information  returns  better  MOT  results  on  the
MOT17 dataset using the yolov3 detector.

Introduction

The problem statement of Multiple Object Tracking(MOT)
constitutes  assigning  unique  identifiers  to  each  object
(Human  person  in  our  case)  and  preserving  their
consistency throughout the frames of a given video.

MOT  is  one  of  the  primary  topics  in  the  field  of
computer vision which finds its application in domains like
surveillance,  trajectory analysis, and autonomous driving.
MOT  continues  to  be  a  challenging  task.  Despite  some
serious advancements in recent years, MOT has substantial
potential for improvement and innovation.

MOT is dominantly seen as a streak of 2 tasks, detection
and  tracking.  This  is  known  as  tracking-by-detection
paradigm. The first step i.e. detection involves a detector
that  creates  bounding boxes containing locations of each
detected person in that frame. The second step i.e. tracking
involves associating these detected people across frames to
track individuals throughout a video.
    This approach involves different modules with specific
jobs  working  with  each  other.  As  a  result,  optimization
efforts  are  concentrated  on  strengthening  the  targeted

disciplines of various modules and their compatibility with
one another to provide more consistent results.

(a) Frame 1 (b) Frame 2

(c) Frame 3 (d) Frame 4

Figure 1: The person with track id ‘134’ (player in red jersey
trying to score a basket) is detected in Frame 1 but got occluded

and was not detected in Frame 2 and Frame 3. Subsequently, he is
once again detected in frame 4 and reassigned the track id ‘134’,

thus preserving his identity across frames.

The goal of our research is to enhance SORT with a deep
association metric(Wojke et al., 2017) approach of MOT by
adding  a  module  that  extracts  key-points  to  depict  a
skeleton-based  representation  of  a  person.  This  skeleton-
based  representation  fundamentally  represents  their  pose.
We  have  used  this  pose  along  with  a  person’s  visual
appearance  features  for  data  association  and  hence  to
associate people across frames.
    The upside of our method is that it mitigates the reliance
on visual appearance elements, making it more suitable for
MOT  on  videos  with  individuals  having  similar  facial
appearances and clothing. Refer to Figure 1 and Figure 2
for  illustration.  We  demonstrated  that  considering
additional  modules  that  give  data  of  detected  people  for
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data association across frames can assist improve tracking
accuracy, and further study in this area should be pursued.

     (a) Frame 1                (b) Frame 2                (c) Frame 3

      (d) Frame 4                 (e) Frame 5               (f) Frame 6

      (g) Frame 1’               (h) Frame 2’                (i) Frame 3’

        (j) Frame 4’               (k) Frame 5’              (l) Frame 6’

Figure 2: In the first sequence of frames, the player with track id
1225 (wearing white jersey) shoots the ball and gets occluded by
the player with track id 1124 (wearing red jersey) while doing so.
In frame 4 the shooter is not detected, yet in frame 5 correct ids

have been assigned to both the shooter(1225) and the
occluder(1224). While in the second sequence of frames, there is

an id switch in frame 5’ between the red jersey wearing
shooter(1273) and the occluder(1159) in white jersey. In the first
sequence, we have used our proposed tracker while in the second

sequence of frames, we have used the tracker proposed by
(Wojke et al., 2017).

In  summary,  the  paper  contributes  the  following  salient
features  to  the  existing  approach  to  further  improve  the
accuracy :
1)  Incorporation  of  a  module  that  extracts  the  skeletal
representation  of  a  person.  We  use  this  skeletal

representation in conjunction with visual features for data
association across frames.
2)  Visual  features,  Skeletal  features,  Kalman  Filtering,
Hungarian  Assignment  Algorithm,  and  Siamese  Graph
Convolution Network were used for object tracking.
3)  Outperformed  (Wojke  et  al.,  2017)  on  MOT17
dataset(Milan  et  al.,  2016)  using  yolov3(Redmon  and
Farhadi, 2018) detector.
4)  Put  forward  an  idea  that  tracking  accuracy  could  be
improved by extracting more attributes of an individual that
describes detections for associating data across frames.

