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Abstract

The disturbance storm time (Dst) index is an important
and useful measurement in space weather research. It
has been used to characterize the size and intensity of
a geomagnetic storm. A negative Dst value means that
the Earth’s magnetic field is weakened, which happens
during storms. In this paper, we present a novel deep
learning method, called the Dst Transformer, to perform
short-term, 1-6 hour ahead, forecasting of the Dst in-
dex based on the solar wind parameters provided by the
NASA Space Science Data Coordinated Archive. The
Dst Transformer combines a multi-head attention layer
with Bayesian inference, which is capable of quanti-
fying both aleatoric uncertainty and epistemic uncer-
tainty when making Dst predictions. Experimental re-
sults show that the proposed Dst Transformer outper-
forms related machine learning methods in terms of the
root mean square error and R-squared. Furthermore, the
Dst Transformer can produce both data and model un-
certainty quantification results, which can not be done
by the existing methods. To our knowledge, this is the
first time that Bayesian deep learning has been used for
Dst index forecasting.

Introduction
Geomagnetic activities have significant impact on Earth.
They can disturb or damage telephone systems, power grid
transmission systems and space satellites. Geomagnetic ac-
tivity modeling and forecasting has therefore been an impor-
tant subject in space weather research. The main source of
geomagnetic activity is solar activity. The solar wind, which
is a stream of charged particles released from the atmosphere
of the Sun, is considered as the medium through which the
Sun exerts influence on Earth. As a consequence, solar wind
parameters such as the interplanetary magnetic field (IMF),
total electric field, solar wind speed and plasma temperature
are often used to model geomagnetic activities and forecast
geomagnetic indices.

The disturbance storm time (Dst) index is an impor-
tant geomagnetic index. It has been used to characterize
the size and intensity of a geomagnetic storm. A neg-
ative Dst value means that the Earth’s magnetic field is
weakened, which happens during storms. A storm is con-
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sidered moderate when Dst is greater than −50 nT, in-
tense when Dst is between −50 nT and −250 nT, or super
when Dst is less than −250 nT (Loewe and Prölss 1997;
Gruet et al. 2018).

Many techniques have been developed to model and fore-
cast the Dst index. For example, Burton, McPherron, and
Russell (1975) adopted differential equations to model the
Dst index. The authors used solar wind parameters as the
source of differential equations in their model. Gleisner,
Lundstedt, and Wintoft (1996) created the first Dst predic-
tion model by employing a time-delay artificial neural net-
work (ANN) with solar wind parameters as input. The au-
thors performed 1-6 hour ahead predictions for the Dst index
forecasting. Bala and Reiff (2012) discussed another strat-
egy by combining physical models and ANNs, along with
parameters such as the solar wind velocity, IMF magnitude,
and IMF clock angle. Lazzús et al. (2017) employed a parti-
cle swarm optimization technique to train ANN connection
weights to improve the accuracy of Dst index predictions.

The above approaches mainly focused on single point pre-
dictions. Chandorkar, Camporeale, and Wing (2017) ex-
tended the above approaches by considering probabilistic
forecasting of the Dst index. The authors used Gaussian
processes (GP) to build autoregressive models to estimate
Dst 1 hour ahead based on past Dst values, as well as the
solar wind velocity and the IMF Bz component. Their tech-
nique generated a predictive distribution instead of single
point predictions. However, the mean values of the forecasts
are not as accurate as the forecasts produced by ANNs. To
improve GP’s poor point prediction performance, Gruet et
al. (2018) built a Dst index prediction model by combining
GP with a long short-term memory (LSTM) network.

