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Abstract 

 
 Understanding the neural underpinnings of dyslexia is an 
open and fundamental question in developmental neurosci-
ence. A widely agreed causal risk factor for dyslexia is pho-
nological deficit (PD). However, the causal relationships be-
tween PD and dyslexia have been primarily investigated and 
theorized based on findings derived from behavioral 
measures. What is missing is evidence of the underlying neu-
rophysiological origins of these relationships. The present 
study examined whether the performance on a phonological 
awareness task, namely phoneme elision (PE), differentiated 
children with dyslexia from their typically developing coun-
terparts at a neural level. We proposed a novel machine-
learning-based approach to extract neural activity from EEG 
to identify neural differences at the group level. Specifically, 
we formulated an optimization problem to first extract in-
formative EEG components (termed phoneme-related neural-
congruency components) by maximizing the congruency in 
neural activity among typically developing children during 
phoneme elision. Next, we utilized a machine-learning algo-
rithm to optimally combine the resulting components to dif-
ferentiate between children with dyslexia and controls. Re-
sults showed that the proposed phoneme-related neural-con-
gruency components are predictive about the underlying neu-
ronal differences amongst groups. These results provide em-
pirical evidence towards the neural underpinnings of dyslexia 
and the potential neural origins of PD as a causal link to dys-
lexia. Notably, the proposed method could be used to study 
other behaviorally defined developmental disorders. 

Introduction   
 Developmental dyslexia is defined as an unexpected dis-
ability to learning to read (Shaywitz & Shaywitz, 2020) and 
is considered the most common learning disability in chil-
dren, with prevalence ranging from less than 5% to 20% 
(Wagner et al., 2020). Despite intensive research efforts in 
the field, there is still a substantial debate regarding the un-
derlying causes of dyslexia (Parrila et al., 2020). Notably, 
there is a growing interest in studying the neural underpin-
nings of dyslexia. Core deficits in phonological awareness 
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(PA) – which refers to one’s ability to make judgments of 
and perform conscious manipulations on the sound structure 
of spoken words (Papadopoulos et al., 2009) - have been ar-
gued to be causally linked to dyslexia (Parrila & Protopapas, 
2017). However, these causal relationships have been pri-
marily investigated and theorized based on findings deriving 
from behavioral measures (O’Brien et al., 2012). Also, to 
date, most of the neural studies examining phonological def-
icit have focused mainly on group differences in speech per-
ception as a precursor of PD (Papadopoulos et al., 2012). 
Therefore, there is an apparent need for studies focusing on 
extracting neural activity from EEG to identify neural dif-
ferences at the group level on PA tasks.  
 The phoneme elision task is used as an experimental test 
to elicit and measure phonological awareness at the phone-
mic sensitivity level (Papadopoulos et al., 2012). Participants 
are asked to identify the word produced after eliminating a 
target word’s initial, middle, or final sound during the PE 
task. Typically, accuracy (correct responses) or response 
time quantify performance. These measures are powerful 
concurrent and longitudinal predictors of children’s reading 
ability (Papadopoulos et al., 2009) across languages (e.g., 
Caravolas et al., 2019). However, to our knowledge, only a 
few studies investigate the neural underpinnings of these ef-
fects in tasks such as phoneme elision (e.g., Kovelman et al., 
2012). We argue that this lack of studies is due to methodo-
logical challenges in isolating informative neural compo-
nents in PA tasks in general and in the phoneme elision task 
in particular.  
 In general, to study the neural underpinnings of reading 
disorders, neurophysiological responses are measured using 
electroencephalography (EEG) signals while participants 
engage in a reading-related task. Typical approaches involve 
designing an experiment that elicits time-locked event-re-
lated potentials (ERP) - short (up to 500ms) and measurable 
stereotypical neural-waveforms evoked in response to brief 
stimuli. ERP analysis is then used to differentiate neuronal 

