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Abstract

Forecasting for inventory control is the process of calculat-
ing the inventory needs to fulfill future consumer demand. In
general, this process is divided into two sub-processes. The
first sub-process receives the current inventory information
and forecasts future information, e.g. forecasts future demand
from the demand information in the past. The second sub-
process uses the forecast information as input to make inven-
tory decisions, e.g. use a product demand forecast to decide
how many units of this product to buy. Recent works highlight
the importance of integrating forecasting with final inventory
decisions, however, there is very little empirical evidence to
support that integrating the decision is the best solution. In
this work, we propose to explore the effect of integrating the
inventory decision into the forecasting problem and compare
it with the state-of-the-art approaches. For this, we evaluated
the approaches in different operational tasks belonging to our
business. Our preliminary findings show that predicting oper-
ative decisions instead of demand information could be better
and the benefit can be capitalized even in low data scenarios.

Introduction
In recent years, e-commerce has developed rapidly. Con-
sumers’ buying behavior has changed, more people prefer to
buy and sell in digital stores from the comfort of their homes.
This has led to the emergence of new platforms that trans-
formed the B2B and B2C paradigms, enabling consumers
to participate as sellers in a C2C model (Gupta 2014). This
brings new challenges for operations, among which is being
able to carry out an efficient control of the inventory (Patil
and Divekar 2014).

Inventory control is about all the operational decisions
that are made to satisfy consumer demand and to be efficient
in optimizing operations related to the management of ware-
houses, shipping, among others (Barwa 2015). In general,
inventory control is carried out at the SKUs (stock-keeping
units) level. These inventories are usually stored in ware-
houses ready to meet customer demand. The warehouses can
also be strategically located in different geographical areas
to be able to satisfy the demand at a required service level
and/or a budget. In this way, in e-commerce businesses, effi-
ciency in operational decisions is tied to being able to know
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the demand for the products offered in it. However, this de-
mand is generally unknown when making operational deci-
sions and is therefore forecast.

In this context, forecasting is usually defined as the action
of predicting how much demand is going to be for a partic-
ular SKU (often using sales as a proxy) at some future point
or period time (Thomopoulos 2015). However, this look at
inventory forecasting could be a short-sighted vision of the
problem (Kourentzes, Trapero, and Barrow 2020). The argu-
ment is that inventory forecasting needs to be any predictive
decision that makes e-commerce operations more efficient
rather than just information for others’ decision-making pro-
cesses. In this paper, we support this idea, adding that predic-
tive performance can also be improved if decisions are pre-
dicted instead of demand information. For this purpose, we
explore the results of different approaches and techniques
to quantify the difference over several inventory forecasting
tasks. Our findings show that predicting decisions instead of
information is better in almost all explored tasks and that
the improvement is also evident even in scenarios where the
amount of data is low.

The rest of the paper is structured as follows. Section 2
presents the background concepts used in this work. Section
3 describes the experimental setting we conducted. Section
4 presents the result analysis and highlights the benefits of
predicting inventory decisions. Section 5 concludes and out-
lines our future work.

Backgronud
Inventory forecasting can be viewed as a complete process
in which the following inventory decisions are obtained from
current inventory information (Goltsos et al. 2021). In prac-
tice, it is very common to find this problem divided into two
sub-processes: The first sub-process receives the current in-
ventory information and forecasts future information, e.g.
forecasts future demand from the demand information in the
past. The second sub-process uses the forecast information
as input to make inventory decisions, e.g. use a product de-
mand forecast to decide how many units of this product to
buy.

As a forecasting problem, inventory forecasting is a bit
different from other forecasting problems. Some of the main
characteristics that describe an inventory forecasting prob-
lem are the following:



• It is a multivariate problem, since each product in the in-
ventory can be described by more than one time series,
for example, the time series of units available for sale, the
time series of sales, the time series of the price, etc. . .

• The product time series can be correlated with other prod-
uct time series, for example, the sales of a product can be
highly correlated with the sales of another product within
the same domain or category

• Time series have different degrees of intermittence,
for example, certain products may have consistent unit
amounts over time and other products may have units
from time to time because they are seasonal.