In this paper, we present a novel Bayesian deep learning
approach for performing short-term, 1-6 hour ahead, predic-
tions of the Dst index. Our approach, called the Dst Trans-
former and denoted by DSTT, combines a multi-head atten-
tion layer with Bayesian inference capable of handling both
aleatoric uncertainty and epistemic uncertainty. Aleatoric
uncertainty, also known as data uncertainty, measures the
noise inherent in data. Epistemic uncertainty, also known as
model uncertainty, measures the uncertainty in the parame-
ters of a model (Kendall and Gal 2017). Thus, our work ex-
tends the aforementioned GP-based probabilistic forecasts,
which can only handle model uncertainty, to quantify both



data and model uncertainties through Bayesian inference. It
is worth noting that Bayesian deep learning has also been
used to mine solar images (Jiang et al. 2021). However, Dst
values are time series data, not image data, and hence the
architecture of our Dst Transformer is totally different from
the model architecture developed by Jiang et al. (2021).

The contributions of our work are summarized below.

• Our DSTT model is the first to utilize the Transformer
network to forecast the Dst index for a short-term period
(i.e., 1-6 hours ahead).

• This is the first study in which both data and model un-
certainties are quantified when performing Dst index fore-
casting.

• Our DSTT model outperforms closely comparable ma-
chine learning methods for short-term Dst index forecast-
ing, as evidenced by performance metrics including the
root mean square error (RMSE) and R-squared (R2).

Data
Data Source
The Dst index measurements used in this study are provided
by the NASA Space Science Data Coordinated Archive.1
The data source provides other widely accessed data that
are frequently used in solar wind analysis. The data source
is being periodically updated with Advanced Composition
Explorer (ACE).2 We used the Dst index data in the time
period between January 1, 2010 and November 15, 2021.
We selected the time resolution of the hourly average for
the Dst index. Following Lethy et al. (2018), we consid-
ered seven solar wind parameters, namely the interplanetary
magnetic field (IMF), magnetic field Bz component, plasma
temperature, proton density, plasma speed, flow pressure,
and electric field. The total number of records in our dataset
is 104,080. The Dst index values in the dataset range from
77 nT to −223 nT.

Data Labeling
We divided our dataset into two parts: training set and test
set. The training set contains 102,976 records from January
1, 2010 to September 30, 2021. The test set contains 1104
records from October 1, 2021 to November 15, 2021. The
training set and test set are disjoint. The records are labeled
as follows. Let t be a time point of interest and let w be the
time window ahead of t, where w ranges from 1 to 6 hours
for the short-term Dst forecasting studied here. The label of
the record at time point t is defined as the Dst index value at
time point t+ w for w-hour-ahead forecasting. Each record
in the training set has eight values including the seven solar
wind parameter values and the label of the training record.
Each record in the test set contains only the seven solar wind
parameter values; the label of each testing record in the test
set will be predicted by our DSTT model.

1https://nssdc.gsfc.nasa.gov
2https://omniweb.gsfc.nasa.gov
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Figure 1: Architecture of our Dst Transformer (DSTT).

Proposed Method
Architecture of the DSTT Model
Figure 1 presents the architecture of our DSTT model.
DSTT is created using the tensorflow keras framework.3 We
add multiple layers to DSTT to enhance its performance and
improve its learning capability. The model accepts as in-
put non-overlapping sequences of records xp+1, xp+2, . . . ,
xp+n, where n is set to 1024 in our study. Each sequence
is passed to a one-dimensional convolution neural network
(Conv1D) with 32 kernels where the size of each kernel is
1. Conv1D is well suited for sequential data; it learns pat-
terns from the input data sequence and passes them to a long
short-term memory (LSTM) layer that is configured with
250 LSTM units. Combining Conv1D and LSTM layers
has shown significant improvement in performance when
dealing with sequential data such as time series (Abdual-
lah et al. 2021; Faghihi and Kalantarpour 2021). LSTM
hands the learned patterns down to a multi-head attention
layer (Vaswani et al. 2017). The multi-head attention layer
provides transformation on the sequential input of values to
obtain distinct metrics of size h. Here, h is the number of
attention heads that is set to 3 and the size of each attention
head is also set to 3 because a number greater than 3 caused
overhead and less than 3 caused performance degradation.
The other parameters are left with their default values.

