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Abstract

With the increasing use of AI and ML-based systems,
interpretability is becoming an increasingly important
issue to ensure user trust and safety. This also applies to
the area of recommender systems, where methods based
on matrix factorization (MF) are among the most pop-
ular methods for collaborative filtering tasks with im-
plicit feedback. Despite their simplicity, the latent fac-
tors of users and items lack interpretability in the case of
the effective, unconstrained MF-based methods. In this
work, we propose an extended latent Dirichlet Alloca-
tion model (LDAext) that has interpretable parameters
such as user cohorts of item preferences and the affili-
ation of a user with different cohorts. We prove a theo-
rem on how to transform the factors of an unconstrained
MF model into the parameters of LDAext. Using this
theoretical connection, we train an MF model on dif-
ferent real-world data sets, transform the latent factors
into the parameters of LDAext and test their interpreta-
tion in several experiments for plausibility. Our exper-
iments confirm the interpretability of the transformed
parameters and thus demonstrate the usefulness of our
proposed approach.

Introduction
In the field of recommendation systems, collaborative fil-
tering is a fundamental technique that filters for patterns in
user-item interactions to make predictions about future in-
teractions. For decades, matrix factorization methods have
been the state of the art for collaborative filtering. Even the
rise of deep learning in this domain could not change this
dominance (Rendle et al. 2020; Dacrema, Cremonesi, and
Jannach 2019).

Although MF-based methods for recommender systems
have been studied for a long time, the reason why they are
so effective in finding a personalized ranking of items re-
mains largely unclear. Since the idea of MF has its origin
in linear algebra and not in a probabilistic generative pro-
cess, there is no canonical interpretation of the learned latent
factors. Some variants, such as non-negative matrix factor-
ization (NMF), allow interpretation but often cannot rival
the performance of general MF methods without constraints
on the factors (Lee, Sun, and Lebanon 2012). As users of
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recommendations systems are increasingly sensitive to how
their data is used and why certain recommendations are pre-
sented to them, the need for interpretability of MF-based
methods is rising.

In this paper, we propose an approach that allows the in-
terpretation of MF by transforming the latent factors into
parameters of an interpretable model while keeping the MF-
induced personalized ranking constant. We first introduce
MF-based methods and how they solve the task of creat-
ing a user-specific ranking for a set of items based on the
implicit feedback of a set of users. After that, we review
the well-known Latent Dirichlet Allocation (LDA) model
for the task of collaborative filtering and point out its short-
comings compared to MF. Therefore, LDA cannot be used
as an interpretable alternative to MF directly. Subsequently,
we propose an extended LDA (LDAext) model that reme-
dies these shortcomings and show in a constructive proof
the equivalence of MF and LDAext in the sense that the
latent factors of MF can be transformed into the parame-
ters of LDAext while maintaining the personalized ranking.
We perform several experiments on different real-world data
sets to evaluate the plausibility when interpreting the trans-
formed latent factors of MF.

Related Work
With respect to the interpretability of MF-based methods,
Zhang et al. (2006) propose NMF for collaborative filter-
ing and interpret the latent user vector as an additive mix-
ture of different user communities, i.e., cohorts. Hernando,
Bobadilla, and Ortega (2016) replace the mixture of cohorts
by a proper distribution over cohorts of users, which in-
creases the interpretability. Both approaches require a non-
negativity constraint on the factors, which reduces their per-
formance in practical applications (Lee, Sun, and Lebanon
2012). Ding, Tao Li, and Jordan (2010) relieve these con-
straints by requiring only one of the factors to be non-
negative in their semi NMF method and interpret it as a
relaxation of K-means clustering. This interpretation as a
clustering of items in the space of users is less versatile than
the generative process of LDA with its inherent interpretabil-
ity.

The direct application of LDA for collaborative filtering
tasks is proposed by Blei, Ng, and Jordan (2003) in their
original work and also in a slightly modified approach by



Xie, Dong, and Gao (2014). To incorporate content-based
information about items, MF models are also used in con-
junction with LDA to extract textual information (Wang
and Blei 2011; Nikolenko 2015). While the use of content-
based information also provides the possibility for some in-
terpretability, it can only be considered an auxiliary help that
is not available in pure collaborative filtering tasks.