Related Work

Initially, MOT was achieved by using Multiple Hypothesis
Tracking(MHT)(Reid,  1979).  Probability is  calculated  for
every detection of being either an already present object, a
newly introduced object, or just a false detection. Kalman
filter is used for estimating the target state from each such
data  association  hypothesis.  As  more  detections  are
received, the probabilities are again calculated. This gives
us the information we need to correlate  detections across
states. Unlikely hypotheses are eliminated with the help of
Kalman filtering and hypotheses  with similar  target  state
estimates are combined. The technique described above is
repeated  recursively.  However,  as  the  number  of  objects
being tracked grows, the combinatorial complexity grows
exponentially. As a result, it becomes unsuitable for usage
in  dense  and  dynamic  systems  with  a  high  number  of
objects. This approach was used in ocean surveillance, air
traffic control, systems to defend against ballistic missiles,
and battlefield surveillance.

Joint Probabilistic Data Association(JPDA)(Fortmann et
al.,  1983)  algorithm calculates  joint  posterior  association
probabilities  for  multiple  targets  in  Poisson  clutter.  Joint
association probabilities are used for estimating target state
and hence tracking targets. When a high number of objects
appear  in the system, this  approach,  like MHT, becomes
inefficient since it gets exponentially more computationally
expensive to run with an increase in the objects detected in
the  system.  (Rezatofighi  et  al.,  2015)  makes  the  JPDA
algorithm  feasible  by  decreasing  the  computational  time
significantly.  This  is  achieved  by  reformulating  the
calculation  of  individual  JPDA  assignment  scores  and
approximating the joint score by the m-best solutions using
a binary tree partition method.

(Kim et al., 2015) further improves MHT by introducing
a  way  for  which  each  track  hypothesis  trains  an  online
appearance  model.  To  improve  the  object  tracking
accuracy, they have taken into account both the appearance
and the motion information.

(Geiger  et  al.,  2013) presents  a probabilistic model for
comprehending multi-object  traffic scenarios  from mobile
platforms. Tracklets are defined as detections seen from a



bird’s eye view. Hungarian algorithm(Kuhn, 1955) is used
to associate data across two consecutive frames. Affinity
matrix contains appearance and geometric cues of objects.
The  geometric  cue  is  the  detected  bounding  box’s
intersection  over  union(IOU)  score.  The  appearance
information is the correlation of these detected bounding
boxes.  To make up for  any localization ambiguity,  20%
additional  area  is  considered  when  comparing  bounding
boxes.

“Simple  Online  And  Realtime  Tracking
(SORT)”(Bewley et al.,  2016) simplifies data association
into  a  single-step  task.  Here  the  bounding  box’s
coordinates  for  each  target  are  predicted  for  the  present
frame using Kalman filtering. The affinity matrix is formed
from  the  IOU  distances  between  the  detected  bounding
box’s  coordinates  and  the  predicted  bounding  box’s
coordinates.  Any  assignments  between  targets  and
detections  with  less  than  the  minimum  threshold  IOU
distance  intersection  are  rejected  using a  minimum IOU
distance as a gate. The Hungarian algorithm(Kuhn, 1955)
is  then  used  to  allocate  targets  to  tracks  in  the  most
efficient way possible.

“SORT with  a  deep  association  metric”(Wojke  et  al.,
2017)  incorporated  appearance  data  to  SORT(Bewley  et
al., 2016) to improve its tracking performance. It mitigates
the  high  dependence  of  SORT  on  state  estimation  by
Kalman  filtering  thus  reducing  the  quantity  of  identity
switches on videos with non-linear object motion.
  We  have  taken  “SORT  with  a  deep  association
metric”(Wojke  et  al.,  2017)  one  step  further  by  taking
skeletal  information  into  account  along  with  the
appearance  information  while  constructing  an  affinity
matrix for data association. In the following section, we
will discuss our approach in greater detail.