The state-of-the-art approach to solve inventory forecast-
ing problems is to divide the process, forecast product de-
mand, and then use that information to make inventory de-
cisions. It has the main advantage of producing a general
forecast that can be used in different scenarios. Some of the
techniques to solve inventory forecasting into this framing
were well described in the past (Spiliotis et al. 2020). These
techniques can be divided into two main categories: single-
learning and cross-learning (Semenoglou et al. 2021).

Single-learning, are forecasting models that are trained in
a series-by-series fashion, both statistical and machine learn-
ing ones, are the most used in forecasting. One reason for
this can be attributed to many different factors related to the
nature and the historical success of these models, as well as
to the availability of data and computer resources over the
years (Makridakis, Spiliotis, and Assimakopoulos 2021).

Cross-learning techniques are forecasting models that use
information from multiple series when training forecasting
models. In particular, some of these models can be effec-
tively applied for forecasting numerous, mostly unrelated
series, such as those found in inventory forecasting prob-
lems. Recently, based on the findings in M competencies
(Makridakis, Spiliotis, and Assimakopoulos 2021), the ef-
fectiveness of these types of techniques where used to fore-
cast demand has been proven.

Unfortunately little is known about the effectiveness of
this approach in consequent inventory decisions. Recent
work highlights the importance of integrating forecasting
with inventory decisions, however, there is no empirical ev-
idence to support that integrating the decision is the best so-
lution.

In this work, we propose to explore the effect of integrat-
ing the inventory decision into the forecasting problem and
compare it with the state-of-the-art approaches. For this, we
will evaluate the forecast in different downstream tasks be-
longing to our marketplace and we will evaluate them with
different operational efficiency metrics.

Experiment setting

Our objective is to investigate the effect of directly predict-
ing inventory decisions rather than predicting demand and
then making decisions based on it. To accomplish this objec-
tive we consider the following inventory forecasting tasks.

Inventory forecasting tasks
To evaluate our approach, we take three inventory forecast-
ing tasks from our company. For each task, we attach an op-
erational related metrics to understand what is the real value
of the forecast. Two of these tasks have an associated asym-
metric cost. For example, it is usually more expensive to lose
a sale than to store one more unit. We reflect this asymmetry
on an ad-hoc basis, making the error of not having one unit
in the warehouse twice that of having one more. We called
this error, asymmetric inventory error (AIE), and we calcu-
lated for each item as follow:

AIE =

H∑
day=1

2 ∗ deficitday + surplusday (1)

where H is the forecasting horizon, deficitday is the nega-
tive difference between sales and the available units of the
item in a particular day, and the surplusday is the positive
difference between them. We model AIE as a single linear
function for simplicity, however in real-world warehouses,
different products can be modeled with different functions.

Below we describe the tasks and the metrics we use to
evaluate them. For each item, we take as the number of per-
fect units (ground truth) the number of units that were finally
sold on the expected horizon.

Inbound Restriction E-commerce sites that offer a ser-
vice to store inventory to sellers face the problem of having
to manage warehouse space. Moreover, it is very common
for sellers to take more units than they need to the ware-
house to try to do it as few times as possible. An operational
decision to improve efficiency is to restrict the entry of units
to be stored when the seller arrives at the warehouse. We call
this task Inbound Restriction.

Accordingly, given an inbound intention (int), what we
are trying to predict is how many units to restrict access to.
After applying the restriction (restr) we measure the suc-
cess of the task using the AIE.

N∑
item=1

AIE((intitem − restritem)− ground truthitem)

(2)

Warehouse Replenishment Warehouses are places where
the available units of each item are stored. These warehouses
have limited space, so understanding which items to fill
them with is important for operational management. Con-
sequently, given a total capacity of space, simplified as the
number of spaces available to store items, the task consists
of determining the quantity of each item that minimizes the
AIE.

N∑
item=1

AIE(quantity to storeitem − ground truthitem)

(3)
In this case, the sum of the units to be stored cannot exceed
the total capacity of the warehouse.



Out Of Stock Alert Another common task in e-commerce
inventory management is to alert sellers when they are run-
ning out of stock. To do this, we consider the number of units
available for an item, and what we want to predict is whether
in an H number of days the seller will run out of units of that
item. To evaluate this task, the difference between the units
available and those sold is considered. If the difference is
negative, we will send an alert. If the difference is positive,
no. Since it is a binary problem we compute the accuracy of
the decision to send an alert.