An extension of LDA to interpret MF is proposed by Wil-
helm (2021). In this work, we follow a similar approach but
improves the interpretability by using Dirichlet distributions
for the cohorts of item preferences and item popularity as
well. Additionally, we demonstrate the plausibility of the in-
terpretation in several experiments.

Notation and Terminology
Matrices are denoted by capital letters X , transposed matri-
ces by Xt, vectors by bold letters x, sets by calligraphic let-
ters X , and the cardinality of a set by |X |. The scalar product
of two vectors x and y is denoted by ⟨x,y⟩ :=

∑n
i=1 xiyi

and the l1-norm is denoted by ∥x∥1 :=
∑n

i=1 |xi|, where
n is the dimension of the vector space. A concatenation of
two vectors x, z is denoted by [x, z]. The i-th row vector of
a matrix X is denoted by xi and the j-th column vector as
x∗j . R≥0 denotes non-negative real numbers.

Let U be the set of all users and I the set of all items.
With S ⊂ U × I we denote the set of implicit feedback
from users u ∈ U having interacted with items i ∈ I. The
task of personalized ranking is to provide each user u with a
personalized total ranking ⩾u on I (Rendle et al. 2009).

Matrix Factorization
In MF-based methods, the sparse matrix of user-item inter-
actions X ∈ R|U|×|I| is approximated by the product of two
low-rank matrices W ∈ R|U|×|K| and H ∈ R|I|×|K|, i.e.,

X ≈ X̂ := WHt,

where K = {1, . . . , |K|} is the index set of the latent di-
mensions. Commonly, one latent dimension of W is fixed to
1 for all users, which leads to an additional item bias term
that has been shown to improve the predictive power of the
model (Paterek 2007; Koren and Bell 2015). Therefore, we
define the personalized score of a user u for an item i as

x̂ui = ⟨wu,hi⟩+ bi, (1)

where bi ∈ R is an item bias, which can be interpreted as
the item’s popularity. The personalized scores of a user then
induce the personalized ranking ⩾u by virtue of x̂ui ≥ x̂uj

for i, j ∈ I.
The approximation X̂ is highly dependent on the opti-

mization loss L(X, X̂), e.g. SVD++ (Koren 2009), WR-MF
(Hu, Koren, and Volinsky 2008; Pan et al. 2008) and PMF
(Salakhutdinov and Mnih 2007). In contrast to an approxi-
mation, Rendle et al. (2009) propose the Bayesian Personal-
ized Ranking (BPR) loss to directly optimize for an optimal
ranking ⩾u.

Although the score x̂ui is computed using a simple scalar
product, it is hard to interpret the latent vectors hi and wu.

At first glance, they might quantify the prevalence of some
latent feature in an item while the corresponding element
of a user u quantifies the user’s preference for this feature.
The problem with this interpretation becomes apparent when
considering negative elements, especially in hi. This obser-
vation motivates the usage of NMF methods that demand
non-negativity for wu and hi, which perform worse in di-
rect comparison (Lee, Sun, and Lebanon 2012).

Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA) is a generative statistical
model from the field of natural language processing. It is
an instance of a topic model in that it explains the obser-
vations by assuming a set of unobserved groups or topics,
where the observations within an assigned group share some
common features. Simply speaking, LDA assumes that each
document is a mixture of latent topics and each topic assigns
a certain probability of occurrence to each word.

We reformulate the generative process of a smoothed
LDA from Blei, Ng, and Jordan (2003) for the context of
collaborative filtering. Given a set of items i ∈ I and |K|
cohorts of users, each user u ∈ U has Su = {1, . . . , |Su|}
interactions, assuming the following generative process:

1. choose θu ∼ Dir(α) for u ∈ U ,

2. choose φk ∼ Dir(β) for k ∈ K,

3. for each user u ∈ U and interactions s ∈ Su:

(a) choose a cohort zus ∼ Cat(θu),
(b) choose an item ius ∼ p(ius | φzus

) := Cat(φzus
).

The hyperparameters of this generative process are α ∈
R|K|

>0 and β ∈ R|I|
>0 as well as the number of user interac-

tions Su, which is known from the interaction matrix X . The
graphical model corresponding to the generative process is
depicted in Figure 1.

|S|
|U|

|K|

α θu zus ius

β ϕk

Figure 1: Graphical model of LDA in a collaborative filter-
ing setting (Blei, Ng, and Jordan 2003). The upper plate rep-
resents the cohorts. The lower outer and inner plate represent
the users and the repeated choice of cohorts and items within
the interactions of a user (Step 3 of LDA), respectively.