 



responses among groups and conditions (Breznitz, 2005). In 
particular, ERP analysis involves averaging neural re-
sponses to estimate the event-related potential waveform in 
response to each event. Subsequently, the amplitude and la-
tency measures of the ERP components (visually recogniza-
ble peaks or valleys in the ERP signal) are generated. Com-
paring differences in the amplitude/latency scores between 
groups or conditions provides insights into the neural under-
pinnings of cognitive processes. As such, traditional ERP 
analysis relies on the hypothesis that differences in neural 
responses appear in the peaks and valleys of the short 
(<500ms) ERP signal, ignoring neural activity in-between. 
 ERPs have been successfully used to study several psy-
chological processes, such as attention, memory and cogni-
tion, personality traits, perception, and intelligence. Perti-
nently to the study of dyslexia, ERP analysis has been used 
in conjunction with oddball experimental paradigms and the 
mismatch negativity component. The emphasis is placed 
mainly on the study of auditory speech-processing deficits 
and their relation to dyslexia (see Hämäläinen et al., 2018; 
Desroches et al., 2013; Schulte-Körne & Bruder, 2010; and 
references therein). However, we are not aware of any stud-
ies that directly explore how neural responses in a PA task, 
such as the phoneme elision task, relate to dyslexia. 
 Machine learning approaches have also been proposed in 
the study of neurocognitive processes. In this context, ma-
chine learning methods aim to isolate neural components 
within the EEG signals that are informative of differences 
between groups or conditions. For example, single-trial dis-
criminant analysis has been proposed to identify neural 
components informative of the decision-making processes 
during perception categorization tasks (Philiastides & Sajda, 
2005). Common Spatial Pattern (CSP)-based single-trial 
discriminant has also been proposed for the disambiguation 
spatial-cognition processes (Christoforou et al., 2018). Sin-
gle-trial correlation analysis has been used for exploring the 
neural-underpinnings for the Stimulus Presentation Modal-
ity Effects in Traumatic-Brain-Injury treatment protocols 
(Christoforou et al., 2013). However, most of these methods 
rely on time-localized amplitude differences in the ERP sig-
natures elicited by the experimental design or the discrepan-
cies in the signal’s average power over a time window 
(Christoforou et al., 2010). To the best of our knowledge, 
these features could not capture sufficient information as to 
the neural underpinnings of dyslexia in the phoneme elision 
task.  
 In this study, we propose a novel machine-learning-based 
approach to isolate differential neural activity in children 
with dyslexia in the phoneme elision task, overcoming much 
of the methodological constraints of existing methods. Our 

 
1 Fella A. & Papadopoulos, T. C. (2017). Reading ability: Cognitive and 
neurophysiological performance indicators. Center for Applied Neurosci-
ence, University of Cyprus. 

method first formulates an optimization problem to extract 
informative EEG components based on the “neural-congru-
ency hypothesis”, i.e., the premise that source neural activity 
elicited during a cognitive task is congruent among partici-
pants engaged in that task (Christoforou & Theodorou, 
2021; Christoforou, Theodorou & Papadopoulos, 2021). 
Second, it uses a machine-learning algorithm to combine the 
resulting components to differentiate between children with 
dyslexia and controls. Finally, the ability of our approach to 
extract novel neuronal elements informative of the neural 
underpinnings of dyslexia in phonological awareness is 
demonstrated on a real EEG dataset involving children with 
dyslexia and controls in ages 9, and 12 (i.e. third and sixth 
grade). 

Materials and Method 

Experimental Paradigm and Data Collection 
The data for this study were collected as part of a broader 
project aiming to study the neural underpinnings of dyslexia 
in children1 (further exploited by Christoforou et al., 2021) 
and their relation to core cognitive deficits. This section in-
troduces the design and data collection apparatus of the spe-
cific task this study focuses on, namely, phoneme elision. 
Phoneme Elision Test  
The Phoneme Elision Test measures phonological aware-
ness at the phonemic sensitivity level in young children (Pa-
padopoulos et al., 2012, 2009). In the present experiment, 
participants first listened to a target word, followed by a 
pause of 1500ms. Next, participants were instructed to 
think, during the pause, which word was formed after re-
moving the first phoneme from the target word. Subse-
quently, the participants listened to a second word (i.e., the 
elision word). Finally, the participants had to respond (by 
pressing an appropriate key on the keyboard) whether the 
second word was formed by removing the first phoneme 
from the target word or not. Participants had up to 2500ms 
to respond. The task comprised 100 trials, half of which 

Fig. 1: Trial Schematic of the Phoneme Elision Task. 



were trials with the second word being formed by removing 
the first phoneme of the target word and the other half with 
not. Before completing the trials, a training period of five 
trials demonstrated the task to the participants. The trial 
schematic for the task is shown in Fig. 1. 
 