Lighttrack(Ning  et  al.,  2020)  only  uses  skeletal
information for tracking. The Lighttrack tracker gives too
much importance to spatial consistency which may result
in inaccurate tracking while handling videos with a lot of
movement, relatively low fps, and multiple people having
similar poses.

(Braso and Leal-Taix´e, 2020) also applied learning to
the  data  association  step  unlike  all  the  approaches
discussed till now where the learning process was confined
to the phase where features are extracted. They propose a
message  passing network(MPN) for  feature  learning and
final solution prediction.

Proposed Methodology

Skeletal Feature Matching
The pose estimator that we have deployed to detect pose is
based  on  the  MobileNet  v1(Howard  et  al.,  2017)
architecture and has been taken from (Ning et al.,  2020)

which prioritizes  speed over accuracy  so that  our tracker
doesn’t become slow.

We  have  employed  the  Siamese  Graph  Convolution
Network(SGCN)  proposed  by  (Ning  et  al.,  2020)  for
comparing key points which represent the estimated spatial
location of body joints. SGCN takes a vector of normalized
key points as input where each key-point corresponds to a
body joint coordinate(2D coordinate positioned at a body
joint  of  an  individual).  The  returned  output  is  a  128-
dimensional  skeletal  feature  vector  encoding  the  spatial
connection  among  human  key  points  (joints).  We  have
estimated  the  closeness  between  two  feature  vectors  by
calculating the euclidean distance between them. The value
of  the  euclidean  distance  between  two  skeletal  feature
vectors is inversely proportional to the similarity between
the  poses  of  two  individuals  encoded  by  them.  The
Euclidean distance between 2 vectors is calculated as :

             (1)

Where  xi  and  yi  are  the  ith  elements  of  their  respective
vectors. Figure 3 illustrates the above-explained process.

Figure 3: The process to compare two skeletal feature vectors.

Appearance Feature Matching
We have utilized a deep appearance descriptor from (Wojke
et  al.,  2017)  as  an  encoder  to  return  a  128-dimensional
appearance feature vector  encoding the visual appearance
of a detected individual. The architecture of the employed
encoder is shown in Figure 4.

The  cosine  distance  between  two  appearance  feature

vectors is then calculated. The cosine distance indicates the



dissimilarity  between  the  visual  appearances  of  two

detections. The formulae for computing the cosine distance

is as follows : 

            cosine distance = 1 − cosine similarity            (2)

  (3)

Where  xi  and yi  are  the ith  elements  of  vectors  X and Y
respectively.

Figure 4: The architecture of the encoder employed to return a 
128-dimensional appearance feature vector.

Affinity Matrix Construction
The novelty of our approach lies in the construction of the
affinity matrix. An affinity matrix is constructed for every
frame  and  is  used  to  link  tracks  with  bounding  box
detections where detections are the individuals detected in
the current  frame. Thus affinity matrix is used to assign
track  identities  to  the individuals detected  in the current
frame. The elements of the affinity matrix are calculated as
aij  =  α  *  (cosine  distance  between  appearance  feature
vectors of tracks and detections) + β * (euclidean distance
between skeletal feature vectors of tracks and detections)
where α and β are constants, i is the ith

 row corresponding

to the ith
 track and j is the jth

 column corresponding to the jth

detection.  An example  of  an  affinity  matrix  is  shown in
Figure 5.  Intuitively the value of  α  is proportional  to the
weightage given to visual appearance features and the value
of β is proportional to the weightage given to human pose
(skeletal features) for associating data.

Figure 5: An example of an affinity matrix utilized to assign track
ids by linking tracks and detections. In this example, we have 4

tracks and 3 bounding box detections. Here Cij is the cosine
distance between the appearance feature vector of track i and

detection j, while Eij is the euclidean distance between the
skeletal feature vectors of track i and detection j.