With respect to interpretability, we can interpret φk as a
cohort of users who have a certain preference for every item
in I. Each user then has an affiliation θu with each of the
cohorts. Together, they fully determine the probability of a
user interacting with an item.

We can make the connection between LDA and MF ex-
plicit by interpreting these parameters as parameters of an
MF model. We see that φ∗i roughly corresponds to the item
vectors and θu to the user vectors. However, LDA has some
shortcomings in comparison to MF that can explain LDA’s
poor performance in the context of recommendation sys-
tems.

Firstly, there is no notion of item popularity in LDA’s gen-
erative process. Thus, one item can be highly likely in one
cohort and highly unlikely in another as there is no regular-
isation across the cohorts. Accounting for item popularity is
however important in collaborative filtering, hence why it is
included in (1) as bi. We can remedy this by including an
item bias term in the categorical distribution of Step 3b.

Secondly, if a bias term for item popularity is added to the
process, the effect of this regularization will be the same for
all users. There is no notion of more individualistic or more
conformist users. MF-based methods, on the other hand,
have this flexibility because the norm of wu influences the
regularization effect of the item biases. We address this by
introducing a user-specific weighting factor for the item pop-
ularity in order to gain the same flexibility.

It is now clear that MF exhibits these inductive biases,
whereas traditional LDA does not. Consequently, we pro-
pose an extended LDA model with the same flexibility as
MF.

Extended Latent Dirichlet Allocation
We modify traditional LDA by incorporating the item pop-
ularity δi and the user’s conformity λu. This results in the
generative process of an extended LDA (LDAext) more suit-
able for recommender systems:

1. choose θu ∼ Dir(α) for u ∈ U ,
2. choose φk ∼ Dir(β) for k ∈ K,
3. choose δ ∼ Dir(γ),
4. choose λu ∼ LogNormal(µ, σ2) for u ∈ U ,
5. for each user u ∈ U and interactions s ∈ Su:

(a) choose a cohort zus ∼ Cat(θu),
(b) choose an item ius ∼ p( ius | φzus

, δ, λu ) :=

Cat(pzus
(u)) where pzus

(u) = ∥czus
(u)∥1−1

czus
(u)

with czus
(u) = φzus

+ λuδ .

The additional hyperparameters µ, σ2 and γ ∈ R|I|
>0 can

be used to incorporate prior knowledge about the relations of
λ, δ and φk. In Step 5b, we see that the probability of a user
interacting with an item not only depends on the preference
assigned to the item by the cohort φzus

, but also the popular-
ity δi of the item and the conformity λu of the user. By virtue
of the expected value E[ius] = ⟨θu,p∗i(u)⟩ of this gener-
ative process, LDAext induces a personalized ranking ⩾u

similar to the personalized score of MF in (1). The graphical
model of LDAext is illustrated in Figure 2.

As we derived the parameters of LDAext from notions
about the real world, they have an intuitive interpretation
by design. An example use of this intuitive interpretation is
finding similar users in terms of conformity or cohort affil-
iation. The canonical metric of distance for categorical dis-
tributions θu is the index of dissimilarity, i.e.,

D(u, v) =
1

2
∥θu − θv∥1 ∈ [0, 1],

or equivalently the overlap, i.e.,

O(u, v) = 1−D(u, v) =
∑
k∈K

min(θuk, θvk) ∈ [0, 1], (2)

for two users u and v. In the case of MF, we have two user
vectors wu,wv ∈ R|K| and thus it is hard to argue if they
should be compared in terms of ∥wu −wv∥1, ∥wu −wv∥2
or even a completely different metric.

|S|

|U|

|K|

α θu zus

µ

σ2

λu

ius

β ϕk γ δ

Figure 2: Graphical model of LDAext that also incorporates
the popularity of items δ as well as the user’s conformity λu

to these popularities.

In the following, we show that MF has an adjoint formu-
lation that corresponds to the parameters φk, θu, δi and λu

of LDAext. Finally, this allows us to intuitively interpret the
latent factors of MF.