Participants and EEG Data collection 
Two groups of 30 children were formed; one group com-
prised children with dyslexia (DYS), and the other was a 
chronological-age control (CAC) group. Participants were 
recruited from Grades 3 (age 9) and 6 (age 12) from inner-
city public elementary schools in Cyprus, all native Greek-
speakers. Participants were instructed to complete the pho-
neme elision task while collecting their EEG signals. A Bi-
osemi Active-two system (BioSemi, Amsterdam, Nether-
lands) was used to collect the EEG data. Participants were 
fitted a standard 64-channel EEG cap, and electrodes were 
placed following the 10/20 layout. DC offsets of all sensors 
were kept below 20mV using electro-gel. EEG signals were 
recorded at a sampling rate of 256Hz. In addition, a trigger 
channel was used to record time markers indicating the be-
ginning and end of each trial according to the trial schematic 
of Fig. 1. The study was carried out per the Cyprus National 
Bioethics Committee recommendations and received ap-
proval from the Ministry of Education and Culture, Cyprus 
(#7.15.01.27/17).  
EEG Pre-processing 
 In this study, we aimed to identify differential neural ac-
tivity relating to the ability of participants to perform pho-
neme elision. As such, we focused on the neural activity fol-
lowing the listening of the second word (i.e., elision word, 
see schematic in Fig. 1). Therefore, we pre-processed the 
continuous EEG data and extracted epochs time-locked at 
the onset of the second word pronunciation. All channels 
were first re-referenced to the average channel as part of the 
EEG pre-processing. Subsequently, a high-pass filter at 
0.5Hz was used to remove DC drifts, followed by a 50Hz 
notch filter to minimize the power-line noise interference. 
The continuous EEG was then epoched starting -200ms be-
fore the second word’s onset until the second word’s articu-
lation. Each epoch was then normalized by dividing each 
channel by the standard deviation across time.   
 Thus, for each participant i, the EEG observations com-
prised a set of trials {𝑋!", 𝑋!#, … , 𝑋!$}, where each 𝑋!% ∈
	ℝ&×(! 	corresponds to the neural activity following the on-
set of the elision word of the k-th trial; 𝑇%	is the trial dura-
tion; 𝐷 = 64 denotes the number of channels, and  𝑁 = 100 
the number of trials.  

Phoneme-related Neural-congruency Components 
Our objective was to isolate neural components in EEG elic-
ited during phoneme elision and are informative of 

differences between the DYS and CAC groups. We hypoth-
esized that participants who have intact phonological aware-
ness skills (i.e., CAC) and thus can more efficiently recog-
nize phoneme elision would exhibit neural activation pat-
terns congruent within the group. On the contrary, partici-
pants with phonological deficits (i.e., DYS) would have 
neural responses that deviate from such a stereotypical pat-
tern. Towards this, we formulated an optimization proce-
dure to isolate neural components congruent among partici-
pants in the CAC group and explore those components as 
potential differentiating metrics between CAC and DYS. 
This section provides details of our approach to isolate such 
phoneme-related neural-congruency components. The fol-
lowing section discusses how we employ machine learning 
on those components to differentiate between DYS and 
CAC groups.  
 Consider the group of participants in the CAC group, as 
𝒮 = {𝑠", 𝑠#, . . , 𝑠)} where 𝑠! ∈ ℤ*denotes the participants’ 
index. We define the between-subject 𝑹+ ∈ ℝ&×&	 and 
within-subject 𝑹, ∈ ℝ&×&	 cross-covariance matrix as fol-
lows: 
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K is a normalizing constant, 𝛿-.̇  is the kroneker delta and 
𝑋! ∈ 	ℝ&×( is the matrix comprised of all single-trial EEG 
of participant i, concatenated across columns, defined as:  
 

𝑿! = [𝑋!", 𝑋!#, …𝑋!$] 
 
For a given projection vector 𝒘 ∈	ℝ&, the average Pearson 
Product Moment Correlation Coefficient between the con-
catenated single-trial responses, projected onto vector 𝒘, 
across every pair of participants in group 𝒮 is defined as: 
 

𝜌 =
𝒘(𝑹+	𝒘		
(𝒘(𝑹,	𝒘)	

 

 
The correlation coefficient 𝜌 can be considered as a measure 
of the degree of congruency in neural activity of the compo-
nent 𝒘, among participants with intact phonological aware-
ness. Therefore, we aim to identify those components 𝒘 that 
maximize 𝜌. That is  



𝒘F = arg,max
𝒘(𝑹+	𝒘		
(𝒘(𝑹,	𝒘)	