Kalman Filtering
Our  approach  of  Kalman  filtering  has  been  inspired  by
(Wojke et al., 2017). We use Kalman filtering to reject the
association  between  tracks  and  bounding  box  detections
with large differences between their respective states. We
define the state by the following 8-dimensional vector :

[x,y,r,h,x0,y0,r0,h0]

where  x  and  y  are  the  coordinates  of  the  bounding  box
center,  r is the ratio between the width and height of the
bounding box, h is the bounding box height, (x’,y’,r’ and h’
are the respective velocities of x,y,r and h). The difference
between  tracks  and  bounding  box  detection  states  is
computed as the square of Mahalanobis distance between
(mean,  covariance)  of  tracks  and  a  4-dimensional  vector
[x,y,r,h] of detections. Here :
i) mean is an 8 dimensional mean vector of the track state
elements ii) covariance is an 8*8 dimensional matrix that
represents  the  covariance  of  a  track’s  state  elements  iii)
[x,y,r,h] is [(x coordinate of the bounding box’s center),(y
coordinate of the bounding box’s center),(ratio between the
bounding box’s width and height),(bounding box’s height)].
    If the calculated squared Mahalanobis distance doesn’t
lie within a 95% confidence interval range calculated from
the  inverse  Chi-squared  distribution,  the  association
between the track and the detection is rejected. Therefore if
the  squared Mahalanobis  distance  is  greater  than  a
minimum  threshold  gating  distance  of  9.4877,  the
association between the track and the detection is rejected.



Linking Detections and Tracks using the 
Hungarian Algorithm
We apply the Hungarian algorithm(Kuhn, 1955) over the
affinity matrix for track-detection assignment and thus for 
linking tracks with detections.

Linking Cascade
The above-explained process for a given frame occurs over
batches  of  tracks  as  proposed  in  (Wojke  et  al.,  2017).
Tracks are grouped into batches based on the number of
frames  since  they  were  most  recently  linked  with  a
detection. Thus the first batch will contain the tracks that
were linked with detections in the frame before the current
frame. The second batch will contain the tracks that were
most recently linked with detections two frames before the
current  frame,  and so on. Therefore the tracks that  were
linked more recently will  have a higher chance of being
linked  with  a  detection  of  the  current  frame.  As  the
inaccuracy in the state estimation by Kalman filtering will
be  higher  for  tracks  that  are  less  recently  linked  with a
detection, it is appropriate that less recently linked tracks
are  given  a  lower  preference  for  being  linked  with  a
detection of the current frame.

Assignment using Intersection over Union scores
We  then  associate  the  remaining  unlinked  tracks  and
detections  by  running  the  Hungarian  algorithm  over  an
assignment cost matrix with intersection over union scores
between  the  current  frame  bounding  box detections  and
predicted bounding boxes of unlinked tracks.

Experimentation And Results

Experimentation
We have used yolov3(Redmon and Farhadi, 2018) as the

detector.  As  explained  above,  the  coefficients  of  the
feature vectors in an affinity matrix are α and β. The values
of  α and  β are proportional to the importance given to
visual  appearance  and  skeletal  features  respectively  for
associating  tracks  with  current  frame  bounding  box
detections,  effectively tracking individuals. To determine
the most appropriate values of  α and  β .i.e. to determine
how much weightage should be given to visual appearance
and  skeletal  features  respectively,  we  experimented  by
employing our tracker over the MOT17 dataset(Milan et
al.,  2016)  and varying  the  values  of  α  and  β,  thus
summarily  varying  the  importance  given  to  visual  and
skeletal features for tracking. Table 1 shows the results of
our experimentation.
    We have considered  HOTA(Luiten  et  al.,  2021) i.e.
Higher Order Tracking Accuracy as the primary metric to
rank a tracker. 