Furthermore, we add custom attention to instruct the lay-
ers to focus and pay more attention to critical information of
the input data sequence and capture the correlation between
the input and output by computing the weighted sum of the
data sequence. In addition, we add a dense variational layer
(DVL) (Tran et al. 2019) with 10 neurons that uses vari-
ational inference (Blei, Kucukelbir, and McAuliffe 2016)

3https://www.tensorflow.org



to approximate the posterior distribution over the model
weights. DVL is similar to a regular dense layer, but re-
quires two input functions that define the prior and posterior
distributions over the model weights. DVL allows our DSTT
model to represent the weights by a distribution instead of
estimated points.

DSTT also includes multiple dense and dropout layers.
Each dense layer is strongly connected with its preceding
layer where every neuron in the dense layer is connected
with every neuron in the preceding layer. Each dropout layer
instructs the DSTT model to randomly drop a percentage of
its hidden neurons throughout the training phase to avoid
over-fitting of training data.

Uncertainty Quantification
Quantifying uncertainty with a deep learning model has
been used in many applications such as medical image pro-
cessing (Kwon et al. 2020), computer vision (Kendall and
Gal 2017), space weather (Gruet et al. 2018) and solar
physics (Jiang et al. 2021). Our proposed DSTT model con-
tains a dense variational layer (DVL) that provides a weight
distribution and multiple dropout layers that drop or turn
off certain number of neurons during the training phase.
Dropout is mainly used in deep learning to prevent over-
fitting, where a trained model can be generalized for predic-
tion instead of fitting exactly against its training data. With
the dropout, the model’s internal architecture is slightly dif-
ferent each time the neurons are dropped. This is an impor-
tant behavior to the Monte Carlo (MC) class of algorithms
that depends on random sampling and provides useful in-
formation (Gal and Ghahramani 2016). We use this tech-
nique to introduce a distribution interval of predicted values
as demonstrated in Section “Experiments and Results.”

Specifically, to quantify the uncertainty with our DSTT
model, we use a prior probability, P (W ), over the model’s
weights, W . During training, the seven solar wind parameter
values and Dst index values, collectively referred to as D,
are used to train the model. According to Bayes’ theorem,

P (W |D) =
P (D|W )× P (W )

P (D)
. (1)

Computation of the exact posterior probability, P (W |D), is
intractable (Jiang et al. 2021), but we can use variational in-
ference (Graves 2011) to learn the variational distribution
over the model’s weights parameterized by θ, qθ(W ), by
minimizing the Kullback–Leibler (KL) divergence of qθ(W )
and P (W |D) (Blei, Kucukelbir, and McAuliffe 2016). Ac-
cording to Gal and Ghahramani (2016), a network with a
dropout provides variational approximation. To minimize
the KL divergence, we use the dense variational layer (DVL)
shown in Figure 1 and assign the KL weight to 1/N where
N is the size of the training set (Ling and Dai 2012). We use
the mean squared error (MSE) loss function and the adaptive
moment estimation (Adam) optimizer (Goodfellow, Bengio,
and Courville 2016) with a learning rate of 0.0001 to train
our model. Let θ̂ denote the optimized variational parameter
obtained by training the model; we use qθ̂(W ) to represent
the optimized weight distribution.

During testing/prediction, our model utilizes the MC
dropout sampling technique to produce probabilistic fore-
casting results, quantifying both aleatoric and epistemic un-
certainties. Dropout is used to retrieve K MC samples
by processing the test data K times (Gal and Ghahramani
2016). (In the study presented here, K is set to 100.) For
each of the K MC samples, a set of weights is randomly
drawn from qθ̂(W ). For each predicted Dst value, we get a
mean and a variance over the K samples. Following (Kwon
et al. 2020; Jiang et al. 2021), we decompose the variance
into aleatoric and epistemic uncertainties. The aleatoric un-
certainty captures the inherent randomness of the predicted
result, which comes from the input test data. On the other
hand, the epistemic uncertainty comes from the variability
of W , which accounts for the uncertainty in the model pa-
rameters (weights).