 

   
The solution of the optimization problem in equation (1) are  
the eigenvectors of the generalized eigenvalue problem 	
(𝑅,5"𝑅+)𝒘% = 𝜆%𝒘%, where 𝒘𝒌 is the k-th eigenvector of 
the matrix (𝑅,5"𝑅+) and corresponds to the components that 
capture the k-th largest correlation in neural activity, while 
𝜆% is the corresponding eigenvalue that captures the strength 
of the correlation. We note that equation (1) has D solutions 
(i.e., {𝒘F",, 𝒘F#,… ,𝒘F&,}) corresponding to the D eigenvectors 
of the matrix (𝑅,5"𝑅+), and the solutions are ordered from 
the highest to the lowest eigenvalue. 
 Given the set of solution vectors {𝒘F",, 𝒘F#,… ,𝒘F&,}, we de-
fine the phoneme-related neural-congruency (PRNC) of an 
individual 𝑠	 ∉ 𝒮 with respect to the k-th component 𝒘F%, as:  
 

𝑃𝑅𝑁𝐶),% =	
𝒘F%(𝑹)+𝒘F%
𝒘F%(𝑹)+𝒘F%
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 We calculated the phoneme-related neural-congruency 
scores (i.e. PRNC) for each participant separately. Partici-
pants’ data for which the PRNC score was calculated was 
excluded from the component extraction step to avoid train-
ing bias during the optimal component extraction. The 
PRNC measures the strength of the congruency of the neural 
activity between a given individual and the CAC group for 
each component. Therefore, the congruent activity of each 
participant for the first �̇� = 10 components (i.e., those with 

the highest eigenvalues) is captured by a vector 𝒖(𝑠) de-
fined as: 

𝒖(𝑠) = R𝑃𝑅𝑁𝐶),", 𝑃𝑅𝑁𝐶),#, …𝑃𝑅𝑁𝐶),&, S
(
 

 
The vector 𝒖(𝑠) is a feature vector that captures the strength 
of congruency in neural activity of participant s to the CAC 
group for the first �̇� components.  
 
Classification of Phoneme-related Neural-congru-
ency Components 
Our goal was to explore the use of the feature vector of neu-
ral-congruency components 𝒖(𝑠) as a predictor of a partici-
pant’s group assignment (i.e., DYS or CAC). Moreover, we 
aimed to investigate which neural-congruency components 
carry predictive information. Towards this goal, we formu-
lated a classification model. Specifically, we considered the 
dataset 

 
T𝒖(𝑠) ∈ 	ℝ&̇, 𝑦) ∈ {𝐷𝑌𝑆, 𝐶𝐴𝐶}X

∀)∈:		
  

and employed a sparse logistic regression classifier using 
the vector 𝒖(𝑠) as independent variables, and an individ-
ual’s group 𝑦) as the dependent variable. The classifier was 
trained using a leave-one-participant-out cross-validation 
procedure to avoid training bias. The generalization perfor-
mance of the classifier was calculated as the area under the 
Receivers Operator Characteristic curve (AUC). The statis-
tical significance levels over AUC scores were established 
using a permutation test (10,000 repetitions). Finally, the co-
efficients of the lasso classifier were inspected to identify 
components that likely carry predictive information between 
the groups. 
 
Spatiotemporal profiles of Phoneme-related Neu-
ral-congruency components. 

Fig. 2: Receiver Operating Characteristic (ROC) curve 
showing the cross-validation classification performance. 
Light-gray indicates the expected performance under the 
null-hypothesis.   

Fig. 3: Box-plot of the average neural-congruency scores for each 
group.  

(1) 



Given the solutions to the generalized eigenvalue problem, 
the temporal profile of each component was calculated as 
the product of each component 𝒘F%, with each of the single-
trial responses, and then taking the grand-average response 
of the projected components. Moreover, the topographical 
profile  (i.e. the forward model) of each component was cal-
culated as:  

𝒂𝒌 =		
𝑹𝒘	𝒘F𝒌
𝒘F𝒌𝐓𝑹𝒘𝒘F𝒌

		

The forward model captures the covariance between each 
component’s activity as measured by each electrode. 