LDAext Formulation of Matrix Factorization
To derive the adjoint LDAext formulation of MF, we use
a lemma from Wilhelm (2021) that allows us to transform
an MF into an NMF. For completeness, we reproduce the
lemma and its short proof. We then prove our new theorem
that allows us to transform the factors of MF into the param-
eters of LDAext.

Lemma. Given personalized ranking scores x̂ui =
⟨wu,hi⟩ + bi for users u ∈ U and items i ∈ I with
wu ∈ R|K|, hi ∈ R|K| and bi ∈ R that induce a total rank-
ing ⩾u for all users. Then there exists x′

ui = ⟨w′
u,h

′
i⟩ + b′i



with w′
u ∈ R|K′|

≥0 , h′
i ∈ R|K′|

≥0 and b′i ∈ R≥0 that induce the
same total ranking ⩾u for all users.

Proof. We define w′
u = [w+

u,w
−
u] where

w+
uk =

{
wuk if wuk ≥ 0

0 otherwise
,

w−
uk =

{−wuk if wuk < 0

0 otherwise
,

for k ∈ K. Also, we define analogously h′
i =

[hi + s,−hi + s] with s = (si)i∈I , si = maxk∈K |hik| and
b′i = bi+maxi∈I |bi|. By construction, we have w′

u ∈ R|K′|
≥0 ,

h′
i ∈ R|K′|

≥0 and b′i ∈ R≥0 with K′ = {1, . . . , 2|K|}. Using
these definitions, we trivially have x′

ui ≥ x′
uj if and only if

x̂ui ≥ x̂uj . Subsequently, x′
ui and x̂ui induce the same total

ranking ⩾u.

Theorem. Given personalized ranking scores x̂ui =
⟨wu,hi⟩ + bi for users u ∈ U and items i ∈ I with
wu ∈ R|K|, hi ∈ R|K| and bi ∈ R that induce a total
ranking ⩾u for all users. Then there exist θu, φk, δ, λu and
consequently p(u), such that the corresponding generative
process of the extended LDA formulation induces the same
total ranking ⩾u by virtue of x′

ui = ⟨θu,p∗i(u)⟩ for all
users.

Proof. By virtue of the lemma, we assume wu ∈ R|K′|
≥0 ,

hi ∈ R|K′|
≥0 and bi ∈ R≥0 without loss of generality. Let

φk = ∥h∗k∥−1
1 h∗k, δ = ∥b∥−1

1 b,
θuk = ⟨ŵu,nu⟩−1 ŵuknuk, λu = ∥ŵu∥−1

1 ∥b∥1,
where ŵuk = ∥h∗k∥1wuk, nu = (nuk)k∈K′ with nuk =∑

i∈I φki + λuδi. In the pathological case ∥ŵu∥1 = 0, we
have a trivial solution and ⩾u only depends on δ. In case of
nuk = 0, we have

∑
i∈I φki = 0, consequently ∥h∗k∥1 = 0

and thus the k-th latent vector can just be removed. There-
fore, we assume now ∥ŵu∥1 > 0 and nuk > 0 and define
pk(u) = n−1

uk (φk + λuδ) according to Step 5b in LDAext
for each user u and cohort k. By construction, φk, θu, δ
and pk(u) are event probabilities of categorical distribu-
tions. Using these definitions, we have

x′
ui = ⟨θu,p∗i(u)⟩ =

∑
k∈K′

θuk pki(u)

=
∑
k∈K′

⟨ŵu,nu⟩−1 ŵuk(φki + ∥ŵu∥−1
1 bi)

= ⟨ŵu,nu⟩−1
∑
k∈K′

(ŵukφki + ŵuk∥ŵu∥−1
1 bi)

= ⟨ŵu,nu⟩−1(
∑
k∈K′

wuk hik + bi)

= ⟨ŵu,nu⟩−1(⟨wu,hi⟩+ bi) = ⟨ŵu,nu⟩−1x̂ui

Noting that the factor ⟨ŵu,nu⟩−1 only depends on u, we
conclude that x′

ui and x̂ui induce the same personalized
ranking ⩾u.

Evaluation
To show the implications for practical applications when in-
terpreting the factors of MF as parameters of LDAext, we
perform several experiments on public data sets. We evalu-
ate to what extent φk, θu, λu and δi can be interpreted as
a cohort with preferences for items, a user’s affiliation with
different cohorts, the conformity of a user and the popularity
of an item, respectively.