Accuracy(remaining unitsitem < ground truthitem)
(4)

Models
Additionally, we want to do this in the simplest way possible
in terms of techniques and data complexity. To accomplish
this objective we consider the following scenarios:

• Traditional series-by-series models to predict demand
• Single-learning ML models to predict demand
• Cross-learning ML models to predict demand
• Single-learning ML models to predict decisions
• Cross-learning ML models to predict inventory decisions

Since what we are pursuing is evaluating the framing
of the problem (and not the models), we will use for all
machine learning experiments the same class of models,
Histogram-Based Gradient Boosting Machines, in particu-
lar the LGBM implementation. This family of models has
proven to be one of the best in solving demand forecast-
ing problems, as seen in the M5 competition. In addition, as
traditional models, we consider AutoARIMA, Exponential
Smoothing, and Prophet.

Data
The data set used for the inventory forecasting task focuses
on one mid-size country site only. Given the large number
of SKUs that we have per site, we only take into account
SKUs that have had at least one sale per week in the estab-
lished time range. We took six months between January 1
and July 1 of 2021, about 5000 SKUs. Each one of these is
described day by day with the attributes shown in table 1.
For simplicity, we do not consider data referring to the title
and description of the item, nor referring to the domain or
category.

Data preparation
Each task was split into train, test, and validation subsets.
The validation was used for hyperparameter tuning and re-
port results. For traditional models, we only consider the
sold quantity series to predict demand. For machine learning
models we transform the problem in a supervised fashion for
each task. To do this we choose to use a ”last window” strat-
egy, with a window size equal to the horizon, in our case 28
days. A training example of the supervised dataset will con-
tain, for each attribute (i.e. sold quantity, current inventory,
etc.), the last 28 days concatenated with several summary
features (mean, std, min, max, median, var, skewness, and

Table 1: Set of product attributes that are recorded for each
day.

Attributes Description
SKU indicates the SKU to which

the record belongs
sold quantity number of units of the corre-

sponding SKU that were sold
on that particular date.

current price point in time correct SKU’s
price.

listing type relate to the exposure the
items have and the fee
charged to the seller as a sales
commission (e.g. classic,
premium).

shipping logistic
type

type of shipping method the
SKU offered (e.g. fulfillment,
cross-docking, and drop-off)

shipping payment whether the shipping for the
offered SKU at that particular
date was free or paid, from the
buyer’s perspective.

minutes active number of minutes the SKU
was available for purchase on
that particular date.

kurtosis). In addition, we add to these features the mean and
std related to the objective of the task (i.e. the inbound in-
tention, the remaining stock, etc.). To train a model in the
form of cross-learning, we use a supervised dataset with all
SKUs, otherwise, the supervised dataset is divided by SKU
and trained only with the data of the SKU to be predicted.

To see the effect of cross-learning, we run experiments us-
ing different amounts of SKUs for each task (10, 100, 500,
1000, 2500, 5000). We also run 5 experiments per combi-
nation of tasks, SKU amounts, and model, using different
random samples and initialization of the data. We report the
mean and standard deviation of our results.

Results
Table 2 shows the metric values for all the scenarios pro-
posed. The values in bold in the columns correspond to the
best value for the metric along that column. As it can be
observed, CL-decision-LGBM shows the best results for all
the scenarios. Cross-learning shows to be better than single-
learning for all the tasks. At the same time, single-learning
techniques are better than traditional ones except for the in-
bound restriction task in the lowest data scenario where Au-
toARIMA obtains the best result. Something important to
observe from the results is that, in general, predicting de-
cisions instead of demand is better within the same group
of techniques (i.e. single or cross-learning). However, for
the cross-learning setting, the difference tends to decrease
when more data is used. Perhaps one of the reasons for the
small difference in the scenarios with more data is due to
the model selection. Another possible reason could be not
using the operational metric (e.g. AIE) in the cost function



Train Size 10 100 500 1000 2500 All Data
Inventory Task Model
Inbound AutoARIMA 0.37±0.21 0.30±0.06 0.28±0.05 0.25±0.01 0.26±0.01 0.27±0.01
Restriction ExponentialSmoothing 0.28±0.04 0.29±0.07 0.27±0.05 0.25±0.01 0.25±0.01 0.26±0.01