α β HOTA MOTA MOTP IDF1 IDs
0.0a 1.0a 29.783 29.655 76.451 35.705 1023
0.1 0.9 30.127 29.681 76.445 36.008 1023
0.2 0.8 30.121 29.682 76.444 35.964 1020
0.3 0.7 30.353 29.695 76.457 36.155 1008
0.4 0.6 30.454 29.709 76.457 36.347 1005
0.5 0.5 30.441 29.711 76.456 36.165 993
0.6 0.4 30.430 29.686 76.446 36.197 1008
0.7 0.3 30.314 29.682 76.452 36.013 1011
0.8 0.2 30.199 29.671 76.443 35.718 1002
0.9 0.1 30.159 29.670 76.427 35.769 1008
1.0b 0.0b 30.302 29.681 76.441 35.895 1029

a α = 0.0 and β = 1.0(first row) does not take visual appearance
features into account for tracking. b α = 1.0 and β = 0.0(last row)

does not take human pose features into account for tracking.

Table 1: MOT accuracy metric results over different values of α 
(proportionate to the importance given to appearance features for 
tracking) and β (proportionate to the importance given to skeletal 
features for tracking).

HOTA has been chosen as the primary metric because it
measures how consistently the same id has been assigned to
the detection corresponding to a particular individual across
frames against the ground truth identity links. HOTA also
considers  the  spatial  alignment  between  each  predicted
detection and each ground truth detection, and the overall
consistency  between  the  set  of  all  predicted  and  ground
truth detections. Our tracker returns the best HOTA score
with α = 0.4 and β = 0.6, thus we have fixed these values.

Results
The evaluation results of our tracker as compared to Deep
Sort(Wojke  et  al.,  2017) are  shown in  Table  2.  Table  2
shows that  our  tracker  outperforms  (Wojke  et  al.,  2017)
with an increase in HOTA score by 0.152% and a decrease
in identity switches by 2.33%. Our tracker returns  better
results than (Wojke et al., 2017) when evaluated by HOTA,
MOTA, MOTP, IDF1, PT, ML metrics.

Tracker HOTA MOTA MOTP IDF1 IDs

Our Tracker 30.454 29.709 76.457 36.347 1005
(Wojke et 
al., 2017)

30.302 29.681 76.441 35.895 1029

Table 2: Comparing tracking results of our tracker with (Wojke et
al.,  2017)  over  MOT17  Dataset(Milan  et  al.,  2016).  Both  the
trackers use the yolov3(Redmon and Farhadi, 2018) detector.

We would like the readers to note that our tracker obtained
a HOTA score of 40.736 over the MOT17 benchmark using
the officially provided detection coordinates. The officially
provided  detection  coordinates  were  obtained  using



SDP(Yang et al.,  2016), Faster-RCNN(Ren et al.,  2015),
and  DPM(Felzenszwalb  et  al.,  2009)  detectors.  We
decided  to  use  the  yolov3  detector  to  obtain  detection
coordinates  instead  of  the  already  provided  official
coordinates  because  the  yolov3  detector  was  returning
more accurate detections.

Considering skeletal features in addition to appearance
features for tracking reduces the dependency of our tracker
on the  appearances  of  people  making  it  more  reliable,
especially  in  videos  with  people  having  similar
appearances.  Therefore  we  expect  our  tracker  to
significantly  outperform  (Wojke  et  al.,  2017)  on  sports
videos as players on the same team wear the same jerseys
which results in  a  similar  appearance.  We  tested  our
tracker on a six-and-half minute basketball match between
India  and  Lebanon.  The total  number  of  track  identities
assigned by our tracker in the basketball match was 1945
while (Wojke et al., 2017) assigned 2029 track identities
for the same basketball match. Our tracker assigned 4.14%
fewer  track  identities  indicating  that  the  occurrence  of
identity switches is reduced by roughly 4% upon using our
tracker.

Conclusion

We have put forward an extension of (Wojke et al., 2017)
by  considering  human  pose  information  along  with
appearance information for linking tracks and detections,
making  our  tracker  less  sensitive  towards  visual
appearance  features.  The  human  pose  is  an  appropriate
criterion to consider  for data linkage as the human pose
changes  minimally  across  continual  frames  of  a  video,
given the high frame rate of modern videos. Our tracker
outperformed  (Wojke  et  al.,  2017)  indicating  that
consideration of additional features for data association in
tracking people across multiple frames results in improved
accuracy.
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