For our evaluation, we use three different data sets and
prune users with less than 20 interactions. The pruned
MovieLens-1M data set encompasses approximately 1 mil-
lion movie ratings across 6,040 users and 3,706 movies,
which accounts to a sparsity of 4.4% (Harper and Konstan
2016). After being pruned, Goodbooks has approximately 6
million interactions across 53,425 users and 10,000 books
with a sparsity of 1.1% (Zajac 2017). The Amazon data set
of ratings and reviews is further reduced by pruning items
with less than 50 interactions, eventually yielding about 1.35
million ratings across 23,632 users and 27,028 items with a
sparsity of 0.2% (Leskovec, Adamic, and Huberman 2007).

We adhere to the following evaluation protocol: For each
of the three data sets, we split into a train and test set by ran-
domly selecting 10 items for each user as test set. Then we
train an MF model with BPR loss on each data set using 5
different random seeds. For MovieLens-1M we set |K| = 64
and for Goodbooks and Amazon |K| = 256. These numbers
were determined beforehand to optimize for precision at 10,
i.e., the fraction of known positives in the first 10 positions
of the ranked list of prediction results. Eventually, we calcu-
late for each trained MF model the adjoint LDAext formu-
lation, then perform 4 statistical experiments defined below
and report the mean as well as the standard deviation.

Experiments
1. Cohort Allocation Test. In this test, we evaluate the dis-

tributions of the cohorts φk by choosing for each user
from θu the cohort kmax with the maximum event prob-
ability and randomly choose one of the cohorts with event
probability 0 as kmin. For every user u and the items
Iu that the user interacted with, we calculate the sum
of log probabilities for the two cohorts, i.e., suk :=∑

i∈Iu
log(φki) for k ∈ {kmin, kmax}. We then conduct

a one-tailed, paired t-test on tukmax and tukmin with the null
hypothesis that the user’s interaction are not more likely
in the cohort with which the user is most affiliated than in
the cohort with which the user is least affiliated.

2. Popularity Ranking Test. To study if δ can be inter-
preted as item popularity, we first calculate the empirical
item popularity δ′i as the number of user’s that interacted
with i and determine the Kendall τC correlation coeffi-
cient for δ and δ′. Our null hypothesis is that they are not
correlated.

3. Conformity Ranking Test. To test if λu can be inter-
preted as the conformity of a user towards item popularity,
we calculate for the interactions of each user Iu the aver-
age item popularity, i.e., λ′

u := 1
|Iu|

∑
i∈Iu

δi. Eventu-
ally, we determine the Kendall τC correlation coefficient



dataset train test

MovieLens-1M 0.608± 0.022 0.162± 0.018
Amazon 0.125± 0.004 0.059± 0.004
Goodbooks 0.178± 0.010 0.047± 0.005

Table 1: Results of experiment 1, i.e., cohort allocation test,
reporting Cohen’s d for the train and test set.

dataset experiment 2 experiment 3

MovieLens-1M 0.520± 0.006 0.3749± 0.0090
Amazon 0.377± 0.003 0.0818± 0.0026
Goodbooks 0.265± 0.004 −0.0016± 0.0013

Table 2: Results of experiment 2, i.e., popularity ranking
test, and experiment 3, i.e., conformity ranking test, showing
Kendall τC coefficient.

for λ′ and λ with the null hypothesis that they are not
correlated.

4. User’s Preferences Test. In this test we examine if θu is
a good proxy for the preferences of a user. We randomly
choose 2,000 users for each data set and determine for
each user a good t̂u and a bad twin ťu, such that the over-
lap O(θu, θt̂u) and O(θu, θťu) defined in (2) is maximal
and minimal, respectively. Independent of the user’s pref-
erences we also choose a random twin t̃u for each user.
Using the Jaccard coefficient J , we determine J(Iu, It̂u),
J(Iu, Iťu) as well as J(Iu, It̃u) and conduct two one-
tailed, paired t-test with the null hypothesis that J of a
good twin is not greater than the one of the bad twin and
analogously for the good and the random twin.

Results
All results reported in this section have a p-value of less
than 10−6 and thus the null hypothesis can confidently be
rejected.
1. Cohort Allocation Test. We conduct the experiment on

both the train and test set of each data set. In Table 1, we
report Cohen’s d for each case. In general, we see larger
effect sizes on the train than on the test set, which is to be
expected as the model was fitted on train. We note that the
effect sizes are small to moderate. This is due to the fact
that users are affiliated with many cohorts and rarely only
with a few, thus the entropy of θu is high.