Prophet 0.27±0.10 0.38±0.06 0.38±0.06 0.34±0.02 0.34±0.01 0.36±0.01
SL-demand-LGBM 0.39±0.14 0.38±0.10 0.40±0.08 0.40±0.07 0.41±0.07 0.41±0.06
SL-decision-LGBM 0.48±0.04 0.49±0.04 0.51±0.04 0.52±0.04 0.52±0.03 0.52±0.03
CL-demand-LGBM 0.77±0.18 0.79±0.13 0.80±0.11 0.81±0.10 0.82±0.09 0.82±0.08
CL-decision-LGBM 0.81±0.07 0.83±0.06 0.83±0.05 0.83±0.05 0.83±0.04 0.84±0.04

Out Of Stock AutoARIMA 0.56±0.16 0.45±0.04 0.48±0.02 0.47±0.01 0.47±0.01 0.48±0.01
Alert ExponentialSmoothing 0.52±0.24 0.45±0.05 0.47±0.02 0.46±0.02 0.47±0.01 0.47±0.01

Prophet 0.50±0.14 0.41±0.05 0.45±0.01 0.44±0.01 0.45±0.01 0.45±0.01
SL-demand-LGBM 0.48±0.19 0.48±0.14 0.49±0.12 0.50±0.10 0.50±0.09 0.50±0.08
SL-decision-LGBM 0.50±0.10 0.55±0.09 0.56±0.08 0.57±0.07 0.57±0.06 0.57±0.06
CL-demand-LGBM 0.55±0.15 0.56±0.11 0.56±0.09 0.56±0.08 0.56±0.07 0.55±0.06
CL-decision-LGBM 0.68±0.17 0.69±0.13 0.72±0.12 0.73±0.10 0.74±0.10 0.75±0.09

Warehouse AutoARIMA 0.31±0.10 0.28±0.04 0.22±0.04 0.21±0.01 0.22±0.01 0.21±0.01
Distribution ExponentialSmoothing 0.25±0.09 0.27±0.05 0.21±0.04 0.19±0.01 0.20±0.01 0.20±0.01

Prophet 0.23±0.12 0.24±0.04 0.19±0.02 0.18±0.01 0.18±0.01 0.19±0.01
SL-demand-LGBM 0.46±0.09 0.44±0.07 0.45±0.06 0.45±0.06 0.45±0.05 0.46±0.05
SL-decision-LGBM 0.50±0.10 0.47±0.08 0.47±0.07 0.47±0.06 0.47±0.06 0.47±0.05
CL-demand-LGBM 0.56±0.09 0.55±0.07 0.56±0.07 0.57±0.06 0.58±0.06 0.59±0.06
CL-decision-LGBM 0.64±0.01 0.62±0.03 0.60±0.04 0.59±0.04 0.59±0.04 0.60±0.03

Table 2: Forecasting performance across 5,000 SKU daily series and different training sizes of the various forecasting ap-
proaches considered in this study. For AIE based task the score in the table is calculated as 1- (AIE / max (AIE)). For all tasks,
the mean and standard deviation of the results are shown using different random seeds and samples.

and directly optimizing it. In that case, we believe that the
comparison would not have been entirely fair for the tech-
niques that predict demand. Beyond that, we believe that in
practice it would be a good way to boost the performance of
the models that predict the operational decision.

Conclusions
In this article, we propose to explore the effect of integrat-
ing inventory decisions into the forecasting problem by com-
paring various techniques and scenarios. We assess the per-
formance in different inventory tasks belonging to our mar-
ketplace. Consequently, an initial evaluation showed satis-
factory results when predicting decisions in all the studied
tasks. Additionally, cross-learning scenarios are better than
single-learning and traditional techniques. Nevertheless, the
difference tends to decrease as the data increases. One of the
reasons for this may be due to the models used or not having
directly optimized the operational metrics. In future work,
we will focus on cross-learning methods and we will evalu-
ate the use of different modeling techniques instead of only
LGBM. In addition, we will explore different cost functions
to optimize directly the operational metric. To do so AIE
still needs further validation to more faithfully represent the
objectives of each operational problem. Finally, it would be
interesting to add new tasks and datasets to our evaluation to
extend the scope of our findings.
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