Experiments and Results
Performance Metrics
We conducted a series of experiments to evaluate our pro-
posed DSTT model and compare it with closely related
methods. The performance metrics used in our study are
the root mean square error (RMSE) (Abduallah et al. 2021)
and R-squared (R2).

RMSE is calculated as follows:

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2, (2)

where m is the total number of testing records in the test set,
ŷi (yi, respectively) represents the predicted Dst index value
(observed Dst index value, respectively) at time point i. The
smaller the RMSE, the more accurate a method is.

R2 is calculated as follows:

R2 = 1−
∑m

i (yi − ŷi)
2∑m

i (yi − ȳ)2
, (3)

where ȳ is the mean of the observed Dst index values. The
larger the R2, the more accurate a method is.

Ablation Study
In this experiment, we performed ablation tests to analyze
and evaluate the components of our DSTT model. We con-
sidered six subnets derived from DSTT: DSTT-C, DSTT-L,
DSTT-M, DSTT-CL, DSTT-CM and DSTT-LM. DSTT-C
(DSTT-L, DSTT-M, DSTT-CL, DSTT-CM, DSTT-LM, re-
spectively) represents the subnet of DSTT in which we re-
move the Conv1D layer (LSTM layer, multi-head attention
layer, Conv1D and LSTM layers, Conv1D and multi-head
attention layers, LSTM and multi-head attention layers, re-
spectively) while keeping the remaining components of the
DSTT network. For comparison purposes, we turned off the
uncertainty quantification mechanism in the seven models.

Figure 2 presents the RMSE and R2 results of the seven
models. The t+ wh, 1 ≤ w ≤ 6, on the X-axis corresponds
to the w-hour ahead predictions of the Dst index based on
the testing records in the test set. It can be seen from Figure
2 that our proposed full network model, DSTT, achieves the
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Figure 2: Results of the ablation study.

best performance among the seven models. DSTT-C cap-
tures the temporal correlation from the input data but it does
not learn additional patterns and properties to strengthen
the relationship between data records. DSTT-L captures the
properties from the data records but it lacks the temporal cor-
relation information to deeply analyze the sequential infor-
mation in the input data. DSTT-M captures both the tempo-
ral correlation and additional properties, but it does not pro-
vide transformation on the sequential inputs to obtain dis-
tinct metrics to further strengthen the correlation between
the predicted and observed Dst values. Similarity, DSTT-
CL, DSTT-CM, and DSTT-LM do not capture the combined
patterns due to the removed layers. As a consequence, the
six subnets achieve worse performance than DSTT. It can be
seen from Figure 2 that removing two layers yields worse
results than removing one layer only. DSTT-LM yields
the worst results, indicating the importance of including the
LSTM and multi-head attention layers. The results based on
RMSE and R2 are consistent. In subsequent experiments,
we used DSTT due to its best performance among the seven
models.

Comparison with Related Methods
In this experiment, we compared the Dst Transformer
(DSTT) with six closely related machine learning meth-
ods including linear regression (LR), random forests (RF),
support vector regression (SVR), auto regressive integrated
moving average (ARIMA) (Tyass et al. 2022), long short-
term memory (LSTM), and the method developed by Gruet
et al. (2018), which combines LSTM with Gaussian pro-
cesses (GP) and is denoted by LSTMGP. Because the six
related methods do not have the ability to quantify both data
and model uncertainties, we turned off the uncertainty quan-
tification mechanism in our DSTT model when performing

this experiment.
Figure 3 presents the RMSE and R2 results of the seven

methods: DSTT, LR, RF, SVR, ARIMA, LSTM and LST-
MGP. It can be seen from the figure that DSTT achieves
the best performance, producing the most accurate predic-
tions, among the seven methods in terms of both RMSE and
R2. The deep learning methods including DSTT, LSTM and
LSTMGP as well as ARIMA mostly perform better than the
traditional machine learning algorithms including RF, LR
and SVR.