2. Popularity Ranking Test. The results of the second ex-
periment are shown in Table 2. We find that the effect
sizes of τC are large, i.e. greater than 0.30. Only on Good-
books we see a moderate effect. This supports our inter-
pretation of δ as item popularity.

3. Conformity Ranking Test. In Table 2 we also find the
results of experiment 3. The effect size of the conformity
test is large for MovieLens-1M but quite small for Ama-
zon and even negative in the case of Goodbooks. Looking
at the median of λ, we have for Movielens-1M a value
of 0.016, for Amazon 0.011 and Goodbooks 0.003. This

dataset other train test

MovieLens-1M bad 1.88± 0.03 0.61± 0.02
Amazon bad 1.48± 0.03 0.86± 0.03
Goodbooks bad 2.88± 0.06 0.62± 0.04
MovieLens-1M rnd 1.17± 0.01 0.45± 0.02
Amazon rnd 1.44± 0.03 0.84± 0.03
Goodbooks rnd 2.12± 0.04 0.43± 0.02

Table 3: Results of experiment 4, i.e., user’s preferences test,
showing Cohen’s d when comparing the Jaccard coefficient
J(Iu, It̂u) with the one of a bad twin J(Iu, Iťu) and the one
of a random (rnd) twin J(Iu, It̃u) on train and test set.

explains the results, as the importance of the item pop-
ularity in Goodbooks is negligible in comparison to the
other datasets. Thus, the slight negative correlation close
to the standard deviation indicates that there is almost no
correlation.

4. User’s Preferences Test. In the results of the fourth ex-
periment as shown in Table 3, we see very large effect
sizes for train and small to large for test. As expected, the
comparison of a good and bad twin has a larger effect than
comparing a good to a random twin. Thus, we conclude
that the user representation θu with the metric O from (2)
can be used for clustering users in an interpretable way.

Conclusion
In the theoretical part of this paper, we have reviewed MF-
based methods as well as LDA and highlighted their dif-
ferences for collaborative filtering. Based on these findings,
we proposed a novel extended LDA (LDAext) approach that
remedies the deficits of LDA for recommendation tasks by
incorporating additional parameters for the popularity δ of
items and the conformity of users to the popularity λ. Sub-
sequently, we have proven that the factors of MF can be
transformed into an adjoint LDAext formulation such that
the induced personalized rankings of MF and LDAext are
identical. Therefore, the adjoint LDAext formulation of an
MF allows a simple interpretation of its parameters.

In the practical part, we have evaluated the proposed inter-
pretation of LDAext’s parameters on different data sets with
the help of statistical tests in 4 experiments. The results of
the experiments confirm our hypotheses about the relation-
ships and interpretation of the parameters in LDAext. Al-
though all statistical tests were significant with p < 10−6,
the effect sizes are small to medium in some experiments.
The reason for this is most likely due to the inherent diffi-
culty of collaborative filtering on sparse data sets. For fur-
ther investigation, we would like to explore our approach
on a single recommendation use-case together with domain
experts to evaluate whether the adjoint LDAext formulation
provides them with new insights.

Our work also contributes to the question about the impor-
tance and effectiveness of the scalar product for collabora-
tive filtering tasks. In Neural Collaborative Filtering (NCF),
the scalar product in MF is replaced by a learned similarity



with the help of a neural network (NN). Some recent repro-
ducibility papers show that the scalar product outperforms
several NCF-based methods and that it should thus be the de-
fault choice for combining latent factors (Rendle et al. 2020;
Dacrema, Cremonesi, and Jannach 2019). Our work justi-
fies these results in the sense that we can interpret the scalar
product as the expected value of LDAext, which describes
the underlying dynamics of users interacting with items in
a simplified way. This inductive bias is beneficial especially
in domains with inherent sparsity like collaborative filter-
ing since learning a scalar product is possible in theory
(Lin, Tegmark, and Rolnick 2017) for an NN but proves
difficult in practice (Trask et al. 2018; Beutel et al. 2018;
Rendle et al. 2020). For these reasons, MF-based methods
will continue to be relevant in the future of collaborative
filtering and are now also interpretable using the adjoint
LDAext formulation.
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