Results 
The purpose of the study was to explore whether neural ac-
tivity captured by the proposed phoneme-related neural-
congruency components was informative of differences be-
tween children with dyslexia (DYS) and without (i.e., 
CAC); therefore, investigating whether these components 
could provide evidence of the neural underpinnings of dys-
lexia in a PA task such as phoneme elision. We trained the 
sparse lasso classifier using the phoneme-related neural-
congruency components as a feature vector. We also as-
sessed the ability of the classifier to differentiate between 
the two groups. A leave-one-participant-out cross-validation 
evaluation showed that the classifiers achieved an AUC 
score of 0.78. A permutation test indicated the classifier per-
formance is statistically significantly better than random 
performance with p < .001, suggesting that neural activity 
of the phoneme-related neural-congruency components 
carry differential information about the neural underpin-
nings. The Receiver Operating Characteristic (ROC) curve 
that illustrates the classifier’s performance is shown in Fig. 
2. The dotted diagonal line shows the random performance, 
while the gray shaded area indicates the 95th percentile en-
velope of the ROC curve under the null distribution, esti-
mated using the permutation test.  

 Moreover, a two-way ANOVA was performed to com-
pare the effect of participants’ age (i.e., Grade 3 vs Grade 6) 
and Group (DYS vs CAC). The analysis showed a signifi-
cant main effect (F(2,58) = 9.18, p < .001). Also, significant 
group differences (T(2,58) = 4.28, p < .001), and intercept 
(T(2,58) = 2.85, p < .01) were revealed. The ANOVA model 
did not yield significant age group differences (T(2,58) = 
0.28, ns). Fig. 3 shows the box plots for the two-way 
ANOVA.  
 The forward models of the ten components and their as-
sociated eigenvalues are shown in Fig. 4. The topography of 
each forward model informs of the approximate location of 
the underlying neuronal activity eliciting the components. 
At the same time, the associated eigenvalue shows the de-
gree to which this neural activity is “synchronously” ob-
served across participants.  

Discussion and Conclusions  
This study proposed and validated a new computational ap-
proach to uncover the underlying neurophysiological differ-
ences between children with dyslexia and typically develop-
ing children in a phonological awareness task, phoneme eli-
sion. In particular, we formulated an optimization problem 
to identify a set of phoneme-related neural-congruency 
components. We used a machine-learning algorithm to as-
sess whether these components carry predictive information 
about the participants’ condition (i.e. DYS or CAC). Our ap-
proach overcame methodological constraints of existing 
EEG analysis methods and allowed us to discover more in-
formative components in EEG. The utility of our method is 
demonstrated on a real-life EEG dataset.  
 A key finding of this study is that the proposed phoneme-
related neural-congruency components extracted indeed 
capture information about the underlying neural activity that 
differentiates children with dyslexia and controls. Specifi-
cally, the classifier, using the phoneme-related neural-

Fig. 4: Forward model of the 10 PRNC components, ordered by their corresponding eigenvalue.  



congruency components, can distinguish DYS and CAC 
with an AUC performance of 0.78 (p < .001), which is sig-
nificantly higher than the performance under the null distri-
bution (i.e., the two groups are indistinguishable from each 
other). In addition, the forward models of several phoneme-
related neural-congruency components (see Fig. 4) exhibit 
topographies consistent with those of a single-source dipole 
model. This finding suggests that each neural-congruence 
component captures neural activity from different underly-
ing sources in the brain. Furthermore, since the differences 
captured by the classifier are a weighted aggregate of each 
of those sources, we can argue that neural differences in 
phoneme elision occur by contributions from multiple brain 
regions involved in the neural pathway of phoneme elision 
detection. 
 Furthermore, the two-way ANOVA comparison of the 
weighted phoneme-related neural-congruency scores 
showed a main effect on the condition but no effect on the 
participants’ age. This finding suggests that the neural-con-
gruency components capture the neural activity of phono-
logical awareness as a core deficit independent of age or ed-
ucation. Finally, an inspection of Fig. 3 shows that weighted 
phoneme-related neural-congruency scores exhibit signifi-
cantly higher values in CAC than DYS, providing empirical 
evidence towards the support of the neural-congruency hy-
pothesis. 
 Taken together, our findings demonstrate that our ap-
proach does generate novel insights towards the neural un-
derpinnings of dyslexia during the execution of a phonolog-
ical task, phoneme elision. Moreover, they also decipher the 
potential neural origins of phonological deficits as a causal 
risk factor for dyslexia. Notably, as a novel approach, the 
proposed method could be used to study other behaviorally 
defined developmental disorders. 
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