Uncertainty Quantification Results
Figure 4 shows uncertainty quantification results produced
by our DSTT model on the test set. Due to space limita-
tion, we only present the results obtained from 4-hour ahead
predictions of the Dst index. In Figure 4, the orange lines
represent observed values of the Dst index (ground truth)
while the blue lines represent the predicted values of the
Dst index. The light blue region in Figure 4(a) represents
aleatoric uncertainty (data uncertainty). The light gray re-
gion in Figure 4(b) represents epistemic uncertainty (model
uncertainty).

It can be seen from Figure 4 that the blue lines are rea-
sonably close to the orange lines, indicating the good per-
formance of our DSTT model, which is consistent with the
results in Figure 3. Figure 4 also shows that the light gray
region is much smaller than the light blue region, indicating
that the model uncertainties are much smaller than the data
uncertainties. Thus, the uncertainty in the predicted result is
mainly due to the noise in the input test data. Similar results
were obtained from other w-hour, 1 ≤ w ≤ 6, w ̸= 4, ahead
predictions of the Dst index. We note that when w is longer
than 4, the prediction performance starts to degrade. This
is understandable given that we are trying to predict a Dst



t+1h t+2h t+3h t+4h t+5h t+6h
1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

(a)

R
M
S
E

DSTT LR RF SVR LSTM LSTMGP ARIMA

t+1h t+2h t+3h t+4h t+5h t+6h

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.0

(b)

R
2

DSTT LR RF SVR LSTM LSTMGP ARIMA

Figure 3: Performance comparison of seven Dst forecasting methods.

index value that is farther away from the input test record.

Discussion and Conclusions
The disturbance storm time (Dst) index is an important and
useful measurement in space weather research, which is
used to understand the severity of a geomagnetic storm. The
Dst index is also known as the measure of the decrease in
the Earth’s magnetic field. In this paper, we present a novel
deep learning model, called the Dst Transformer or DSTT,
to perform short-term, 1-6 hour ahead predictions of the Dst
index. Our empirical study demonstrated the good perfor-
mance of the Dst Transformer and its superiority over related
methods.

Our experiments were based on the data collected in the
period between January 1, 2010 and November 15, 2021.
The training set contained hourly records from January 1,
2010 to September 30, 2021. The test set contained hourly
records from October 1, 2021 to November 15, 2021. To
avoid bias in our findings, we performed additional experi-
ments using 10-fold cross validation (CV). For the CV tests,
we used the original data set described above and another
data set ranging from November 28, 1963 to March 1, 2022
that has 510,696 records. In addition, we generated syn-
thetic data with up to 1.2 million records to further assess
the performance and stability of our DSTT model. With the
10-fold CV tests, the data was divided into 10 approximately
equal partitions or folds. The sequential order of the data in
each fold was maintained. In each run, one fold was used
for testing and the other nine folds together were used for
training. There were 10 folds and hence 10 runs. We com-
puted the performance metrics including RMSE and R2 for
each method studied in the paper in each run. The means

and standard deviations of the metric values over the 10 runs
were calculated and recorded. Results from the 10-fold CV
tests were consistent with those reported in the paper. Thus
we conclude that the proposed Dst Transformer (DSTT) is
a feasible machine learning method for short-term, 1-6 hour
ahead predictions of the Dst index. Furthermore, our DST
Transformer can quantify both data and model uncertainties
in making the predictions, which can not be done by the re-
lated methods.

Our work focuses on short-term predictions of the Dst in-
dex by utilizing solar wind parameters. These solar wind
parameters are collected by instruments near Earth and are
suited for short-term predictions of the geomagnetic storms
near Earth (Gruet et al. 2018; Lethy et al. 2018). When us-
ing the solar wind parameters to perform long-term (e.g., 3-
day ahead) predictions of the Dst index, the accuracy is low.
In future work, we plan to perform long-term predictions of
the Dst index by utilizing solar data collected by instruments
near the Sun. The solar data reflects solar activity, which is
the source of geomagnetic activity. We plan to extend the
Bayesian deep learning method described here to mine the
solar data for performing long-term Dst index forecasts.
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